EXACT MULTIPLICITY OF POSITIVE SOLUTIONS IN SEMIPOSITONE PROBLEMS WITH CONCAVE-CONVEX TYPE NONLINEARITIES

SUDHASREE GADAM AND JOSEPH A. IAIA

Abstract. We study the existence, multiplicity, and stability of positive solutions to:

$$\begin{aligned} &-u''(x) = \lambda f(u(x)) \text{ for } x \in (-1,1), \ \lambda > 0, \\ &u(-1) = 0 \ = u(1), \end{aligned}$$

where $f:[0,\infty) \to \mathbb{R}$ is semipositone (f(0) < 0) and superlinear $(\lim_{t\to\infty} f(t)/t = \infty)$. We consider the case when the nonlinearity f is of concave-convex type having exactly one inflection point. We establish that f should be appropriately concave (by establishing conditions on f) to allow multiple positive solutions. For any $\lambda > 0$, we obtain the exact number of positive solutions as a function of f(t)/t and establish how the positive solution curves to the above problem change. Also, we give examples where our results apply. This work extends the work in [1] by giving a complete classification of positive solutions for concave-convex type nonlinearities.

1. INTRODUCTION

We study the positive solutions to the two point boundary value problem:

(1.1)
$$-u''(x) = \lambda f(u(x)) \text{ for } x \in (-1,1), \ \lambda > 0,$$

(1.2)
$$u(-1) = 0 = u(1),$$

where $f: [0, \infty) \to \mathbb{R}$ is a twice differentiable function such that:

(1.3)
$$f(0) < 0$$
 (semipositone), $\lim_{t \to \infty} \frac{f(t)}{t} = \infty$ (superlinear), and f has a unique positive zero β .

We define F by $F(t) = \int_0^t f(s) \, ds$, and we observe that by (1.3):

(1.4)
$$F$$
 has a unique positive zero $\theta > \beta$.

We also assume that f has exactly one inflection point t^* with:

(1.5)
$$f''(t) < 0 \text{ on } (0, t^*), \ f''(t) > 0 \text{ on } (t^*, \infty), \text{ and } t^* > \beta.$$

Since $\left(\frac{f(t)}{t}\right)' = \frac{tf'(t) - f(t)}{t^2}$ and $\left(tf'(t) - f(t)\right)' = tf''(t)$ with f(0) < 0, it follows from (1.5) that either:

$$(1.5)_1$$
 $(f(t)/t)' \ge 0$ for all $t > 0$, or

$$(1.5)_2 (f(t)/t)' > 0 \text{ for } t \in (0, t_1) \cup (t_2, \infty) \text{ and } (f(t)/t)' < 0 \text{ for } t \in (t_1, t_2)$$

for some t_1, t_2 with $0 < t_1 < t^* < t_2$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 34B15: Secondary 35J65.

Key words and phrases. Semipositone, concave, convex.

For future reference we define:

(1.6)
$$H(t) = F(t) - \frac{1}{2}tf(t)$$

and observe that:

(1.7)
$$H'(t) = -\frac{1}{2}t^2(f(t)/t)'.$$

Finally, for a positive solution of (1.1)-(1.2), we define:

$$\rho = \sup_{(-1,1)} u(x).$$

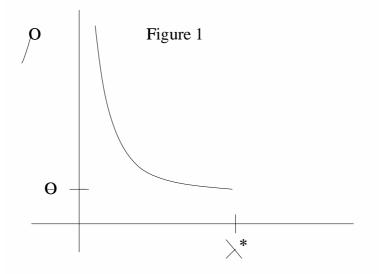
We refer the reader to [2, 3] where the classification $(1.5)_1$, $(1.5)_2$ helps in giving a complete description of positive solution curves for concave nonlinearities. In [7], Shi and Shivaji consider $(1.5)_2$ and obtain a similar result to Theorem 1 section (2) with reasonably different methods from ours.

We also note that in [9], Wang considers the positone problem (f(0) > 0) with f initially convex and then concave. Finally, semipositone problems occur in several harvesting models (see [4]) and have been extensively studied in [1-3] and [5-8].

Our main results are:

Theorem 1.

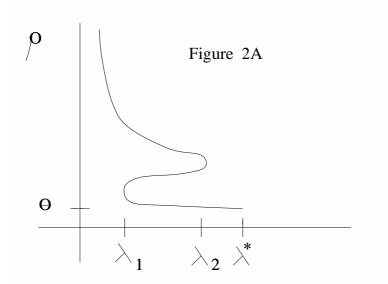
(1) If f satisfies (1.3)-(1.5) and (1.5)₁, then there exists λ^* with $0 < \lambda^* < \infty$ such that (1.1)-(1.2) has no positive solutions for $\lambda > \lambda^*$ and has a unique positive solution for $\lambda \in (0, \lambda^*]$ (see Fig. 1).



