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Abstract. We study the existence, multiplicity, and stability of positive solutions to:

−u′′(x) = λf(u(x)) for x ∈ (−1, 1), λ > 0,

u(−1) = 0 = u(1),

where f : [0,∞) → R is semipositone (f(0) < 0) and superlinear (limt→∞ f(t)/t = ∞). We consider the case
when the nonlinearity f is of concave-convex type having exactly one inflection point. We establish that f should
be appropriately concave (by establishing conditions on f) to allow multiple positive solutions. For any λ > 0, we
obtain the exact number of positive solutions as a function of f(t)/t and establish how the positive solution curves
to the above problem change. Also, we give examples where our results apply. This work extends the work in [1]
by giving a complete classification of positive solutions for concave-convex type nonlinearities.

1. Introduction

We study the positive solutions to the two point boundary value problem:

−u′′(x) = λf(u(x)) for x ∈ (−1, 1), λ > 0,(1.1)

u(−1) = 0 = u(1),(1.2)

where f : [0,∞) → R is a twice differentiable function such that:

(1.3) f(0) < 0 (semipositone), lim
t→∞

f(t)

t
= ∞ (superlinear), and f has a unique positive zero β.

We define F by F (t) =
∫ t

0 f(s) ds, and we observe that by (1.3):

(1.4) F has a unique positive zero θ > β.

We also assume that f has exactly one inflection point t∗ with:

(1.5) f ′′(t) < 0 on (0, t∗), f ′′(t) > 0 on (t∗, ∞), and t∗ > β.

Since ( f(t)
t )′ = tf ′(t)−f(t)

t2 and (tf ′(t) − f(t))′ = tf ′′(t) with f(0) < 0, it follows from (1.5) that either:

(1.5)1 (f(t)/t)′ ≥ 0 for all t > 0, or

(1.5)2 (f(t)/t)′ > 0 for t ∈ (0, t1) ∪ (t2,∞) and (f(t)/t)′ < 0 for t ∈ (t1, t2)

for some t1, t2 with 0 < t1 < t∗ < t2.

1991 Mathematics Subject Classification. Primary 34B15: Secondary 35J65.
Key words and phrases. Semipositone, concave, convex.

EJQTDE, 2001 No. 4, p. 1



For future reference we define:

(1.6) H(t) = F (t) − 1

2
tf(t)

and observe that:

(1.7) H ′(t) = −1

2
t2(f(t)/t)′.

Finally, for a positive solution of (1.1)-(1.2), we define:

ρ = sup
(−1,1)

u(x).

We refer the reader to [2, 3] where the classification (1.5)1, (1.5)2 helps in giving a complete description of
positive solution curves for concave nonlinearities. In [7], Shi and Shivaji consider (1.5)2 and obtain a similar
result to Theorem 1 section (2) with reasonably different methods from ours.

We also note that in [9], Wang considers the positone problem (f(0) > 0) with f initially convex and
then concave. Finally, semipositone problems occur in several harvesting models (see [4]) and have been
extensively studied in [1-3] and [5-8].

Our main results are:

Theorem 1.

(1) If f satisfies (1.3)-(1.5) and (1.5)1, then there exists λ∗ with 0 < λ∗ < ∞ such that (1.1)-(1.2) has
no positive solutions for λ > λ∗ and has a unique positive solution for λ ∈ (0, λ∗] (see Fig. 1).
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In addition, ρ ≡ ρλ is a decreasing function of λ with ρλ : (0, λ∗] → [θ,∞) such that ρλ∗ = θ and
lim

λ→0+
ρλ = +∞.

(2) If f satisfies (1.3)-(1.5), (1.5)2, and H(t∗) ≥ 0, then there exist λ1, λ2, λ
∗ with 0 < λ1 < λ2 < ∞ and

λ1 < λ∗ < ∞ such that (1.1)-(1.2) has no positive solutions for λ > max{λ2, λ
∗} and has a unique

positive solution for λ < λ1 while for λ = λ1 it has exactly two positive solutions. Also, ρλ∗ = θ and
lim

λ→0+
ρλ = +∞.

