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Abstract. This paper presents new results on the bifurcation of medium and small limit
cycles from the periodic orbits surrounding a cubic center or from the cubic center that
have a rational first integral of degree 2 respectively, when they are perturbed inside
the class of all discontinuous piecewise cubic polynomial differential systems with the
straight line of discontinuity y = 0.

We obtain that the maximum number of medium limit cycles that can bifurcate from
the periodic orbits surrounding the cubic center is 9 using the first order averaging
method, and the maximum number of small limit cycles that can appear in a Hopf
bifurcation at the cubic center is 6 using the fifth order averaging method. Moreover,
both of the numbers can be reached by analyzing the number of simple zeros of the
obtained averaged functions. In some sense, our results generalize the results in [Appl.
Math. Comput. 250(2015), 887–907], Theorems 1 and 2 to the piecewise systems class.
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1 Introduction and main results

One of the main open problems in the qualitative theory of real planar differential systems is
the determination and distribution of limit cycles. There are several methods for studying the
bifurcation of limit cycles. One of the methods is by perturbing a differential system which
has a center. In this case the perturbed system displays limit cycles that bifurcate, either from
some of the periodic orbits surrounding the center, or from the center (having the so-called
Hopf bifurcation), see the book of Christopher–Li [4], and references cited therein.

The problem of bounding the number of limit cycles for planar smooth differential systems
has been exhaustively studied in the last century and is closed related to the 16th Hilbert’s
problem [10, 13]. Solving this problem even for the quadratic case seems to be out of reach at
the present state of knowledge. In the last few years there has been an increasing interest in
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the study of discontinuous piecewise differential systems, see [3, 7, 11, 14, 18, 21] for instance.
This interest has been mainly motivated by their wider range of application in various fields
of science (e.g., control theory, biology, chemistry, engineering, physics, etc.).

Our goal in this paper is to study the bifurcation of limit cycles for a class of cubic poly-
nomial differential systems having a rational first integral of degree 2. We remark that the
classification of all cubic polynomial differential systems having a center at the origin and a
rational first integral of degree 2 can be found in [17]. Later on, the authors in [16] summa-
rized this classification in six families of cubic polynomial differential systems. In particular
they obtained the class

ẋ = 2y(x + α)2, ẏ = −2(x + α)(αx− y2), (1.1)

where α 6= 0. System (1.1) called class P6 in [16], which has H(x, y) = x2+y2

(α+x)2 as its first integral

with the integrating factor µ(x, y) = 1/(α + x)4. See [16] for the phase portraits of system
(1.1) in the Poincaré disk.

A natural question is: What happens with the periodic orbits (or the center) of the system (1.1)
when it is perturbed inside the class of all smooth cubic polynomial differential systems, or inside
the class of all discontinuous piecewise cubic polynomial differential systems with a straight line of
discontinuity?

In this article we say a medium limit cycle is one which bifurcates from a periodic orbit
surrounding a center, and a small limit cycle is one which bifurcates from a center equilibrium
point. Remark that, for the piecewise cubic polynomial vector fields there are two recent
works, see [8, 9], obtaining at least 18 and 24 small limit cycles, respectively. Our objective in
this paper is to study the maximal number of medium and small limit cycles for the cubic
center (1.1), when they are perturbed inside the class of all discontinuous piecewise cubic
polynomial differential systems with the straight line of discontinuity y = 0. The main results
are based on the averaging method. We remark that the method of averaging is a classic and
mature tool for studying the behaviour of nonlinear differential systems in the presence of a
small parameter. For more details about this method see the book of Sanders, Verhulst and
Murdock [24] and Llibre, Moeckel and Simó [19].

More precisely, we consider the following discontinuous piecewise polynomial differential
systems

(
ẋ
ẏ

)
=

(
2y(x + α)2

−2(x + α)(αx− y2)

)
+ ε


(

p1(x, y)
q1(x, y)

)
, y > 0,(

p2(x, y)
q2(x, y)

)
, y < 0,

(1.2)

where

p1(x, y) = ∑
0≤i+j≤3

ai,jxiyj, q1(x, y) = ∑
0≤i+j≤3

bi,jxiyj,

p2(x, y) = ∑
0≤i+j≤3

ci,jxiyj, q2(x, y) = ∑
0≤i+j≤3

di,jxiyj.
(1.3)

Moveover, we consider the following smooth polynomial differential systems
ẋ = 2y(x + α)2 +

5

∑
s=1

εsµs(x, y),

ẏ = −2(x + α)(αx− y2) +
5

∑
s=1

εsνs(x, y),

(1.4)



Limit cycles for a class of piecewise cubic differential systems 3

and the discontinuous piecewise cubic polynomial differential systems

(
ẋ
ẏ

)
=

(
2y(x + α)2

−2(x + α)(αx− y2)

)
+

5

∑
s=1

εs


(

µs(x, y)
νs(x, y)

)
, y > 0,(

ψs(x, y)
φs(x, y)

)
, y < 0,

(1.5)

where

µs(x, y) = ∑
0≤i+j≤3

as,i,jxiyj, νs(x, y) = ∑
0≤i+j≤3

bs,i,jxiyj,

ψs(x, y) = ∑
0≤i+j≤3

cs,i,jxiyj, φs(x, y) = ∑
0≤i+j≤3

ds,i,jxiyj.

The main results of this paper are stated as follows.

Theorem 1.1. For |ε| > 0 sufficiently small the maximum number of medium limit cycles of the
discontinuous piecewise differential system (1.2) is 9 using the first order averaging method, and this
number can be reached.

If ai,j = ci,j and bi,j = di,j (see (1.3)), then the perturbed system (1.2) is smooth. In this case,
we obtain the following corollary of Theorem 1.1.

Corollary 1.2. When ai,j = ci,j and bi,j = di,j, the maximum number of medium limit cycles of system
(1.2) that bifurcate using the first order averaging method is 3 and it is reached.

Remark 1.3. Theorem 1.1 gives the exact upper bound of the number of limit cycles bifurcated
from the periodic orbits of the cubic center (1.1), which is challenging. Theorem 1.1 and
Corollary 1.2 show that the maximum number of limit cycles for the piecewise case is 6 more
than the smooth one. We note that the smooth case of system (1.2) has been studied in
[16, Section 3.3] under the condition a0,0 = b0,0 = c0,0 = d0,0 = 0. Corollary 1.2 shows that
the non-zero constant terms provide no more information on the limit cycles. However, in
the piecewise case, with the non-zero constant terms the perturbed system (1.2) can produce
at least one more limit cycle than the case without them (see Remark 3.1 in Section 3). This
phenomenon coincides with the well-known pseudo-Hopf bifurcation (see [2, 6]).

Theorem 1.4. For |ε| > 0 sufficiently small using the fifth order averaging method, we obtain that

(a) for any real constants as,i,j and bs,i,j (s = 1, . . . , 5, 0 ≤ i + j ≤ 3) with a1,0,0 = b1,0,0 = 0,
system (1.4) has at most 2 small limit cycles bifurcating from the center (1.1), and this number
can be reached;

(b) system (1.5) has at most 6 small limit cycles bifurcating from the center (1.1) under the condition
a1,0,0 = b1,0,0 = c1,0,0 = d1,0,0 = 0, and this number can be reached.

More concretely, we provide in Table 1.1 the maximum number of limit cycles for systems
(1.4) and (1.5) up to the i-th order averaging method for i = 1, . . . , 5.

The outline of this paper is as follows. In Section 2, we introduce the basic theory of
the averaging method for discontinuous piecewise planar differential systems. The averaged
function associated to system (1.2) is obtained in Section 3. Section 4 focuses on the analysis
of the exact upper bound for the number of zeros of the averaged function, and the theory of
Chebyshev systems is used to prove Theorem 1.1. The objective of Section 5 is to study the
small limit cycles of systems (1.4) and (1.5). Finally, we present the explicit formulae of the
i-th order averaged function up to i = 5 in Appendix A for reference.
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Averaging order System (1.4) System (1.5)
1 0 1
2 0 2
3 1 4
4 1 6
5 2 6

Table 1.1: Number of small limit cycles for systems (1.4) and (1.5).