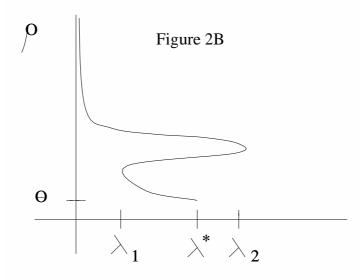
In addition, $\rho \equiv \rho_{\lambda}$ is a decreasing function of λ with $\rho_{\lambda} : (0, \lambda^*] \to [\theta, \infty)$ such that $\rho_{\lambda^*} = \theta$ and $\lim_{\lambda \to 0^+} \rho_{\lambda} = +\infty$.

(2) If f satisfies (1.3)-(1.5), (1.5)₂, and H(t*) ≥ 0, then there exist λ₁, λ₂, λ* with 0 < λ₁ < λ₂ < ∞ and λ₁ < λ* < ∞ such that (1.1)-(1.2) has no positive solutions for λ > max{λ₂, λ*} and has a unique positive solution for λ < λ₁ while for λ = λ₁ it has exactly two positive solutions. Also, ρ_{λ*} = θ and lim_{λ→0+} ρ_λ = +∞.

SUBCASE A: If $\lambda_2 \leq \lambda^*$ then for $\lambda \in (\lambda_1, \lambda_2)$ (1.1)-(1.2) has exactly three positive solutions while for $\lambda = \lambda_2$ it has exactly two positive solutions. Finally, if $\lambda \in (\lambda_2, \lambda^*]$ then (1.1)-(1.2) has exactly one positive solution (see Fig. 2A).



SUBCASE B: If $\lambda_2 > \lambda^*$ then for $\lambda \in (\lambda_1, \lambda^*]$ (1.1)-(1.2) has exactly three positive solutions while for $\lambda \in (\lambda^*, \lambda_2)$ (1.1)-(1.2) has exactly two positive solutions. Finally, for $\lambda = \lambda_2$ the problem (1.1)-(1.2) has exactly one positive solution (see Fig. 2B).



This paper is organized as follows. In Section 2, we study the variations of the positive solutions with respect to the parameters λ and ρ . We prove Theorem 1 in Section 3. In Section 4 we give a family of examples which satisfies the hypotheses of Theorem 1.

2. FIRST AND SECOND VARIATIONS WITH RESPECT TO PARAMETERS

We first observe that any positive solution of (1.1)-(1.2) must be symmetric about the origin. To see this, let $x_0 \in (-1, 1)$ be the point at which u attains its maximum. Denote $u(x_0) = \rho > 0$. Thus $u'(x_0) = 0$ and it follows that $u(x_0+x)$ and $u(x_0-x)$ satisfy the differential equation (1.1) as well as the same initial conditions at x_0 . Therefore, by uniqueness of solutions of initial value problems, we must have $u(x_0 + x) = u(x_0 - x)$. So assuming without loss of generality that $x_0 \ge 0$, we see then that $0 = u(1) = u(2x_0 - 1)$ and since u > 0on (-1, 1), we must have $2x_0 - 1 = -1 - i$.e. $x_0 = 0$ and thus u is symmetric about the origin.

With this result, for any $\rho > 0$ and any $\lambda > 0$ we define $u(x, \lambda, \rho)$ to be the solution to the initial value EJQTDE, 2001 No. 4, p. 3

problem:

(2.1)
$$u''(x) + \lambda f(u(x)) = 0, \ \lambda > 0,$$

(2.2)
$$u(0) = \rho > 0, u'(0) = 0$$

where ' denotes differentiation with respect to x. Observing that $u(-x, \lambda, \rho)$ also solves (2.1) and (2.2), it follows from the uniqueness of solutions of initial value problems that $u(-x, \lambda, \rho) = u(x, \lambda, \rho)$. Thus we see that the set of positive solutions of (1.1)-(1.2) is precisely the set of solutions of (2.1)-(2.2) for which:

(2.3)
$$u(x,\lambda,\rho) > 0 \text{ for } x \in (0,1) \text{ and } u(1,\lambda,\rho) = 0.$$