Subcase a: If λ2 ≤ λ∗ then for λ ∈ (λ1, λ2) (1.1)-(1.2) has exactly three positive solutions while for
λ = λ2 it has exactly two positive solutions. Finally, if λ ∈ (λ2, λ

∗] then (1.1)-(1.2) has exactly one
positive solution (see Fig. 2A).
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Subcase b: If λ2 > λ∗ then for λ ∈ (λ1, λ
∗] (1.1)-(1.2) has exactly three positive solutions while for

λ ∈ (λ∗, λ2) (1.1)-(1.2) has exactly two positive solutions. Finally, for λ = λ2 the problem (1.1)-(1.2)
has exactly one positive solution (see Fig. 2B).
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This paper is organized as follows. In Section 2, we study the variations of the positive solutions with respect
to the parameters λ and ρ. We prove Theorem 1 in Section 3. In Section 4 we give a family of examples
which satisfies the hypotheses of Theorem 1.

2. First and Second Variations with respect to parameters

We first observe that any positive solution of (1.1)-(1.2) must be symmetric about the origin. To see this,
let x0 ∈ (−1, 1) be the point at which u attains its maximum. Denote u(x0) = ρ > 0. Thus u′(x0) = 0 and it
follows that u(x0+x) and u(x0−x) satisfy the differential equation (1.1) as well as the same initial conditions
at x0. Therefore, by uniqueness of solutions of initial value problems, we must have u(x0 + x) = u(x0 − x).
So assuming without loss of generality that x0 ≥ 0, we see then that 0 = u(1) = u(2x0 − 1) and since u > 0
on (−1, 1), we must have 2x0 − 1 = −1 - i.e. x0 = 0 and thus u is symmetric about the origin.

With this result, for any ρ > 0 and any λ > 0 we define u(x, λ, ρ) to be the solution to the initial value
EJQTDE, 2001 No. 4, p. 3



problem:

u′′(x) + λf(u(x)) = 0, λ > 0,(2.1)

u(0) = ρ > 0, u′(0) = 0,(2.2)

where ′ denotes differentiation with respect to x. Observing that u(−x, λ, ρ) also solves (2.1) and (2.2), it
follows from the uniqueness of solutions of initial value problems that u(−x, λ, ρ) = u(x, λ, ρ). Thus we see
that the set of positive solutions of (1.1)-(1.2) is precisely the set of solutions of (2.1)-(2.2) for which:

(2.3) u(x, λ, ρ) > 0 for x ∈ (0, 1) and u(1, λ, ρ) = 0.

We now prove some elementary properties of positive solutions of (1.1)-(1.2) (and hence of (2.1)-(2.3) for
some ρ > 0). Multiplying (2.1) by u′(x), integrating over (0, x), and using (2.2) yields:

(2.4)
1

2
[u′(x)]2 + λF (u(x)) = λF (ρ).

Evaluating this at x = 1 gives:

(2.5) 0 ≤ 1

2
[u′(1)]2 = λF (ρ).

Since for ρ > 0 we have F (ρ) ≥ 0 if and only if ρ ≥ θ (by (1.4)), we see from (2.5) that:

(2.6) positive solutions of (1.1)-(1.2) satisfy ρ ≥ θ, and

(2.7) positive solutions of (1.1)-(1.2) satisfy u′(1) < 0 if ρ > θ and u′(1) = 0 if ρ = θ.

Also observe that if u is a positive solution to (2.1)-(2.3), then u′′(0) = −λf(ρ) < 0 (by (1.1), (1.3), and
(2.6)) and therefore u′ < 0 on (0, ε) for some ε > 0. In fact u′(x) < 0 on (0, 1) for if u′(x1) = 0 at some
first x1 ∈ (0, 1) then 0 < u(x1) < ρ while from (2.4) and (2.5) we have F (u(x1)) = F (ρ) ≥ 0. Thus by (1.4)
β < θ ≤ u(x1) < ρ. But this is impossible since F is increasing for x > β (by (1.3)) and thus:

(2.8) positive solutions of (1.1)-(1.2) satisfy u′(x) < 0 on (0, 1).