2 Preliminary results

In this section we introduce the basic theory of the averaging method that we shall use in our
study of the cubic center (1.1). The following result is due to Itikawa, Llibre and Novaes [14].

Consider the discontinuous piecewise differential systems of the form

dr
dθ

= r′ =

{
F+(θ, r, ε), if 0 ≤ θ ≤ γ,

F−(θ, r, ε), if γ ≤ θ ≤ 2π,
(2.1)

where

F±(θ, r, ε) =
k

∑
i=1

εiF±i (θ, r) + εk+1R±(θ, r, ε),

and ε is a real small parameter. The set of discontinuity of system (2.1) is ∑ = {θ = 0} ∪ {θ =

γ} if 0 < γ < 2π. Here F±i : S1 × D → R for i = 1, . . . , k, and R± : S1 × D × (−ε0, ε0) → R

are Ck functions, being D an open and bounded interval of (0, ∞), ε0 is a small parameter,
and S1 ≡ R/(2π). This last convention implies that the functions involved in system (2.1) are
2π-periodic in the variable θ.

The averaging method consists in defining a collection of functions fi : D → R, called the
i-th order averaged function, for i = 1, 2, . . . , k, which control (their simple zeros control), for
|ε| > 0 sufficiently small, the isolated periodic solutions of the differential system (2.1). In
Itikawa–Llibre–Novaes [14] it has been established that

fi(z) =
y+i (γ, z)− y−i (γ− 2π, z)

i!
, (2.2)

where y±i : S1 × D → R, for i = 1, 2, . . . , k, are defined recurrently by the following integral
equations

y±1 (θ, z) =
∫ θ

0
F±1 (ϕ, z)dϕ,

y±i (θ, z) = i!
∫ θ

0

(
F±i (ϕ, z) +

i

∑
`=1

∑
S`

1
b1!b2!2!b2 · · · b`!`!b`

· ∂LF±i−`(ϕ, z)
`

∏
j=1

y±j (ϕ, z)bj
)

dϕ,
(2.3)

where S` is the set of all `-tuples of non-negative integers [b1, b2, . . . , b`] satisfying b1 + 2b2 +

· · ·+ `b` = ` and L = b1 + b2 + · · ·+ b`. Here, ∂LF(ϕ, z) denotes the Fréchet’s derivative with
respect to the variable z. We remark that, the investigation in this paper is restricted to F0 = 0
in expression (2.3). For the general form of the averaged functions see [20].
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We point out that taking γ = 2π system (2.1) becomes smooth. So the averaging method
described above can also apply to smooth differential systems. In practical terms, the evalu-
ation of the recurrence (2.3) is a computational problem that requires powerful computerized
resources. Usually, the higher the averaging order is, the more complex are the computational
operations to calculate the averaged function (2.2). Recently in [22] the Bell polynomials were
used to provide a relatively simple alternative formula for the recurrence (2.3). And based on
this new formula, an algorithmic approach to revisit the averaging method was introduced in
[12] for the analysis of bifurcation of small limit cycles of planar differential systems. More-
over, we provide an upper bound of the number of zeros of the averaged functions for the
general class of perturbed differential systems (see Theorem 3.1 in [12]).

The following k-th order averaging theorem gives a criterion for the existence of limit
cycles. Its proof can be found in Section 2 of [14].

Theorem 2.1 ([14]). Assume that, for some j ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , j − 1 and
f j 6= 0. If there exists z∗ ∈ D such that f j(z∗) 6= 0, then for |ε| > 0 sufficiently small, there exists a
2π-periodic solution r(θ, ε) of (2.1) such that r(0, ε)→ z∗ when ε→ 0.

The following theorem (see Theorem 5.2 of [1] for a proof) provides an approach to trans-
form a perturbed differential system into the standard form (2.1), which can be used to apply
the first order averaging method.

Theorem 2.2 ([1]). Consider the differential system

ẋ = P(x, y) + εp(x, y),

ẏ = Q(x, y) + εq(x, y),
(2.4)

where P, Q, p and q are continuous functions in the variables x and y, and ε is a small parameter.
Suppose that system (2.4)ε=0 has a continuous family of ovals

{
Γh
}
⊂
{
(x, y)|H(x, y) = h, h ∈

(h1, h2)
}

, where H(x, y) is a first integral of (2.4)ε=0, and h1 and h2 correspond to the center and the
separatrix polycycle, respectively. For a given first integral H = H(x, y), assume that xQ(x, y) −
yP(x, y) 6= 0 for all (x, y) in the periodic annulus formed by the ovals {Γh}. Let ρ : (

√
h1,
√

h2)×
[0, 2π)→ [0,+∞) be a continuous function such that

H(ρ(R, ϕ) cos ϕ, ρ(R, ϕ) sin ϕ) = R2,

for all R ∈ (
√

h1,
√

h2) and all ϕ ∈ [0, 2π). Then the differential equation which describes the
dependence between the square root of energy R =

√
h and the angle ϕ for system (2.4) is

dR
dϕ

= ε
µ(x2 + y2)(Qp− Pq)

2R(Qx− Py)
+O(ε2), (2.5)

where µ = µ(x, y) is the integrating factor of system (2.4)ε=0 corresponding to the first integral H,
and x = ρ(R, ϕ) cos ϕ and y = ρ(R, ϕ) sin ϕ.

In general, it is not an easy thing to deal with zeros of the averaged function (2.2). The
techniques and arguments to tackle this kind of problem are usually very long and technical.
In what follows we present some effective results on obtaining the lower bound and the upper
bound of the number of zeros for a complicated function. The next result is used to obtain a
lower bound of the number of simple zeros for an averaged function.
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Lemma 2.3 ([5]). Consider n + 1 linearly independent analytical functions fi(x) : A → R, i =

0, 1, . . . , n, where A ⊂ R is an interval. Suppose that there exists k ∈ {0, 1, . . . , n} such that fk(x)
has constant sign. Then there exist n + 1 constants ci, i = 0, 1, . . . , n such that c0 f0(x) + c1 f1(x) +
· · ·+ cn fn(x) has at least n simple zeros in A.

It is important to point out that the classical theory of Chebyshev systems is useful to
provide an upper bound for the number of zeros. Let F = [ f0, . . . , fn] be an ordered set
of functions of class Cn defined in the closed interval [a, b]. We consider only elements in
Span (F ), that is, functions such as f = a0 f0 + a1 f1 + · · ·+ an fn where ai, for i = 0, 1, . . . , n,
are real numbers. When the maximum number of zeros, taking into account its multiplicity,
is n, the set F is called an Extended Chebyshev system (ET-system) in [a, b]. We say that F
is an Extended Complete Chebyshev system (ECT-system) in [a, b], if any set [ f0, f1, . . . , fk],
for k = 0, . . . , n is an ET-system. When all the Wronskians, Wk := W ( f0, f1, . . . , fk) 6= 0 for
0 ≤ k ≤ n in [a, b] the set F is an ECT-system. For more details on ET-systems and ECT-
system, see [15] for instance.

We remark that not always the standard study of ET-systems can be applied to bound
the number of zeros of elements in Span (F ). Here we use an extension of this theory (see
[23]). The following result provides an effective estimation for the number of isolated zeros of
elements in Span (F ) when some Wronskians vanish.

Theorem 2.4 ([23]). Let F = [ f0, f1, . . . , fn] be an ordered set of analytic functions in [a, b]. Assume
that all the νi zeros of the Wronskian Wi are simple for i = 0, 1, . . . , n. Then the number of isolated
zeros for every element of Span (F ) does not exceed

n + νn + νn−1 + 2 (νn−2 + · · ·+ ν0) + λn−1 + · · ·+ λ3,

where λi = min (2νi, νi−3 + · · ·+ ν0), for i = 3, . . . , n− 1.