We now prove some elementary properties of positive solutions of (1.1)-(1.2) (and hence of (2.1)-(2.3) for some $\rho > 0$). Multiplying (2.1) by u'(x), integrating over (0, x), and using (2.2) yields:

(2.4)
$$\frac{1}{2}[u'(x)]^2 + \lambda F(u(x)) = \lambda F(\rho)$$

Evaluating this at x = 1 gives:

(2.5)
$$0 \le \frac{1}{2} [u'(1)]^2 = \lambda F(\rho).$$

Since for $\rho > 0$ we have $F(\rho) \ge 0$ if and only if $\rho \ge \theta$ (by (1.4)), we see from (2.5) that:

(2.6) positive solutions of (1.1)-(1.2) satisfy
$$\rho \ge \theta$$
, and

(2.7) positive solutions of (1.1)-(1.2) satisfy
$$u'(1) < 0$$
 if $\rho > \theta$ and $u'(1) = 0$ if $\rho = \theta$.

Also observe that if u is a positive solution to (2.1)-(2.3), then $u''(0) = -\lambda f(\rho) < 0$ (by (1.1), (1.3), and (2.6)) and therefore u' < 0 on $(0, \epsilon)$ for some $\epsilon > 0$. In fact u'(x) < 0 on (0, 1) for if $u'(x_1) = 0$ at some first $x_1 \in (0, 1)$ then $0 < u(x_1) < \rho$ while from (2.4) and (2.5) we have $F(u(x_1)) = F(\rho) \ge 0$. Thus by (1.4) $\beta < \theta \le u(x_1) < \rho$. But this is impossible since F is increasing for $x > \beta$ (by (1.3)) and thus:

(2.8) positive solutions of (1.1)-(1.2) satisfy
$$u'(x) < 0$$
 on (0,1).

Next we observe that $u(xd, \lambda, \rho)$ and $u(x, \lambda d^2, \rho)$ satisfy the same initial value problem and so by uniqueness of solutions of initial value problems we have:

$$u(xd, \lambda, \rho) = u(x, \lambda d^2, \rho)$$

After differentiating this with respect to d and setting d = 1, we obtain:

(2.9)
$$xu'(x,\lambda,\rho) = 2\lambda \frac{\partial u}{\partial \lambda}(x,\lambda,\rho).$$

Next let v denote the solution to the corresponding linearized problem of (1.1):

(2.10)
$$v''(x) + \lambda f'(u(x))v(x) = 0.$$

(2.11)
$$v(0) = 1, v'(0) = 0,$$

and let w denote the solution to the problem:

(2.12)
$$w''(x) + \lambda f'(u(x))w(x) + \lambda f''(u(x))v^2(x) = 0,$$

(2.13)
$$w(0) = 0, w'(0) = 0.$$

That is, v and w are the first and second derivatives of u with respect to ρ - i.e. $v \equiv \frac{\partial u}{\partial \rho}(x, \lambda, \rho)$ and $w \equiv \frac{\partial^2 u}{\partial \rho^2}(x, \lambda, \rho)$.

Now observe that by multiplying (2.10) by u'(x) and integrating on (0, x) we obtain:

(2.14)
$$u'(x)v'(x) + \lambda f(u(x))v(x) = \lambda f(\rho).$$

Similarly, multiplying (2.12) by u'(x) and integrating on (0, x) gives:

(2.15)
$$u'(x)w'(x) + \lambda f(u(x))w(x) + {v'}^2(x) + \lambda f'(u(x))v^2(x) = \lambda f'(\rho).$$

Lemma 2.1. Suppose f satisfies (1.3). Let $u(x, \lambda_0, \rho_0)$ be a positive solution to (1.1)-(1.2). Then $v(x) \equiv \frac{\partial u}{\partial \rho}(x, \lambda_0, \rho_0)$ has at most one zero in [0, 1].

Proof. We first observe that if $v(x_0) = 0$ then $v'(x_0) \neq 0$ for if $v'(x_0) = 0$ then by uniqueness of solutions of initial value problems, it follows that $v \equiv 0$. On the other hand, $v(0) = 1 \neq 0$.

Now on to the proof of the lemma. Suppose by the way of contradiction that x_1 and x_2 are the first two consecutive zeros of v. Then by the remarks in the previous paragraph and since v(0) = 1, we have $v'(x_1) < 0$ and $v'(x_2) > 0$. Also by (2.14) it follows that $u'(x_2)v'(x_2) = \lambda_0 f(\rho_0)$ and so we see that $u'(x_2)$ and $f(\rho_0)$ have the same sign. But since $\rho_0 \ge \theta$ (by (2.6)), it follows from (1.3)-(1.4) that $f(\rho_0) > 0$ and hence $u'(x_2) > 0$. But this contradicts (2.7)-(2.8). Hence, v(x) can have at most one zero on [0, 1]. \Box

Remark: Note that the above lemma does not rely on the concavity properties of f.