Next we observe that u(xd, λ, ρ) and u(x, λd2, ρ) satisfy the same initial value problem and so by uniqueness
of solutions of initial value problems we have:

u(xd, λ, ρ) = u(x, λd2, ρ).

After differentiating this with respect to d and setting d = 1, we obtain:

(2.9) xu′(x, λ, ρ) = 2λ
∂u

∂λ
(x, λ, ρ).

Next let v denote the solution to the corresponding linearized problem of (1.1):

v′′(x) + λf ′(u(x))v(x) = 0,(2.10)

v(0) = 1, v′(0) = 0,(2.11)

and let w denote the solution to the problem:

w′′(x) + λf ′(u(x))w(x) + λf ′′(u(x))v2(x) = 0,(2.12)

w(0) = 0, w′(0) = 0.(2.13)

That is, v and w are the first and second derivatives of u with respect to ρ - i.e. v ≡ ∂u
∂ρ (x, λ, ρ) and

w ≡ ∂2u
∂ρ2 (x, λ, ρ).

Now observe that by multiplying (2.10) by u′(x) and integrating on (0, x) we obtain:

(2.14) u′(x)v′(x) + λf(u(x))v(x) = λf(ρ).

Similarly, multiplying (2.12) by u′(x) and integrating on (0, x) gives:

(2.15) u′(x)w′(x) + λf(u(x))w(x) + v′2(x) + λf ′(u(x))v2(x) = λf ′(ρ).
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Lemma 2.1. Suppose f satisfies (1.3). Let u(x, λ0, ρ0) be a positive solution to (1.1)-(1.2). Then v(x) ≡
∂u
∂ρ (x, λ0, ρ0) has at most one zero in [0, 1].

Proof. We first observe that if v(x0) = 0 then v′(x0) 6= 0 for if v′(x0) = 0 then by uniqueness of solutions of
initial value problems, it follows that v ≡ 0. On the other hand, v(0) = 1 6= 0.

Now on to the proof of the lemma. Suppose by the way of contradiction that x1 and x2 are the first
two consecutive zeros of v. Then by the remarks in the previous paragraph and since v(0) = 1, we have
v′(x1) < 0 and v′(x2) > 0. Also by (2.14) it follows that u′(x2)v

′(x2) = λ0f(ρ0) and so we see that u′(x2)
and f(ρ0) have the same sign. But since ρ0 ≥ θ (by (2.6)), it follows from (1.3)-(1.4) that f(ρ0) > 0 and
hence u′(x2) > 0. But this contradicts (2.7)-(2.8). Hence, v(x) can have at most one zero on [0, 1]. �

Remark: Note that the above lemma does not rely on the concavity properties of f . �

Lemma 2.2. Suppose f satisfies (1.3)-(1.5). Let u(x, λ0, ρ0) be a positive solution to (1.1)-(1.2) with

θ ≤ ρ0 ≤ t∗ and suppose also that v(1) = ∂u
∂ρ (1, λ0, ρ0) = 0. Then w(1) = ∂2u

∂ρ2 (1, λ0, ρ0) > 0.

Proof. Recall that v ≡ ∂u
∂ρ satisfies (2.10)-(2.11) and w ≡ ∂2u

∂ρ2 satisfies (2.12)-(2.13). Multiplying (2.10) by

w and (2.12) by v, subtracting one from the other, integrating over (0, 1), and using v(1) = 0 we obtain:

(2.16) w(1)v′(1) =

∫ 1

0

λ0f
′′(u(x))v3(x) dx.