3 Averaged function associated to system (1.2)

In this section we will get the first order averaged function associated to system (1.2) by using
Theorem 2.1. We remark that the period annulus of the differential system (1.1) is formed
by the ovals {Γh} ⊂ {(x, y)|H(x, y) = h, h ∈ (0, 1)}. By solving implicitly the equation
H(ρ(R, ϕ) cos ϕ, ρ(R, ϕ) sin ϕ) = R2 we obtain the positive function ρ(R, ϕ) given by

ρ(R, ϕ) = −αR(signum(α) + R cos ϕ)

R2 cos2 ϕ− 1

for ϕ ∈ [0, 2π) and R ∈ (0, 1), where signum(α) is the sign function defined by

signum(α) =

{
1, α > 0,

−1, α < 0.

Using Theorem 2.2, we can transform system (1.2) into the form

dR
dϕ

=


ε
−(Qp1−Pq1)
4αR(x+α)5

∣∣∣
x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ

+O(ε2), 0 ≤ ϕ ≤ π,

ε
−(Qp2−Pq2)
4αR(x+α)5

∣∣∣
x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ

+O(ε2), π ≤ ϕ ≤ 2π.
(3.1)
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Now the discontinuous piecewise differential system (3.1) is under the assumptions of Theo-
rem 2.1. Next, we will study the zeros of the averaged function f : (0, 1)→ R given by

f (R) =
∫ π

0

−(Qp1 − Pq1)

4αR(x + α)5

∣∣∣
x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) sin ϕ

dϕ

+
∫ 2π

π

−(Qp2 − Pq2)

4αR(x + α)5

∣∣∣
x=ρ(R,ϕ) cos ϕ,y=ρ(R,ϕ) cos ϕ

dϕ

=
∫ π

0

A(ϕ; a, b) cos ϕ + B(ϕ; a, b)
2α3(signum(α) · R cos ϕ− 1)

dϕ +
∫ 2π

π

A(ϕ; c, d) cos ϕ + B(ϕ; c, d)
2α3(signum(α) · R cos ϕ− 1)

dϕ,

where

A(ϕ; a, b) = − R3[α3(a0,3 − a2,1 − b3,0 + b1,2) + α2(−b0,2 + b2,0 + a1,1)

+ α(−b1,0 − a0,1) + b0,0
]
S3 + signum(α) · R2[α3R2(a1,2 − a3,0)

+ α2(R2(a2,0 − a0,2)− a0,2 + a2,0 − b1,1) + α(−R2a1,0 − 2a1,0 + 2b0,1)

+ (R2 + 3)a0,0
]
S2 − R

[
α3R2(a2,1 + b3,0)− α2R2(2a1,1 + b2,0)

+ α(R2(3a0,1 + b1,0) + a0,1 + b1,0)− (R2 + 3)b0,0
]
S + signum(α)

·
[
α3R4a3,0 − α2R2(R2 + 1)a2,0 + αR2(R2 + 3)a1,0 − (R4 + 6R2 + 1)a0,0

]
,

B(ϕ; a, b) = R3[α3(−b0,3 + b2,1 + a1,2 − a3,0) + α2(−b1,1 + a2,0 − a0,2)

+ α(−a1,0 + b0,1) + a0,0]S4 + signum(α) · R2[α3R2(a0,3 − a2,1)

+ α2((R2 + 1)a1,1 − b0,2 + b2,0)− α((R2 + 2)a0,1 + 2b1,0) + 3b0,0]S3

− R[α3R2(a1,2 − 2a3,0 + b2,1) + α2R2(−2a0,2 + 3a2,0 − b1,1)

+ α(R2(−4a1,0 + b0,1)− a1,0 + b0,1) + (5R2 + 3)a0,0]S2

+ signum(α) · [α3R4a2,1 − α2R2((R2 + 1)a1,1 + b2,0)

+ αR2((R2 + 3)a0,1 + 2b1,0)− (3R2 + 1)b0,0]S

− R[α3R2a3,0 − 2α2R2a2,0 + α(3R2 + 1)a1,0 − 4(R2 + 1)a0,0]

with S = sin ϕ, and a = (ai,j), b = (bi,j), c = (ci,j) and d = (di,j), with ai,j, bi,j, ci,j and di,j are
parameters appearing in the perturbed polynomials (1.3).

Computing the above integrals and making the transformation R = 2ω
1+ω2 for 0 < ω < 1

we obtain

f (R)
R= 2ω

1+ω2
=

f̃ (ω)

6α3ω(ω2 + 1)3 =
∑8

i=0 ki fi(ω)

6α3ω(ω2 + 1)3 , (3.2)

where

f0(ω) = ω2, f1(ω) = ω4, f2(ω) = ω6,

f3(ω) = ω8, f4(ω) = ω5 + ω3, f5(ω) = ω7 + ω,

f6(ω) = ω4 ln
(

1 + ω

1−ω

)
, f7(ω) = (ω8 + 1) ln

(
1 + ω

1−ω

)
,

f8(ω) = (ω6 + ω2) ln
(

1 + ω

1−ω

)
,

(3.3)
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and

k0 =− 3π
(
− α(a1,0 + c1,0)− α(b0,1 + d0,1) + 4(a0,0 + c0,0)

)
,

k1 =− 3π
(
− 3α3(a3,0 + c3,0)− 3α3(b0,3 + d0,3)− α3(a1,2 + c1,2)

− α3(b2,1 + d2,1) + 4α2(a0,2 + c0,2) + 4α2(a2,0 + c2,0)− 6α(a1,0 + c1,0)

− 2α(b0,1 + d0,1) + 12(a0,0 + c0,0)
)

,

k2 =− 3π
(

2α3(a1,2 + c1,2) + 2α3(a3,0 + c3,0)− 2α3(b0,3 + d0,3)− 2α3(b2,1 + d2,1)

− α(a1,0 + c1,0)− α(b0,1 + d0,1) + 4(a0,0 + c0,0)
)

,

k3 = 3πα3
(
(a1,2 + c1,2)− (a3,0 + c3,0)− (b0,3 + d0,3) + (b2,1 + d2,1)

)
,

k4 = signum(α) ·
[
− 2α3(a2,1 − c2,1)− 22α3(a0,3 − c0,3) + 2α3(b1,2 − d1,2)

− 26α3(b3,0 − d3,0) + 8α2(b2,0 − d2,0) + 8α2(a1,1 − c1,1) + 16α2(b0,2 − d0,2)

− 32α(a0,1 − c0,1)− 8α(b1,0 − d1,0) + 26(b0,0 − d0,0)
]
,

k5 = signum(α) ·
[
6α3(a0,3 − c0,3) + 6α3(b1,2 − d1,2)− 6α3(b3,0 − d3,0)

− 6α3(a2,1 − c2,1) + 6(b0,0 − d0,0)
]
,

k6 =− signum(α) · 6α3
(

3(a0,3 − c0,3) + (a2,1 − c2,1)− (b1,2 − d1,2)− 3(b3,0 − d3,0)
)

,

k7 =− signum(α) · 3α3
(
(a0,3 − c0,3)− (a2,1 − c2,1) + (b1,2 − d1,2)− (b3,0 − d3,0)

)
,

k8 = signum(α) · 12α3
(
(a0,3 − c0,3) + (b3,0 − d3,0)

)
.

It follows directly from

∂(k0, k1, k2, k3, k4, k5, k6, k7, k8)

∂(b0,0, a3,0, a1,2, a1,0, a1,1, a2,0, b3,0, a2,1, a0,3)
= signum(α) · 107495424π4α20 6= 0

that the constants k0, k1, · · · , k8 are independent. That is to say, the coefficients of the functions
fi(ω), i = 0, 1, . . . , 8 can be chosen arbitrarily. Moreover, the functions f0(ω), . . . , f8(ω) are
linearly independent. In fact, we obtain the following Taylor expansions in the variable ω

around ω = 0 for these functions:

f0(ω) = ω2, f1(ω) = ω4, f2(ω) = ω6,

f3(ω) = ω8, f4(ω) = ω5 + ω3, f5(ω) = ω7 + ω,

f6(ω) = 2ω5 +
2
3

ω7 +
2
5

ω9 +O(ω11),

f7(ω) = 2ω +
2
3

ω3 +
2
5

ω5 +
2
7

ω7 +
20
9

ω9 +O(ω11),

f8(ω) = 2ω3 +
2
3

ω5 +
12
5

ω7 +
20
21

ω9 +O(ω11).