Lemma 2.2. Suppose f satisfies (1.3)-(1.5). Let $u(x, \lambda_0, \rho_0)$ be a positive solution to (1.1)-(1.2) with $\theta \leq \rho_0 \leq t^*$ and suppose also that $v(1) = \frac{\partial u}{\partial \rho}(1, \lambda_0, \rho_0) = 0$. Then $w(1) = \frac{\partial^2 u}{\partial \rho^2}(1, \lambda_0, \rho_0) > 0$.

Proof. Recall that $v \equiv \frac{\partial u}{\partial \rho}$ satisfies (2.10)-(2.11) and $w \equiv \frac{\partial^2 u}{\partial \rho^2}$ satisfies (2.12)-(2.13). Multiplying (2.10) by w and (2.12) by v, subtracting one from the other, integrating over (0, 1), and using v(1) = 0 we obtain:

(2.16)
$$w(1)v'(1) = \int_0^1 \lambda_0 f''(u(x))v^3(x) \, dx.$$

Since v(1) = 0, it follows from lemma 2.1 that we have v > 0 on [0, 1) and it also follows from the uniqueness of solutions to initial value problems that v'(1) < 0. Since $\theta \le \rho_0 \le t^*$ and u(x) is decreasing on (0,1) (by (2.8)), it follows that $u(x) < \rho_0 \le t^*$ on (0,1) and so by (1.5) we have f''(u(x)) < 0 on (0,1). These facts and (2.16) imply w(1) > 0. This proves the lemma. \Box

Lemma 2.3. If f satisfies (1.3)-(1.5), $(1.5)_2$, and $H(t^*) \ge 0$, then the function defined by $J : [0, \infty) \to \mathbb{R}$, $J(t) = f'(t)F(t) - \frac{1}{2}f^2(t)$ has exactly one positive zero, t^{**} , and $\theta < t^* < t^{**} < t_2$.

Proof. By (1.5), $t^* > \beta$. Combining this with the fact that $H(t^*) \ge 0$ implies $F(t^*) \ge \frac{1}{2}t^*f(t^*) > 0$ (since $t^* > \beta$) and so $F(t^*) > 0$ which implies $t^* > \theta$ (by (1.4)).

Next observe that J'(t) = f''(t)F(t) so J is increasing on $(0, \theta) \cup (t^*, \infty)$ and decreasing on (θ, t^*) . Also, observe $J(\theta) < 0$ so that J < 0 on $[0, t^*]$. Hence J has at most one positive zero.

Also, J = f'H - fH' hence $J(t_2) = f'(t_2)H(t_2)$ and $f(t_2) = t_2f'(t_2)$ (by $(1.5)_2$). Since $t_2 > t^* > \beta$ (by $(1.5)_2$), we have $t_2f'(t_2) = f(t_2) > 0$ and so $J(t_2) > 0$ because H has a maximum at t_2 and so $H(t_2) > H(t^*) \ge 0$. Thus, J has exactly one positive zero, t^{**} , and $\theta < t^* < t^{**} < t_2$. This completes the proof of the lemma. \Box

Lemma 2.4. Suppose f satisfies (1.3)-(1.5) and $(1.5)_2$. Let $u(x, \lambda_0, \rho_0)$ be a positive solution of (1.1)-(1.2) with $\rho_0 \geq t^{**}$ and suppose also that $v(1) = \frac{\partial u}{\partial \rho}(1, \lambda_0, \rho_0) = 0$. Then $w(1) = \frac{\partial^2 u}{\partial \rho^2}(1, \lambda_0, \rho_0) < 0$.

Proof. We define:

$$E = {v'}^2 + \lambda_0 f'(u)v^2$$

and observe (by (2.10)) that:

$$E' = \lambda_0 f''(u) u' v^2.$$

Since $\rho_0 \ge t^{**} > t^*$, examining the sign of E' along with (1.5) and (2.8), we see that E is decreasing on $(0, x^*)$ and increasing on $(x^*, 1)$ where x^* is the point at which $u(x^*) = t^*$.

Thus, E has exactly one local minimum and no local maxima on (0,1). Hence the maximum of E on [0,1] occurs either at x = 0 or x = 1.