Since v(1) = 0, it follows from lemma 2.1 that we have v > 0 on [0, 1) and it also follows from the uniqueness
of solutions to initial value problems that v′(1) < 0. Since θ ≤ ρ0 ≤ t∗ and u(x) is decreasing on (0,1) (by
(2.8)), it follows that u(x) < ρ0 ≤ t∗ on (0, 1) and so by (1.5) we have f ′′(u(x)) < 0 on (0, 1). These facts
and (2.16) imply w(1) > 0. This proves the lemma. �

Lemma 2.3. If f satisfies (1.3)-(1.5), (1.5)2, and H(t∗) ≥ 0, then the function defined by J : [0,∞) → R,
J(t) = f ′(t)F (t) − 1

2f2(t) has exactly one positive zero, t∗∗, and θ < t∗ < t∗∗ < t2.

Proof. By (1.5), t∗ > β. Combining this with the fact that H(t∗) ≥ 0 implies F (t∗) ≥ 1
2 t∗f(t∗) > 0 (since

t∗ > β) and so F (t∗) > 0 which implies t∗ > θ (by (1.4)).

Next observe that J ′(t) = f ′′(t)F (t) so J is increasing on (0, θ) ∪ (t∗,∞) and decreasing on (θ, t∗). Also,
observe J(θ) < 0 so that J < 0 on [0, t∗]. Hence J has at most one positive zero.

Also, J = f ′H − fH ′ hence J(t2) = f ′(t2)H(t2) and f(t2) = t2f
′(t2) (by (1.5)2). Since t2 > t∗ > β

(by (1.5)2), we have t2f
′(t2) = f(t2) > 0 and so J(t2) > 0 because H has a maximum at t2 and so

H(t2) > H(t∗) ≥ 0. Thus, J has exactly one positive zero, t∗∗, and θ < t∗ < t∗∗ < t2. This completes the
proof of the lemma. �

Lemma 2.4. Suppose f satisfies (1.3)-(1.5) and (1.5)2. Let u(x, λ0, ρ0) be a positive solution of (1.1)-(1.2)

with ρ0 ≥ t∗∗ and suppose also that v(1) = ∂u
∂ρ (1, λ0, ρ0) = 0. Then w(1) = ∂2u

∂ρ2 (1, λ0, ρ0) < 0.

Proof. We define:

E = v′
2
+ λ0f

′(u)v2

and observe (by (2.10)) that:
E′ = λ0f

′′(u)u′v2.

Since ρ0 ≥ t∗∗ > t∗, examining the sign of E′ along with (1.5) and (2.8), we see that E is decreasing on
(0, x∗) and increasing on (x∗, 1) where x∗ is the point at which u(x∗) = t∗.

Thus, E has exactly one local minimum and no local maxima on (0,1). Hence the maximum of E on [0,1]
occurs either at x = 0 or x = 1.

Next, we see from lemma 2.3 that ρ0 ≥ t∗∗ implies J(ρ0) ≥ 0. Using (2.4), (2.11), (2.14), and the fact that
v(1) = 0, we obtain:

E(0) − E(1) =
λ0

F (ρ0)
[f ′(ρ0)F (ρ0) −

f2(ρ0)

2
] =

λ0

F (ρ0)
J(ρ0) ≥ 0.
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Thus, for x ∈ [0, 1] we have v′2 + λ0f
′(u)v2 = E(x) ≤ E(0) = λ0f

′(ρ0). Hence, by (2.15):

u′w′ + λ0f(u)w ≥ 0 on [0, 1].

Now solving (2.4) for u′, using (2.8) and substituting into the above inequality gives:

w′ −
√

λ0

2

f(u)
√

F (ρ0) − F (u)
w ≤ 0 on (0, 1].

Multiplying by the appropriate integrating factor and then integrating on (ε, x) ⊂ (0, 1] for ε > 0 we have:

∫ x

ε

(we
−
q

λ0
2

R
x

ε

f(u) dt√
F (ρ0)−F (u) )′ ≤ 0.