(3.4)

The determinant of the coefficient matrix of the variables ω, ω2, . . . , ω9 is equal to
8388608/496125. Hence, by Lemma 2.3 it follows that there exists a linear combination of
fi(ω), i = 0, 1, . . . , 8 with at least 8 simple zeros, which means that system (1.2) has at least 8
limit cycles bifurcating from the period orbits surrounding the origin.
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Remark 3.1. We notice that when the constant terms a0,0, b0,0, c0,0, d0,0 are identically zeros.
In a similar way, we can prove that system (1.2) has at least 7 limit cycles bifurcating from the
period orbits surrounding the origin. In fact, k5 + 2k7 = 0 in this case, and the function f̃ (ω)

in (3.2) is a linear combination of 8 linearly independent functions f0, . . . , f4, f6, f7 − 2 f5, f8.
Therefore, by Lemma 2.3, the perturbed system (1.2) with the non-zero constant terms can
produce at least one more limit cycle than the case without them.

Proof of Corollary 1.2. Obviously, when ai,j = ci,j and bi,j = di,j, the coefficients k4, k5, . . . , k8

are identically zeros. It is easy to check that ( f0, . . . , f3) is an ECT-system. Therefore, the
averaged function f in this case has at most 3 simple zeros and this number can be reached.
Hence, by Theorem 2.1, Corollary 1.2 is proved.

In what follows, we first provide an upper bound of the number of zeros of the function
f̃ (ω) in (3.2). We eliminate the logarithmic function by taking the ninth derivative of f̃ (ω)

and obtain

f̃ (9)(ω) =signum(α) · 110592α3

(1 + ω)9(−1 + ω)9 (H1ω8 + H2ω6 + H3ω4 + H2ω2 + H1),

where

H1 =− 14(a2,1 − c2,1) + 14(b1,2 − d1,2) + 8(a0,3 − c0,3)− 83(b3,0 − d3,0),

H2 =− 24(a2,1 − c2,1) + 24(b1,2 − d1,2)− 32(a0,3 − c0,3)− 1988(b3,0 − d3,0),

H3 =76(a2,1 − c2,1)− 76(b1,2 − d1,2) + 48(a0,3 − c0,3)− 4818(b3,0 − d3,0).

As a result of the symmetry of coefficients of the function f̃ (9)(ω) with respect to ω, it is easy
to know that the zeros of the function f̃ (9)(ω) appear in pairs. Recalling this property, we
obtain that f̃ (9)(ω) has at most 2 zeros in (0, 1). Thus, by using Rolle’s theorem and noting
the fact that f̃ (0) = 0, we conclude that f̃ (ω) has at most 2 + 9 − 1 = 10 zeros in (0, 1),
which means that system (1.2) has at most 10 limit cycles bifurcating from the period orbits
surrounding the origin. In next section, we will show that the bound of the number of limit
cycles can be reduced to 9 by Theorem 2.4. Moreover, this number can be reached.

4 Proof of Theorem 1.1

In this section we will study the maximum number of simple zeros of the averaged function
(3.2). The main effort is based largely on algebraic calculations with the theory of Chebyshev
systems used to deal with the Wronskian determinants.

First, we denote by Wi(ω) the Wronskian for the functions f0, f1, . . . , fi depending on ω:

Wi(ω) = W( f0, . . . , fi), i = 0, 1, . . . , 8.

Next, we will show that all the Wronskians have no zeros except W7(ω) which vanishes
at a unique zero in (0, 1), which is simple. Using the expressions in (3.3), we perform the
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calculation and obtain

W0(ω) = ω2, W1(ω) = 2ω5, W2(ω) = 16ω9,

W3(ω) = 768ω14, W4(ω) = 2304ω13(3ω2 − 5),

W5(ω) = 69120ω9(1−ω2)(3ω6 − 7ω4 − 7ω2 + 35),

W6(ω) = −3317760ω8(ω2 + 1)
(1−ω2)5 T6(ω),

W7(ω) = −133772083200ω(ω2 + 1)3T7,0(ω)

(1−ω2)4

(
ln
(

1 + ω

1−ω

)
− 2ωT7,1(ω)

105(1−ω2)6T7,0(ω)

)
,

W8(ω) =
821895679180800(ω2 + 1)6

(1−ω2)10

(
T8,0(ω) · ln

(
1 + ω

1−ω

)
+

2ωT8,1(ω)

105(1−ω2)4

)
,

(4.1)

where

T6(ω) = 15ω14 − 195ω12 − 89ω10 + 1149ω8 + 421ω6 − 4305ω4 + 805ω2 − 105 < 0,

T7,0(ω) = 15ω8 − 140ω6 + 1018ω4 − 140ω2 + 15 > 0,

T7,1(ω) = 160ω20 − 8569ω18 + 105687ω16 − 547324ω14 + 1437092ω12 − 2101414ω10

+ 1752730ω8 − 839580ω6 + 210980ω4 − 23625ω2 + 1575,

T8,0(ω) = 35ω8 − 1100ω6 + 2898ω4 − 1100ω2 + 35,

T8,1(ω) = 45477ω14 − 444465ω12 + 1433397ω10 − 2210985ω8 + 1803095ω6

− 745675ω4 + 128975ω2 − 3675,

(4.2)

by Sturm’s theorem. It is easy to judge that Wi(ω) for i = 0, . . . , 6 does not vanish in the open
interval (0, 1). The difficulties mainly focus on the determination of W7(ω) and W8(ω).

Proposition 4.1. W7(ω) has a unique zero in ω ∈ (0, 1) and this zero is simple.

Proof. Denote the function in the parentheses of W7(ω) by Q7(ω), then

Q′7(ω) =
64ω6(ω2 + 1)(5ω8 + 172ω6 − 1122ω4 + 172ω2 + 5)T6(ω)

105(1−ω2)7T2
7,0(ω)

has a unique simple zero ω∗ in (0, 1) and can be easily isolated (e.g. by using the command
realroot(%, 1/10000) in Maple) as ω∗ ∈

[ 112087
262144 , 14011

32768

]
. It follows that Q7(ω) decreases in

(0, ω∗) and increases in (ω∗, 1). Note also that lim
ω→0+

Q7(ω) = 0 and lim
ω→1−

Q7(ω) = +∞. Thus,

Q7(ω) has a unique simple zero in (0, 1), equivalently, W7(ω) has a simple zero in (0, 1). This
ends the proof.

Proposition 4.2. W8(ω) does not vanish in ω ∈ (0, 1).

Proof. First, using Sturm’s theorem, we get that T8,0(ω) has two simple zeros ω1 and ω2 in
(0, 1) and T8,1(ω) has three simple zeros ω3, ω4 and ω5 in (0, 1), and these zeros can be
respectively isolated as

0.18709157 ≈ ω1 ∈
[ 6277751

33554432 , 784719
4194304

]
,

0.64417845 ≈ ω2 ∈
[ 337735

524288 , 5403761
8388608

]
,

0.18709131 ≈ ω3 ∈
[ 3138871

16777216 , 6277743
33554432

]
,

0.66278355 ≈ ω4 ∈
[ 5559831

8388608 , 694979
1048576

]
,

0.75595958 ≈ ω5 ∈
[ 792681

1048576 , 6341449
8388608

]
.



Limit cycles for a class of piecewise cubic differential systems 11

We denote the function in the parenthesis of W8(ω) by Q8(ω), it is easy to verify that Q8(ω1) 6=
0 and Q8(ω2) 6= 0. In order to study the number of zeros of Q8(ω) in (0, 1) we define a
function Z8(ω) as follows

Z8(ω) :=
Q8(ω)

T8,0(ω)
= ln

(
1 + ω

1−ω

)
+

2ωT8,1(ω)

105(1−ω2)4T8,0(ω)
, ω ∈ (0, 1)\{ω1, ω2}.