Next, we see from lemma 2.3 that $\rho_0 \ge t^{**}$ implies $J(\rho_0) \ge 0$. Using (2.4), (2.11), (2.14), and the fact that v(1) = 0, we obtain:

$$E(0) - E(1) = \frac{\lambda_0}{F(\rho_0)} [f'(\rho_0) F(\rho_0) - \frac{f^2(\rho_0)}{2}] = \frac{\lambda_0}{F(\rho_0)} J(\rho_0) \ge 0.$$

EJQTDE, 2001 No. 4, p. 5

Thus, for $x \in [0, 1]$ we have ${v'}^2 + \lambda_0 f'(u)v^2 = E(x) \le E(0) = \lambda_0 f'(\rho_0)$. Hence, by (2.15):

$$u'w' + \lambda_0 f(u)w \ge 0 \text{ on } [0,1].$$

Now solving (2.4) for u', using (2.8) and substituting into the above inequality gives:

$$w' - \sqrt{\frac{\lambda_0}{2}} \frac{f(u)}{\sqrt{F(\rho_0) - F(u)}} w \le 0 \text{ on } (0, 1].$$

Multiplying by the appropriate integrating factor and then integrating on $(\epsilon, x) \subset (0, 1]$ for $\epsilon > 0$ we have:

$$\int_{\epsilon}^{x} \left(we^{-\frac{Q}{2}\frac{\lambda_{0}}{2}\mathbb{R}_{\epsilon}^{x}}\frac{f(u)\,dt}{\sqrt{F(\rho_{0})-F(u)}}\right)' \leq 0.$$

Now, for ϵ small enough we have $w(\epsilon) < 0$ because by (2.12)-(2.13) we have w(0) = 0, w'(0) = 0, and $w''(0) = -\lambda_0 f''(\rho_0) < 0$ since $\rho_0 \ge t^{**} > t^*$. Therefore:

$$w(x)e^{-\frac{q}{2}\frac{\lambda_0}{2}\mathbb{R}_{\epsilon}x\frac{f(u)\,dt}{\sqrt{F(\rho_0)-F(u)}}} \le w(\epsilon) < 0.$$

Hence w(x) < 0 on $(\epsilon, 1]$. In particular, w(1) < 0. This completes the proof of the lemma.

3. Proof of Theorem 1

We begin by rewriting (2.4), and we obtain:

$$\frac{-u'(x)}{\sqrt{2}\sqrt{F(\rho) - F(u(x))}} = \sqrt{\lambda} \quad \text{on} \quad (0,1).$$

Thus, after integrating on (x, 1) and using u(1) = 0 we obtain:

(3.1)
$$\frac{1}{\sqrt{2}} \int_0^{u(x)} \frac{dt}{\sqrt{F(\rho) - F(t)}} = \sqrt{\lambda}(1-x)$$

Letting $x \to 0$ gives:

(3.2)
$$\sqrt{\lambda} = \frac{1}{\sqrt{2}} \int_0^{\rho} \frac{dt}{\sqrt{F(\rho) - F(t)}} \equiv G(\rho).$$

Thus, given a positive solution of (1.1)-(1.2) (and hence of (2.1)-(2.3) for some $\rho \ge \theta$), we see that λ and ρ are related by equation (3.2).

Conversely, given $\lambda_0 > 0$, if there exists a $\rho_0 \in [\theta, \infty)$ with $G(\rho_0) = \sqrt{\lambda_0}$, then we can obtain a positive solution of (1.1)-(1.2) as follows. Define $K : [0, \rho_0] \to \mathbb{R}$ by:

$$K(x) = \frac{1}{\sqrt{2}} \int_0^x \frac{dt}{\sqrt{F(\rho_0) - F(t)}}.$$

Since $\rho_0 \ge \theta$, it follows from (1.3)-(1.4) that $1/\sqrt{F(\rho_0) - F(t)}$ is integrable on $[0, \rho_0]$. Thus K is continuous on $[0, \rho_0]$ while from (3.2) we have $K(\rho_0) = G(\rho_0) = \sqrt{\lambda_0}$. Also:

$$K'(x) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{F(\rho) - F(x)}} > 0$$
 on $[0, \rho_0)$.
EJQTDE, 2001 No. 4, p. 6

Thus K is continuous and increasing on $[0, \rho_0]$ and so K has an inverse. In addition,

$$(K^{-1}(x))' = \sqrt{2}\sqrt{F(\rho) - F(K^{-1}(x))}.$$

Taking a hint from (3.1) which says a positive solution of (1.1)-(1.2) satisfies $K(u(x)) = \sqrt{\lambda}(1-x)$, we define

$$u(x) = K^{-1}(\sqrt{\lambda_0}(1-x)).$$

It is then straightforward to show that u solves (2.1)-(2.3) with $\lambda = \lambda_0$ and $\rho = \rho_0$.