Now, for ε small enough we have w(ε) < 0 because by (2.12)-(2.13) we have w(0) = 0, w′(0) = 0, and
w′′(0) = −λ0f

′′(ρ0) < 0 since ρ0 ≥ t∗∗ > t∗. Therefore:

w(x)e
−
q

λ0
2

R
x

ε

f(u) dt√
F (ρ0)−F (u) ≤ w(ε) < 0.

Hence w(x) < 0 on (ε, 1]. In particular, w(1) < 0. This completes the proof of the lemma. �

3. Proof of Theorem 1

We begin by rewriting (2.4), and we obtain:

−u′(x)√
2
√

F (ρ) − F (u(x))
=

√
λ on (0, 1).

Thus, after integrating on (x, 1) and using u(1) = 0 we obtain:

(3.1)
1√
2

∫ u(x)

0

dt
√

F (ρ) − F (t)
=

√
λ(1 − x).

Letting x → 0 gives:

(3.2)
√

λ =
1√
2

∫ ρ

0

dt
√

F (ρ) − F (t)
≡ G(ρ).

Thus, given a positive solution of (1.1)-(1.2) (and hence of (2.1)-(2.3) for some ρ ≥ θ), we see that λ and ρ
are related by equation (3.2).

Conversely, given λ0 > 0, if there exists a ρ0 ∈ [θ,∞) with G(ρ0) =
√

λ0, then we can obtain a positive
solution of (1.1)-(1.2) as follows. Define K : [0, ρ0] → R by:

K(x) =
1√
2

∫ x

0

dt
√

F (ρ0) − F (t)
.

Since ρ0 ≥ θ, it follows from (1.3)-(1.4) that 1/
√

F (ρ0) − F (t) is integrable on [0, ρ0]. Thus K is continuous

on [0, ρ0] while from (3.2) we have K(ρ0) = G(ρ0) =
√

λ0. Also:

K ′(x) =
1√
2

1
√

F (ρ) − F (x)
> 0 on [0, ρ0).
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Thus K is continuous and increasing on [0, ρ0] and so K has an inverse. In addition,

(K−1(x))′ =
√

2
√

F (ρ) − F (K−1(x)).

Taking a hint from (3.1) which says a positive solution of (1.1)-(1.2) satisfies K(u(x)) =
√

λ(1−x), we define

u(x) = K−1(
√

λ0(1 − x)).

It is then straightforward to show that u solves (2.1)-(2.3) with λ = λ0 and ρ = ρ0.

Thus, we see that the set of λ for which there is a positive solution of (1.1)-(1.2) is precisely those positive

λ for which there is a solution - ρ - of G(ρ) =
√

λ. Therefore we now turn our attention to a study of the

function G =
√

λ defined in (3.2).

We begin by changing variables in (3.2) and obtain:

√

λ(ρ) = G(ρ) =
1√
2

∫ 1

0

ρ dv
√

F (ρ) − F (ρv)

and from (1.3)-(1.4) it follows
√

λ(ρ) is a positive continuous function on [θ,∞). Also, by (1.3)-(1.4):

√

λ(θ) = G(θ) =
1√
2

∫ 1

0

θ dv
√

−F (θv)
≡

√
λ∗ = finite, positive.

In addition,
√

λ(ρ) is differentiable over (θ,∞) and:

(3.3)
λ′(ρ)

2
√

λ(ρ)
= G′(ρ) =

1√
2

∫ 1

0

H(ρ) − H(ρv)

[F (ρ) − F (ρv)]3/2
dv

where H is given by (1.6).

Since u(x, λ(ρ), ρ) is a positive solution of (1.1)-(1.2), we also have:

u(1, λ(ρ), ρ) = 0.

Differentiating this with respect to ρ gives:

(3.4)
∂u

∂λ
(1, λ(ρ), ρ)λ′(ρ) +

∂u

∂ρ
(1, λ(ρ), ρ) = 0.