It is obvious that the function Z8(ω) has the following properties (see Fig. 4.1):

lim
ω→ω−1

Z8(ω) = +∞, lim
ω→ω+

1

Z8(ω) = −∞,

lim
ω→ω−2

Z8(ω) = −∞, lim
ω→ω+

2

Z8(ω) = +∞.

A direct calculation shows that

Z′8(ω) =
32768ω8(ω2 + 1)H8(ω)

35(1−ω2)5T2
8,0(ω)

,

where

H8(ω) =35ω14 + 85ω12 − 129ω10 − 503ω8 − 119ω6 + 1855ω4 − 875ω2 + 35.

Obviously, H8(ω) has two simple zeros ω∗1 and ω∗2 in (0, 1) and can be respectively isolated as

0.21002672 ≈ ω∗1 ∈
[ 451028943

2147483648 , 902057887
4294967296

]
,

0.69221454 ≈ ω∗2 ∈
[ 185814925

268435456 , 743259701
1073741824

]
.

(4.3)

Therefore Z8(ω) increases when ω ∈ (0, ω1) ∪ (ω1, ω∗1) and ω ∈ (ω∗2 , 1); decreases when
ω ∈ (ω∗1 , ω2) ∪ (ω2, ω∗2) (see Fig. 4.1). Notice that

lim
ω→0+

Z8(ω) = 0, lim
ω→1−

Z8(ω) = +∞.

It follows from (4.3) that

Z8(ω
∗
1) ≈ −0.0000126678 < 0, Z8(ω

∗
2) ≈ 1.126483743 > 0.

Taking into account the above results, we conclude that Z8(ω) does not vanish for ω ∈
(0, 1)\{ω1, ω2}. Thus the desired result follows.

Proof of Theorem 1.1. It follows from equation (4.1), Propositions 4.1 and 4.2 that Wi(ω),
i = 0, 1, . . . 6 and W8(ω) do not vanish in the interval (0, 1), and W7(ω) has exactly 1 simple
zero in (0, 1). Thus F = [ f0, f1, . . . , f8] defined in (3.3) satisfies the assumptions of Theorem
2.4, which implies that any linear combination of f0, f1, . . . , f8 can possess at most 9 zeros in
(0, 1), counting with multiplicities. But the authors in [23] do not prove that the upper bound
can be reached in the general cases. In what follows we will show that the upper bound 9 can
be reached in our system.

Following the ideas of [23], we first look for an element in Span (F ) with a zero of the
highest multiplicity, then we perturb it inside Span (F ) in order to have the prescribed con-
figuration of zeros. We remark that since the Wronskian determinant W8(ω) does not vanish,
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Figure 4.1: The curve Z8(ω) does not vanish for ω ∈ (0, 1)\{ω1, ω2}.

(a) (b)

Figure 4.2: Two cases for G(ω) having 9 zeros in (0, 1) taking into account
multiplicity. In particular ω0 has multiplicity 8.

the averaged function (an element in Span (F )) can not have a zero in (0, 1) with multiplic-
ity 9. Then we try to find an element G(ω) = ∑7

i=0 ai fi + k f8 ∈ Span (F ), of which has a zero
ω0 ∈ (0, 1) with multiplicity 8. Note that G(ω) has 9 zeros in (0, 1) with ω0 of multiplicity
8 may have two cases as shown in Fig. 4.2. For the generation of such ω0 we provide an
algorithm (Maple program) in Appendix B.

Now let ω0 = 781/10001, K0 = ln
(

1+ω0
1−ω0

)
and k = 108. Consider the function

G(ω) =a0 f0(ω) + a1 f1(ω) + · · ·+ a7 f7(ω) + k f8(ω), ω ∈ (0, 1). (4.4)

By direct calculation we get the power series of G around the point ω0:

G(ω) = e0 + e1(ω−ω0) + · · ·+ e7(ω−ω0)
7 + e8(ω−ω0)

8 + · · · ,

where ei is the linear combination of a0, a1, . . . , a7. We solve the equations

e0 = 0, e1 = 0, . . . , e7 = 0,
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and find the values of a0, a1, . . . , a7 which have the form

ai =
∑

ji
j=0 Li,jK

j
0

k1K0 + k2
, i = 0, . . . , 7, (4.5)

where

k1 = 585397408871072540089139375831993705697245971

45302237853421492432853598362240000000,

k2 =− 916164764498521481287490087182092157549

2097096776449170037730387965998807150160399,

and

ji =


2, i ∈ {0, 1, 2},
1, i ∈ {3, 4, 5, 6},
0, i ∈ {7},

and each Li,j in (4.5) is an integer or rational with high number of digits in numerators and
denominators. We will not write down here the explicit expression of ai for the sake of brevity.
It turns out that

G(ω) = e8(ω−ω0)
8 +O((ω−ω0)

9), ω → ω0, (4.6)

where

e8 = − k3 · (B1K0 + B0)

625678681207969855947716482401 · (k1K0 + k2)
,

with

k3 = 6373960409705365063968756422951747001176840429758709070500,

B1 = 2371833114839857298494412882156005750986234376264757348752800000,

B0 = −371199090602328323784582373340236998424005450432934748931637759,

and e8 ≈ 6.468110730× 107. On the other hand, the Taylor expansion of G(ω) near ω = 0 is

G(ω) = C1ω +O(ω2), (4.7)

where

C1 =
k4 ·

(
k5K0 − k6

)
55588252797009 · (k1K0 + k2)

≈ −3.242325599

with

k4 = 227096370975140733661254232304854673313104068100000,

k5 = 864359913055284073500033389565682256669487378000,

k6 = 135274953622915880496646897785052547295533923181.

By the way, we would like to point out that our purpose of choosing such a k in (4.4) is to
make the expressions of the numbers e8 and C1 to be relative simple. Equations (4.6) and (4.7)
mean that (i) G has a zero at ω0 with multiplicity 8, (ii) there exists an ε0 with 0 < ε0 < ω0

such that G(ω) is positive in [ε0, ω0), and (iii) G(ω) is negative near ω = 0. Moreover, G(ω)
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is positive in (ω0, 1) because lim
ω→1−

G(ω) = +∞ (otherwise G(ω) would has 10 zeros in (0, 1)

counting multiplicity, which leads to a contradiction).
Fixing the numbers a0, a1, . . . , a7 and k, we consider the function

Gε(ω) = G(ω) +
8

∑
i=0

ε i fi(ω), ω ∈ (0, 1). (4.8)

We note that fi can be extended analytically to [0, 1). Thus there exists a small number
M > 0 such that

Gε(ε0) >
1
2

G(ε0) > 0,

Gε(ω) <
1
2

C1ω < 0, when ω → 0+,

lim
ω→1−

Gε(ω) = +∞,

for all |ε i| < M, i = 0, 1, . . . , 8. Moreover, near ω0 we find

8

∑
i=0

ε i fi(ω) = µ0 + µ1(ω−ω0) + · · ·+ µ8(ω−ω0)
8 + · · · ,

where µi = µi(ε0, ε1, . . . , ε8) is linear combination of ε0, ε1, . . ., ε8. One can directly check that
the matrix of the coefficients of µ0, µ1, . . . , µ8 with respect to ε0, ε1, . . . , ε8 has rank 9, and hence
µ0, µ1, . . . , µ8 are independent.

Consequently, since fi is analytic at ω0 and G(ω) has a zero at ω0 with multiplicity 8, it
follows that there exists some small |ε i| � M (i = 0, 1, . . . 8) (and hence µi is small) such that
Gε has exactly 8 simple zeros in a small enough neighborhood of ω0. In view of (4.8) G(ω)

has an extra zero in (0, ε0). According to the result of [23], this zero is simple. That is to say,
Gε has 9 simple zeros.

Finally, taking into account the above analysis, we see that system (1.2), up to the first
order averaging method, has at most 9 limit cycles, and the upper bound can be reached. The
proof of Theorem 1.1 is finished.