Thus, we see that the set of λ for which there is a positive solution of (1.1)-(1.2) is precisely those positive λ for which there is a solution - ρ - of $G(\rho) = \sqrt{\lambda}$. Therefore we now turn our attention to a study of the function $G = \sqrt{\lambda}$ defined in (3.2).

We begin by changing variables in (3.2) and obtain:

$$\sqrt{\lambda(\rho)} = G(\rho) = \frac{1}{\sqrt{2}} \int_0^1 \frac{\rho \, dv}{\sqrt{F(\rho) - F(\rho v)}}$$

and from (1.3)-(1.4) it follows $\sqrt{\lambda(\rho)}$ is a positive continuous function on $[\theta, \infty)$. Also, by (1.3)-(1.4):

$$\sqrt{\lambda(\theta)} = G(\theta) = \frac{1}{\sqrt{2}} \int_0^1 \frac{\theta \, dv}{\sqrt{-F(\theta v)}} \equiv \sqrt{\lambda^*} = \text{ finite, positive.}$$

In addition, $\sqrt{\lambda(\rho)}$ is differentiable over (θ, ∞) and:

(3.3)
$$\frac{\lambda'(\rho)}{2\sqrt{\lambda(\rho)}} = G'(\rho) = \frac{1}{\sqrt{2}} \int_0^1 \frac{H(\rho) - H(\rho v)}{[F(\rho) - F(\rho v)]^{3/2}} dv$$

where H is given by (1.6).

Since $u(x, \lambda(\rho), \rho)$ is a positive solution of (1.1)-(1.2), we also have:

$$u(1,\lambda(\rho),\rho) = 0.$$

Differentiating this with respect to ρ gives:

(3.4)
$$\frac{\partial u}{\partial \lambda}(1,\lambda(\rho),\rho)\lambda'(\rho) + \frac{\partial u}{\partial \rho}(1,\lambda(\rho),\rho) = 0.$$

We now show that $\lim_{\rho \to \theta^+} \lambda'(\rho) = -\infty$. We know from above that $\lim_{\rho \to \theta^+} \lambda(\rho) = \lambda(\theta) = \lambda^*$ is positive and finite. Also, $\lim_{\rho \to \theta^+} \frac{\partial u}{\partial \lambda}(1, \lambda(\rho), \rho) = \lim_{\rho \to \theta^+} \frac{1}{2\lambda(\rho)}u'(1, \lambda(\rho), \rho) = \frac{1}{2\lambda(\theta)}u'(1, \lambda(\theta), \theta) = 0$ by (2.7) and (2.9). On the other hand, (2.7) and (2.14) imply $\lim_{\rho \to \theta^+} \frac{\partial u}{\partial \rho}(1, \lambda(\rho), \rho) = \frac{f(\theta)}{f(0)} < 0$. It now follows from (3.4) that:

(3.5)
$$\lim_{\rho \to \theta^+} \lambda'(\rho) = -\infty.$$

We claim now that $\lambda'(\rho) < 0$ for large ρ and $\lim_{\rho \to \infty} \lambda(\rho) = 0$.

Since $H' = \frac{1}{2}(f - tf') < 0$ for ρ large and $H'' = -\frac{1}{2}tf'' < 0$ for $\rho > t^*$, it follows that $\lim_{\rho \to \infty} H(\rho) = -\infty$. Combining these facts, it follows that for large ρ we have $H(\rho) < H(\rho v)$ for all $v \in (0, 1)$. Therefore, by (3.3)

(3.6)
$$\lambda'(\rho) < 0$$
 for large ρ .