We now show that lim
ρ→θ+

λ′(ρ) = −∞. We know from above that lim
ρ→θ+

λ(ρ) = λ(θ) = λ∗ is positive and finite.

Also, lim
ρ→θ+

∂u
∂λ (1, λ(ρ), ρ) = lim

ρ→θ+

1
2λ(ρ)u

′(1, λ(ρ), ρ) = 1
2λ(θ)u

′(1, λ(θ), θ) = 0 by (2.7) and (2.9). On the other

hand, (2.7) and (2.14) imply lim
ρ→θ+

∂u
∂ρ (1, λ(ρ), ρ) = f(θ)

f(0) < 0. It now follows from (3.4) that:

(3.5) lim
ρ→θ+

λ′(ρ) = −∞.

We claim now that λ′(ρ) < 0 for large ρ and lim
ρ→∞

λ(ρ) = 0.

Since H ′ = 1
2 (f − tf ′) < 0 for ρ large and H ′′ = − 1

2 tf ′′ < 0 for ρ > t∗, it follows that lim
ρ→∞

H(ρ) = −∞.

Combining these facts, it follows that for large ρ we have H(ρ) < H(ρv) for all v ∈ (0, 1). Therefore, by (3.3)

(3.6) λ′(ρ) < 0 for large ρ.
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Next, we rewrite
√

λ as:

√

λ(ρ) = G(ρ) =
1√
2

∫ 1/2

0

ρ dv
√

F (ρ) − F (ρv)
+

1√
2

∫ 1

1/2

ρ dv
√

F (ρ) − F (ρv)

From (1.5), f ′′ > 0 for t > t∗ and from (1.3) f(t)/t → ∞ as t → ∞, thus f(= F ′) and f ′ are positive for
large t and lim

t→∞
F (t) = ∞. Therefore, for 0 < v < 1

2 and ρ large we have F (ρv) ≤ F ( 1
2ρ). And so by the

mean value theorem:

F (ρ) − F (ρv) ≥ F (ρ) − F (
1

2
ρ) ≥ 1

2
ρf(

1

2
ρ).

Also for 1
2 < v < 1 and large ρ, we have again by the mean value theorem:

F (ρ) − F (ρv) ≥ ρf(
1

2
ρ)(1 − v).

Combining these estimates into the first and second integrals above respectively gives:

√

λ(ρ) = G(ρ) ≤ 1√
2

∫ 1
2

0

ρ
√

1
2ρf( 1

2ρ)
+

1√
2

∫ 1

1
2

ρ
√

ρf( 1
2ρ)

1√
1 − v

dv =
3

2

√

ρ

f( 1
2ρ)

.

Thus, by the superlinearity of f - (1.3) - we see that

(3.7) lim
ρ→∞

λ(ρ) = 0.

Consequently, since λ(ρ) is continuous on [θ,∞) and tends to 0 at infinity (by (3.7)), we see that λ(ρ) is a
bounded function. Thus, (1.1)-(1.2) has no positive solutions for λ > max

[θ,∞)
λ(ρ).

Case (1.5)1 : It remains to prove that λ′(ρ) < 0 for ρ ∈ (θ,∞). From (1.6) we have H ′(t) = 1
2 [f(t)− tf ′(t)]

and H ′′(t) = − 1
2 tf ′′(t). Since (1.5)1 holds we infer that H ′(t) ≤ 0 (in fact, H ′(t) = 0 for at most one value

of t) and hence λ′(ρ) < 0 follows from (3.3).
This together with that λ(ρ) is continuous on [θ,∞) implies that λ(ρ) has an inverse, ρλ : (0, λ∗] → [θ,∞)
and ρ′λ < 0 on (θ,∞) with ρλ∗ = θ and lim

λ→0+
ρλ = ∞. This completes the proof of Case (1.5)1.