Remark 4.3. If R̄ is a simple zero of the averaged function f (R) (see (3.2)), by Theorem 2.1 we
have a limit cycle R(ϕ, ε) of the differential system (3.1) such that R(0, ε) = R̄+O(ε). Then, go-
ing back through the changes of variables (see (3.1)) we have for the discontinuous piecewise
differential system (1.2) the medium limit cycle (x(t, ε), y(t, ε)) =

(
ρ(R̄, cos θ), ρ(R̄, sin θ)

)
+

O(ε).

5 Proof of Theorem 1.4

In this section, we will present the k-th order averaged functions up to k = 5 associated to
systems (1.4) and (1.5) respectively, and then we use them to prove Theorem 1.4.

5.1 Proof of Theorem 1.4 (a)

In order to analyze the Hopf bifurcation for system (1.4), applying Theorem 2.1, we set γ = 2π

in (2.2) and we introduce a small parameter ε doing the change of coordinates x = εX, y = εY.
After that we perform the polar change of coordinates X = r cos θ, Y = r sin θ, and by doing a
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Taylor expansion truncated at the 5-th order in ε we obtain the following expression for dr/dθ

of the form (2.1):

dr
dθ

=
5

∑
i=0

εiFi(θ, r) +O(ε6), (5.1)

where

F0(θ, r) =
r(a1,0,0 cos θ + b1,0,0 sin θ)

b1,0,0 cos θ − a1,0,0 sin θ − 2rα2 . (5.2)

The explicit expressions of Fi(θ, r) for i = 1, . . . , 5 are quite large so we omit them. To make
F0(θ, r) = 0 we take a1,0,0 = b1,0,0 = 0. From now on, for each j = 1, 2, . . . , 5, we will perform
the calculation of the averaged function f j under the hypothesis fk ≡ 0 for k = 1, . . . , j− 1.

Now computing f1 we obtain

f1(r) = −
πr
2α2 (a1,1,0 + b1,0,1).

Clearly equation f1(r) = 0 has no positive zeros. Then the first order averaging theorem does
not provide information about the limit cycles of system (1.4).

To apply the second order averaging theorem we take b1,0,1 = −a1,1,0. Computing f2 we
obtain

f2(r) = −
πr
2α3

(
α(a2,1,0 + b2,0,1)− 4a2,0,0

)
.

As for the first function f1, the second one also does not provide information on the bifurcating
limit cycles.

Setting a2,0,0 = α(a2,1,0 + b2,0,1)/4 we get f2(r) = 0, and then we can apply the third order
averaging theorem, and its corresponding function f3 is

f3(r) = −
πr

16α5

(
D3,2r2 + D3,0

)
,

where

D3,2 = 2α
(

α2(a1,1,2 + 3a1,3,0 + 3b1,0,3 + b1,2,1)− 4α(a1,0,2 + a1,2,0) + 4a1,1,0

)
,

D3,0 = 8α3(a3,1,0 + b3,0,1)− α2(a1,1,1a2,1,0 + a1,1,1b2,0,1 + 2a2,1,0b1,0,2 + 2b1,0,2b2,0,1 + 32a3,0,0)

+ 4α(a1,0,1a2,1,0 + a1,0,1b2,0,1 + 2a1,2,0b2,0,0 + b1,1,1b2,0,0)− 16a1,1,0b2,0,0.

Then there exists at most one positive simple zero of f3. From Theorem 2.1 it follows that
the third order averaging provides the existence of at most one small limit cycle of system
(1.4) and this number can be reached by Lemma 2.3 (D3,2 and D3,0 are linearly independent
constants). In order to apply the fourth order averaging theorem, we need to have f3(r) = 0
so we let a1,0,2 = D3,2/8α2 + a1,0,2 and a3,0,0 = D3,0/32α2 + a3,0,0. The resulting fourth order
averaged function is

f4(r) = −
πr

128α7

(
D4,2r2 + D4,0

)
,
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where

D4,2 = 2α
(

α4(8a2,1,2 + 8b2,2,1 + 24a2,3,0 + 24b2,0,3) + α3(−a1,1,1a1,1,2 − 3a1,1,1a1,3,0 − 3a1,1,1b1,0,3

− a1,1,1b1,2,1 − 2b1,0,2a1,1,2 − 6b1,0,2a1,3,0 − 6b1,0,2b1,0,3 − 2b1,0,2b1,2,1 − 32a2,0,2 − 32a2,2,0)

+ α2(4a1,0,1a1,1,2 + 24a1,0,1a1,3,0 + 12a1,0,1b1,0,3 + 8a1,0,1b1,2,1 − 8a1,1,0a1,2,1 − 8a1,1,0b1,1,2

+ 8b1,0,2a1,2,0 + 8a1,2,0b1,2,0 + 12a1,3,0b1,1,0 + 4b1,0,2b1,1,1 + 4b1,1,0b1,2,1 + 4b1,1,1b1,2,0

+ 24a2,1,0 − 8b2,0,1) + α(−24a1,0,1a1,2,0 − 4a1,0,1b1,1,1 + 20a1,1,0a1,1,1 − 8a1,1,0b1,0,2

− 16a1,1,0b1,2,0 − 24a1,2,0b1,1,0 − 4b1,1,0b1,1,1) + 32a1,1,0b1,1,0

)
,

D4,0 = 64α5(b4,0,1 + a4,1,0) + α4(−8a1,1,1a3,1,0 − 8a1,1,1b3,0,1 − 8a2,1,1a2,1,0 − 16b2,0,2a2,1,0

− 8a2,1,1b2,0,1 − 16b1,0,2a3,1,0 − 16b1,0,2b3,0,1 − 16b2,0,2b2,0,1 − 256a4,0,0)

+ α3(a2
1,1,1a2,1,0 + a2

1,1,1b2,0,1 + 4a1,1,1b1,0,2a2,1,0 + 4a1,1,1b1,0,2b2,0,1 + 4b2
1,0,2a2,1,0

+ 4b2
1,0,2b2,0,1 + 32a1,0,1a3,1,0 + 32a1,0,1b3,0,1 + 64a1,2,0b3,0,0 + 32a2,0,1a2,1,0 + 32a2,0,1b2,0,1

+ 64a2,2,0b2,0,0 + 32b1,1,1b3,0,0 + 32b2,0,0b2,1,1) + α2(−4a1,0,1a1,1,1a2,1,0 − 4a1,0,1a1,1,1b2,0,1

− 8a1,0,1b1,0,2a2,1,0 − 8a1,0,1b1,0,2b2,0,1 + 8a1,2,0a1,1,0a2,1,0 + 8a1,2,0a1,1,0b2,0,1

+ 4a1,1,0b1,1,1a2,1,0 + 4a1,1,0b1,1,1b2,0,1 − 8a1,1,1a1,2,0b2,0,0 − 4a1,1,1b1,1,1b2,0,0

− 16b1,0,2a1,2,0b2,0,0 − 8b1,0,2b1,1,1b2,0,0 − 128a1,1,0b3,0,0 − 96a2,1,0b2,0,0

+ 32b2,0,0b2,0,1) + α(32a1,0,1a1,2,0b2,0,0 + 16a1,0,1b1,1,1b2,0,0 − 16a2
1,1,0a2,1,0

− 16a2
1,1,0b2,0,1 + 32a1,2,0b1,1,0b2,0,0 + 16b1,1,0b1,1,1b2,0,0)− 64a1,1,0b1,1,0b2,0,0.

Then there exists at most one positive simple zero of f4. From Theorem 2.1 it follows that the
fourth order averaging provides the existence of at most one small limit cycle of system (1.4)
and this number can be reached.