Next, we rewrite $\sqrt{\lambda}$ as:

$$\sqrt{\lambda(\rho)} = G(\rho) = \frac{1}{\sqrt{2}} \int_0^{1/2} \frac{\rho \, dv}{\sqrt{F(\rho) - F(\rho v)}} + \frac{1}{\sqrt{2}} \int_{1/2}^1 \frac{\rho \, dv}{\sqrt{F(\rho) - F(\rho v)}}$$

From (1.5), f'' > 0 for $t > t^*$ and from (1.3) $f(t)/t \to \infty$ as $t \to \infty$, thus f(=F') and f' are positive for large t and $\lim_{t\to\infty} F(t) = \infty$. Therefore, for $0 < v < \frac{1}{2}$ and ρ large we have $F(\rho v) \leq F(\frac{1}{2}\rho)$. And so by the mean value theorem:

$$F(\rho) - F(\rho v) \ge F(\rho) - F(\frac{1}{2}\rho) \ge \frac{1}{2}\rho f(\frac{1}{2}\rho).$$

Also for $\frac{1}{2} < v < 1$ and large ρ , we have again by the mean value theorem:

$$F(\rho) - F(\rho v) \ge \rho f(\frac{1}{2}\rho)(1-v).$$

Combining these estimates into the first and second integrals above respectively gives:

$$\sqrt{\lambda(\rho)} = G(\rho) \le \frac{1}{\sqrt{2}} \int_0^{\frac{1}{2}} \frac{\rho}{\sqrt{\frac{1}{2}\rho f(\frac{1}{2}\rho)}} + \frac{1}{\sqrt{2}} \int_{\frac{1}{2}}^1 \frac{\rho}{\sqrt{\rho f(\frac{1}{2}\rho)}} \frac{1}{\sqrt{1-v}} \, dv = \frac{3}{2} \sqrt{\frac{\rho}{f(\frac{1}{2}\rho)}}.$$

Thus, by the superlinearity of f - (1.3) - we see that

(3.7)
$$\lim_{\rho \to \infty} \lambda(\rho) = 0.$$

Consequently, since $\lambda(\rho)$ is continuous on $[\theta, \infty)$ and tends to 0 at infinity (by (3.7)), we see that $\lambda(\rho)$ is a bounded function. Thus, (1.1)-(1.2) has no positive solutions for $\lambda > \max_{[\theta,\infty)} \lambda(\rho)$.

Case $(1.5)_1$: It remains to prove that $\lambda'(\rho) < 0$ for $\rho \in (\theta, \infty)$. From (1.6) we have $H'(t) = \frac{1}{2}[f(t) - tf'(t)]$ and $H''(t) = -\frac{1}{2}tf''(t)$. Since $(1.5)_1$ holds we infer that $H'(t) \leq 0$ (in fact, H'(t) = 0 for at most one value of t) and hence $\lambda'(\rho) < 0$ follows from (3.3).

This together with that $\lambda(\rho)$ is continuous on $[\theta, \infty)$ implies that $\lambda(\rho)$ has an inverse, $\rho_{\lambda} : (0, \lambda^*] \to [\theta, \infty)$ and $\rho'_{\lambda} < 0$ on (θ, ∞) with $\rho_{\lambda^*} = \theta$ and $\lim_{\lambda \to 0^+} \rho_{\lambda} = \infty$. This completes the proof of Case $(1.5)_1$.

Case $(1.5)_2$: In view of $(1.5)_2$ and (1.7) we have H'(t) < 0 on $[0, t_1) \cup (t_2, \infty)$ and H'(t) > 0 on (t_1, t_2) . Thus for $\rho \in (t^*, t^{**}) \subset (t_1, t_2)$ H is increasing and $H(\rho) > H(t^*) \ge 0$. Also, since H(0) = 0 and H is decreasing on $(0, t_1)$, it follows that $H(\rho v) < H(\rho)$ for all $v \in (0, 1)$ and all $\rho \in (t^*, t^{**})$. Hence by (3.3):

(3.8)
$$\lambda'(\rho) > 0 \text{ for } \rho \in (t^*, t^{**}).$$

Combining this with (3.5) and (3.6) we see that $\lambda(\rho)$ has at least one local minimum on (θ, t^*) and at least one local maximum on (t^{**}, ∞) . To complete the proof of theorem 1 we will show that these are the *only* critical points of $\lambda(\rho)$. First, suppose $\rho_0 \in (\theta, t^*)$ and $\lambda'(\rho_0) = 0$. From (3.4) we see $\frac{\partial u}{\partial \rho}(1, \lambda(\rho_0), \rho_0) = 0$. From lemma 2.2 we see that $\frac{\partial^2 u}{\partial \rho^2}(1, \lambda(\rho_0), \rho_0) > 0$. Differentiating (3.4) and evaluating at ρ_0 gives:

(3.9)
$$\frac{\partial u}{\partial \lambda}(1,\lambda(\rho_0),\rho_0)\lambda''(\rho_0) + \frac{\partial^2 u}{\partial \rho^2}(1,\lambda(\rho_0),\rho_0) = 0$$