Case (1.5)2 : In view of (1.5)2 and (1.7) we have H ′(t) < 0 on [0, t1) ∪ (t2,∞) and H ′(t) > 0 on (t1, t2).
Thus for ρ ∈ (t∗, t∗∗) ⊂ (t1, t2) H is increasing and H(ρ) > H(t∗) ≥ 0. Also, since H(0) = 0 and H is
decreasing on (0, t1), it follows that H(ρv) < H(ρ) for all v ∈ (0, 1) and all ρ ∈ (t∗, t∗∗). Hence by (3.3):

(3.8) λ′(ρ) > 0 for ρ ∈ (t∗, t∗∗).

Combining this with (3.5) and (3.6) we see that λ(ρ) has at least one local minimum on (θ, t∗) and at least
one local maximum on (t∗∗,∞). To complete the proof of theorem 1 we will show that these are the only
critical points of λ(ρ). First, suppose ρ0 ∈ (θ, t∗) and λ′(ρ0) = 0. From (3.4) we see ∂u

∂ρ (1, λ(ρ0), ρ0) = 0.

From lemma 2.2 we see that ∂2u
∂ρ2 (1, λ(ρ0), ρ0) > 0. Differentiating (3.4) and evaluating at ρ0 gives:

(3.9)
∂u

∂λ
(1, λ(ρ0), ρ0)λ

′′(ρ0) +
∂2u

∂ρ2
(1, λ(ρ0), ρ0) = 0.

Since ∂u
∂λ (1, λ(ρ0), ρ0) < 0 by (2.7) and (2.9), we see that λ′′(ρ0) > 0. Hence, ρ0 must be a local minimum

of λ(ρ). If there were a second critical point, ρ1 ∈ (θ, t∗), of λ(ρ), the same argument shows that it too
would be a local minimum of λ(ρ) and thus between ρ0 and ρ1 there would be a local maximum, ρ2, with
λ′′(ρ2) > 0 but this is clearly impossible. Thus, ρ0 is the only critical point of λ(ρ) on (θ, t∗). Similarly,
suppose ρ0 ∈ (t∗∗,∞) and λ′(ρ0) = 0. Then as before (3.4) implies ∂u

∂ρ (1, λ(ρ0), ρ0) = 0. Now using lemma

2.4 we see that ∂2u
∂ρ2 (1, λ(ρ0), ρ0) < 0. And as above, using (3.9) we see that λ′′(ρ0) < 0. Hence, ρ0 must be

a local maximum of λ(ρ) and as above this is the only critical point of λ(ρ) on (t∗∗,∞). This completes the
proof of theorem 1. �
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4. Examples

Consider f(t) = t3−3At2+6Bt−C where A, B, and C are positive. Then f is semipositone and superlinear.
Also, f has exactly one inflection point at t∗ = A. We have f ′(t) = 3t2 − 6At + 6B hence f ′(t) ≥ 0 for all
t if and only if 2B ≥ A2. Thus if 2B ≥ A2, f has exactly one zero β and since we have f(t∗) = f(A) =
−2A3 + 6AB − C, we see that t∗ > β if 6AB > 2A3 + C. Next, H(t) = F (t) − 1

2 tf(t) = − 1
4 t4 + A

2 t3 − 1
2Ct,

H ′(t) = −t3 + 3A
2 t2 − 1

2C, and H ′′(t) = −3t2 + 3At. Thus, H ′ has exactly one local maximum at t∗ = A. If

H ′(A) > 0 then H ′ has two zeros, while H ′ ≤ 0 if H ′(A) ≤ 0. Note that H ′(A) > 0 if and only if A3 > C
and H(t∗) = H(A) ≥ 0 if and only if A3 ≥ 2C. Thus, (1.3)-(1.5) and (1.5)1 are satisfied if we choose
positive A, B, C so that 6B > C

A +2A2, C ≥ A3 whereas (1.3)-(1.5) and (1.5)2 are satisfied if 6B > C
A +2A2,

A3 ≥ 2C, and 2B ≥ A2.
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