Letting a2,0,2 = D4,2/64α4 + a2,0,2 and a4,0,0 = D4,0/256α4 + a4,0,0 we obtain f4(r) = 0, so we
can apply the fifth order averaging theorem, and its corresponding function is of the form

f5(r) =
πr

1024α9

(
D5,4r4 + D5,2r2 + D5,0

)
,

where D5,4 = 64α5(a1,1,2 + a1,3,0 − b1,0,3 − b1,2,1). Here we do not explicitly provide the expres-
sions of D5,2 and D5,0, because they are very long. Moreover D5,4, D5,2 and D5,0 are linearly
independent constants. In fact only D5,2 has the parameter a3,0,2, and D5,0 is the only one
with parameters a5,0,0 and b5,0,1. We claim that D5,4 is also linearly independent of the other
coefficients. Suppose that this is false. Then there exist real numbers m1, m2 not all zero such
that D5,4 = m1D5,0 + m2D5,2. But D5,0 is the only one with the variables a5,0,0 and b5,0,1, so in
order to D5,4 does not present these variables we must set m1 = 0. Since the other function
D5,2 also has variable which uniquely appears in its expression, the same argument holds so
m2 = 0. But then D5,4 ≡ 0, which is a contradiction. Therefore D5,4, D5,2 and D5,0 are linearly
independent constants. Hence f5 has at most two positive simple zeros. From Theorem 2.1 it
follows that the fifth order averaging provides the existence of at most two small limit cycle
of system (1.4) and this number can be reached by Lemma 2.3.

5.2 Proof of Theorem 1.4 (b)

In order to analyze the Hopf bifurcation for this case, applying Theorem 2.1, we set γ = π in
(2.2). By using similar arguments to those presented for the proof of Theorem 1.4 (a), we can
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transform system (1.5) into the form

dr
dθ

=


5

∑
i=1

εiF+
i (θ, r) +O(ε6), if 0 ≤ θ ≤ π,

5

∑
i=1

εiF−i (θ, r) +O(ε6), if π ≤ θ ≤ 2π,

(5.3)

where

F+
1 (θ, r) =− 1

2α2

[(
r(a1,0,1 + b1,1,0) sin θ + a2,0,0

)
cos θ

+ r(−a1,1,0 + b1,0,1) sin2 θ + (2αr2 + b2,0,0) sin θ + ra1,1,0

]
,

(5.4)

and F−1 (θ, r) is an expression by taking a = c, b = d in F+
1 (θ, r). The explicit expressions of

F±i (θ, r) for i = 2, . . . , 5 are quite large so we omit them here for brevity. We remark that we
have used the condition a1,0,0 = b1,0,0 = c1,0,0 = d1,0,0 = 0 for the vanishing of the unperturbed
terms F+

0 (θ, r) and F−0 (θ, r).
Now applying Theorem 2.1 we obtain the first order averaged function

f1(r) = −
1

4α2 (Y1,1r + Y1,0) ,

where

Y1,1 = π(a1,1,0 + c1,1,0 + b1,0,1 + d1,0,1), Y1,0 = 4(b2,0,0 − d2,0,0).

It is obvious that the coefficients Y1,1 and Y1,0 are independent. Thus f1(r) can have one
positive zero. From Theorem 2.1 it follows that the first order averaging provides the existence
of at most one small limit cycle of system (1.5) and this number can be reached.

To consider the second order averaging theorem we take d1,0,1 = −Y1,1/π + d1,0,1 and
d2,0,0 = Y1,0/4 + d2,0,0. Computing f2 we obtain

f2(r) = −
1

48α4

(
Y2,2r2 + Y2,1r + Y2,0

)
,

where

Y2,2 = 16α
(
(a1,1,1 − c1,1,1 + 2b1,0,2 − 2d1,0,2 + b1,2,0 − d1,2,0)α− 4(a1,0,1 − c1,0,1)− (b1,1,0 − d1,1,0)

)
,

Y2,1 =− 3π
(
− 4(a2,1,0 + c2,1,0 + b2,0,1 + d2,0,1)α

2 + 16(a2,0,0 + c2,0,0)α

+ a1,1,0(a1,0,1 − c1,0,1) + b1,0,1(a1,0,1 − c1,0,1)− a1,1,0(b1,1,0 − d1,1,0)− b1,0,1(b1,1,0 − d1,1,0)
)

,

Y2,0 = 24
(

2(b3,0,0 − d3,0,0)α
2 − a1,1,0(a2,0,0 + c2,0,0)− b1,0,1(a2,0,0 + c2,0,0) + b2,0,0(b1,1,0 − d1,1,0)

)
.

Since f2(r) can have at most two positive zeros, we conclude that system (1.5) has at most two
small limit cycles and this number can be reached.

To consider the third order averaging theorem we take d1,0,2 = Y2,2/32α2 + d1,0,2, d2,0,1 =

−Y2,1/12πα2 + d2,0,1 and d3,0,0 = Y2,0/48α2 + d3,0,0. Computing f3 we obtain

r f3(r) = −
1

1152α6

(
Y3,4r4 + Y3,3r3 + Y3,2r2 + Y3,1r + Y3,0

)
,
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where

Y3,4 = 72πα2
(
(a1,1,2 + c1,1,2 + 3a1,3,0 + 3c1,3,0 + 3b1,0,3 + 3d1,0,3 + b1,2,1 + d1,2,1)α

2

− 4(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α + 4(a1,1,0 + c1,1,0)
)

,

Y3,0 = 72π(a2,0,0 − c2,0,0)(a2,0,0 + c2,0,0)(a1,1,0 + b1,0,1).

We do not explicitly provide the expressions of Y3,i for i = 1, 2, 3, since they are very long.
Since f3(r) can have at most four positive zeros, we conclude that system (1.5) has at most
four small limit cycles and this number can be reached.

To consider the fourth order averaging theorem, we need to have f3(r) = 0 so we let
d1,0,3 = −Y3,4/216πα4 + d1,0,3, d2,0,2 = Y3,3/768α4 + d2,0,2, d3,0,1 = −Y3,2/288πα4 + d3,0,1, d4,0,0 =

Y3,1/1152α4 + d4,0,0. Note that in order to make Y3,0 = 0, we consider the following three cases.

CASE 1. a2,0,0 = c2,0,0, a2,0,0 6= −c2,0,0 and a1,1,0 6= −b1,0,1.
In this case, computing f4 we obtain

r2 f4(r) = −
1

23040α8

(
Y1

4,6r6 + Y1
4,5r5 + Y1

4,4r4 + Y1
4,3r3 + Y1

4,2r2 + Y1
4,1r + Y1

4,0

)
,

where

Y1
4,6 =− 1536α5

(
8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)

)
,

Y1
4,1 =− 720π(a1,1,0 + b1,0,1)c2,0,0

(
− 4(a3,0,0 − c3,0,0)α

2 + (a1,0,1 − c1,0,1)c2,0,0

− 2(a1,1,0 − c1,1,0)b2,0,0 − (b1,1,0 − d1,1,0)c2,0,0

)
,

Y1
4,0 =− 1920(a1,1,0 + b1,0,1)c3

2,0,0.

We do not explicitly provide the expressions of Y1
4,i for i = 2, 3, . . . , 5, since they are very long.

Then f4(r) can have at most six positive zeros, we conclude that system (1.5) has at most six
small limit cycles and this number can be reached.

To consider the fifth order averaging theorem, we need to have f4(r) = 0 so we let
d1,3,0 = Y1

4,6/4608α5 + d1,3,0, d2,0,3 = −Y1
4,5/4320πα6 + d2,0,3, d3,0,2 = Y1

4,4/15360α6 + d3,0,2,
d4,0,1 = −Y1

4,3/5760πα6 + d4,0,1, d5,0,0 = Y1
4,2/23040α6 + d5,0,0, c2,0,0 = 0. Computing f5 we

obtain

r f5(r) = −
1

5529600α10

(
Y1

5,6r6 + Y1
5,5r5 + Y1

5,4r4 + Y1
5,3r3 + Y1

5,2r2 + Y1
5,1r + Y1

5,0

)
,

where

Y1
5,6 = 115200πα4

(
(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α

2

+ 2(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α− 2(a1,1,0 + c1,1,0)
)

,

Y1
5,0 = 86400π(a1,1,0 + b1,0,1)

(
2(a3,0,0 + c3,0,0)α

2 + b2,0,0(a1,1,0 + c1,1,0)
)

·
(

2(a3,0,0 − c3,0,0)α
2 + b2,0,0(a1,1,0 − c1,1,0)

)
.

We do not explicitly provide the expressions of Y1
5,i for i = 1, 2, . . . , 5, since they are very long.