Since $\frac{\partial u}{\partial \lambda}(1, \lambda(\rho_0), \rho_0) < 0$ by (2.7) and (2.9), we see that $\lambda''(\rho_0) > 0$. Hence, ρ_0 must be a local minimum of $\lambda(\rho)$. If there were a second critical point, $\rho_1 \in (\theta, t^*)$, of $\lambda(\rho)$, the same argument shows that it too would be a local minimum of $\lambda(\rho)$ and thus between ρ_0 and ρ_1 there would be a local maximum, ρ_2 , with $\lambda''(\rho_2) > 0$ but this is clearly impossible. Thus, ρ_0 is the only critical point of $\lambda(\rho)$ on (θ, t^*) . Similarly, suppose $\rho_0 \in (t^{**}, \infty)$ and $\lambda'(\rho_0) = 0$. Then as before (3.4) implies $\frac{\partial u}{\partial \rho}(1, \lambda(\rho_0), \rho_0) = 0$. Now using lemma 2.4 we see that $\frac{\partial^2 u}{\partial \rho^2}(1, \lambda(\rho_0), \rho_0) < 0$. And as above, using (3.9) we see that $\lambda''(\rho_0) < 0$. Hence, ρ_0 must be a local maximum of $\lambda(\rho)$ and as above this is the only critical point of $\lambda(\rho)$ on (t^{**}, ∞) . This completes the proof of theorem 1. \Box

4. Examples

Consider $f(t) = t^3 - 3At^2 + 6Bt - C$ where A, B, and C are positive. Then f is semipositone and superlinear. Also, f has exactly one inflection point at $t^* = A$. We have $f'(t) = 3t^2 - 6At + 6B$ hence $f'(t) \ge 0$ for all t if and only if $2B \ge A^2$. Thus if $2B \ge A^2$, f has exactly one zero β and since we have $f(t^*) = f(A) = -2A^3 + 6AB - C$, we see that $t^* > \beta$ if $6AB > 2A^3 + C$. Next, $H(t) = F(t) - \frac{1}{2}tf(t) = -\frac{1}{4}t^4 + \frac{A}{2}t^3 - \frac{1}{2}Ct$, $H'(t) = -t^3 + \frac{3A}{2}t^2 - \frac{1}{2}C$, and $H''(t) = -3t^2 + 3At$. Thus, H' has exactly one local maximum at $t^* = A$. If H'(A) > 0 then H' has two zeros, while $H' \le 0$ if $H'(A) \le 0$. Note that H'(A) > 0 if and only if $A^3 > C$ and $H(t^*) = H(A) \ge 0$ if and only if $A^3 \ge 2C$. Thus, (1.3)-(1.5) and (1.5)_1 are satisfied if $6B > \frac{C}{A} + 2A^2$, $A^3 \ge 2C$, and $2B \ge A^2$.

References

- A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proc. Roy. Soc. Edinburgh. 108A (1988), 291–302.
- A. Castro, S. Gadam and R. Shivaji, Positive solution curves of semipositone problems with concave nonlinearities, Proc. Roy. Soc. Edinburgh. 127A (1997), 921–934.
- 3. A. Castro, S. Gadam and R. Shivaji, Evolution of positive solution curves in semipositone problems with concave nonlinearities, to appear in Contemp. Math.
- 4. M. R. Myerscough, B. F. Gray, W. L. Hogarth, and J. Norbury, An analysis of an ordinary differential equations model for a two species predator-prey system with harvesting and stocking, J. Math. Biol. **30** (1992), 389-411.
- A. Castro and S. Gadam, Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Analysis, TMA 22 No. 4 (1994), 425–429.
- A. Castro, S. Gadam and R. Shivaji, Branches of radial solutions for semipositone problems, Jour. Diff. Eqns. 120 No. 1 (1995), 30–45.
- 7. J. Shi and R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems with concave-convex type nonlinearity, Discrete and Continuous Dynamical Systems 7 no. 3 (2001), 559–571.
- S-H. Wang, Positive solutions for a class of nonpositone problems with concave nonlinearities, Proc. Roy. Soc. Edinburgh 124 No. 3 (1994), 507–515.
- 9. S-H. Wang, On S-shaped bifurcation curves, Nonlinear Analysis, TMA 22 No. 12 (1994), 1475–1485.

M athematics, Yashodha', JCR VICross, Chitradurga, India 577501

Dept. of M athematics, University of North Texas, Denton, TX 76203, U.S.A. $E\text{-mail}\ address:\ \texttt{iaia@unt.edu}$