Then f5(r) can have at most six positive zeros, we conclude that system (1.5) has at most six
small limit cycles and this number can be reached.
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CASE 2. a2,0,0 = −c2,0,0, a2,0,0 6= c2,0,0 and a1,1,0 6= −b1,0,1.
In this case, computing f4 we obtain

r f4(r) = −
1

23040α8

(
Y2

4,5r5 + Y2
4,4r4 + Y2

4,3r3 + Y2
4,2r2 + Y2

4,1r + Y2
4,0

)
,

where

Y2
4,5 =− 1536α5

(
8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)

)
,

Y2
4,0 =− 720π(a1,1,0 + b1,0,1)c2,0,0

(
4(a3,0,0 + c3,0,0)α

2 + c2,0,0(a1,0,1 − c1,0,1)

+ 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 − d1,1,0)
)

.

We do not explicitly provide the expressions of Y2
4,i for i = 1, 2, . . . , 4, since they are very long.

Then f4(r) can have at most five positive simple zeros, we conclude that system (1.5) has at
most five small limit cycles and this number can be reached.

To apply the fifth order averaging theorem, we need to have f4(r) = 0 so we let d1,3,0 =

Y2
4,5/4608α5 + d1,3,0, d2,0,3 = −Y2

4,4/4320πα6 + d2,0,3, d3,0,2 = Y2
4,3/15360α6 + d3,0,2, d4,0,1 =

−Y2
4,2/5760πα6 + d4,0,1, d5,0,0 = Y2

4,1/23040α6 + d5,0,0. Note that in order to make Y2
4,0 = 0,

we consider two subcases.

Subcase 1. c2,0,0 = 0 and a3,0,0 6= − 1
4α2

(
c2,0,0(a1,0,1 − c1,0,1) + 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 −

d1,1,0)
)
− c3,0,0.

In this subcase, computing f5 we obtain

r f5(r) = −
1

5529600α10

(
Y2,1

5,6 r6 + Y2,1
5,5 r5 + Y2,1

5,4 r4 + Y2,1
5,3 r3 + Y2,1

5,2 r2 + Y2,1
5,1 r + Y2,1

5,0

)
,

where

Y2,1
5,6 = 115200πα4

(
(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α

2

+ (2a1,0,2 + 2c1,0,2 + 2a1,2,0 + 2c1,2,0)α− 2(a1,1,0 + c1,1,0)
)

,

Y2,1
5,0 = 86400π(a1,1,0 + b1,0,1)

(
2(a3,0,0 + c3,0,0)α

2 + b2,0,0(a1,1,0 + c1,1,0)
)

·
(

2(a3,0,0 − c3,0,0)α
2 + b2,0,0(a1,1,0 − c1,1,0)

)
.

We do not explicitly provide the expressions of Y2,1
5,i for i = 1, 2, . . . , 5, since they are very long.

Then f5(r) can have at most six positive simple zeros, we conclude that system (1.5) has at
most six small limit cycles and this number can be reached.

Subcase 2. c2,0,0 6= 0 and a3,0,0 = − 1
4α2

(
c2,0,0(a1,0,1 − c1,0,1) + 2b2,0,0(a1,1,0 + c1,1,0)− c2,0,0(b1,1,0 −

d1,1,0)
)
− c3,0,0.

As in the Subcase 1, one can compute the expression of f5 as follows:

r f5(r) = −
1

5529600α10

(
Y2,2

5,6 r6 + Y2,2
5,5 r5 + Y2,2

5,4 r4 + Y2,2
5,3 r3 + Y2,2

5,2 r2 + Y2,2
5,1 r + Y2,2

5,0

)
,
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where

Y2,2
5,6 = Y2,1

5,6 ,

Y2,2
5,0 = 21600π(a1,1,0 + b1,0,1)c2,0,0

[
− 32(a4,0,0 + c4,0,0)α

4 + 8
(
− 2b2,0,0(a2,1,0 + c2,1,0)

+ c3,0,0(b1,1,0 − d1,1,0 − a1,0,1 + c1,0,1) + c2,0,0(−a2,0,1 + c2,0,1 + b2,1,0 − d2,1,0)

− 2b3,0,0(a1,1,0 + c1,1,0)
)

α2 +
(
− 4b2,0,0

(
c1,1,0(a1,0,1 + b1,1,0 − c1,0,1 + d1,1,0)

+ 2a1,1,0b1,1,0
)
+ c2,0,0

(
a2

1,0,1 + 2a1,0,1b1,1,0 + 2a1,0,1c1,0,1 − 2a1,0,1d1,1,0

− 4a1,1,0b1,0,1 − 4a1,1,0c1,1,0 − 4b1,0,1c1,1,0 + b2
1,1,0 − 2b1,1,0c1,0,1

+ 2b1,1,0d1,1,0 − 3c2
1,0,1 + 2c1,0,1d1,1,0 − 4c2

1,1,0 − 3d2
1,1,0
))]

.

We do not explicitly provide the expressions of Y2,2
5,i for i = 1, 2, . . . , 5, since they are very

long. Then f5(r) can have at most six positive simple zeros, we conclude that system (1.5) has
at most six small limit cycles and this number can be reached.

CASE 3. a1,1,0 = −b1,0,1 and a2
2,0,0 − c2

2,0,0 6= 0.
Since the calculations and arguments are quite similar to those used in the CASE 1, we

just provide the expressions of f4 and f5 as follows:

r f4(r) = −
1

5760α8

(
Y3

4,5r5 + Y3
4,4r4 + Y3

4,3r3 + Y3
4,2r2 + Y3

4,1r + Y3
4,0

)
,

r f5(r) = −
1

23040α10

(
Y3

5,6r6 + Y3
5,5r5 + Y3

5,4r4 + Y3
5,3r3 + Y3

5,2r2 + Y3
5,1r + Y3

5,0

)
,

where

Y3
4,5 =− 384α5

(
8(a1,0,3 − c1,0,3) + 2(a1,2,1 − c1,2,1)− 2(b1,1,2 − d1,1,2)− 3(b1,3,0 − d1,3,0)

)
,

Y3
4,0 =− 360απ(a2

2,0,0 − c2
2,0,0)

(
− α(a2,1,0 + b2,1,0) + 4a2,0,0

)
,

Y3
5,6 = 480πα4

(
(−2a1,1,2 − 2c1,1,2 − 3a1,3,0 − 3c1,3,0 + b1,2,1 + d1,2,1)α

2

+ 2(a1,0,2 + c1,0,2 + a1,2,0 + c1,2,0)α + 2(b1,0,1 − c1,1,0)
)

,

Y3
5,0 = 720πα(a2

2,0,0 − c2
2,0,2)

(
2(a3,1,0 + b3,0,1)α

3 − 8a3,0,0α2 + (−a1,1,1a2,0,0 + 2a1,2,0b2,0,0

− 2a2,0,0b1,0,2 + b1,1,1b2,0,0)α + 4(a1,0,1a2,0,0 + b1,0,1b2,0,0)
)

.

We do not explicitly provide the expressions of Y3
4,i for i = 1, 2, . . . , 4 and Y3

5,j for j = 1, 2, . . . , 5,
since they are very long. Then f5(r) can have at most six positive simple zeros, we conclude
that system (1.5) has at most six small limit cycles and this number can be reached.

Using the results of Sections 5.1 and 5.2, we complete the proof of Theorem 1.4.
In summary, we give a remark for the averaging method that we are using in Section 5.

We know that if the averaged functions f j = 0 for j = 1, . . . , k− 1 and fk 6= 0, and r̄ is a simple
zero of fk, then by Theorem 2.1 there is a limit cycle r(θ, ε) of the differential system (5.3)
such that r(0, ε) = r̄ +O(ε). Then, going back through the changes of variables (x = εr cos θ,
y = εr sin θ) we have for the discontinuous piecewise differential system (1.5) the limit cycle
(x(t, ε), y(t, ε)) = ε

(
r̄ cos θ, r̄ sin θ

)
+O(ε2), which tends to the origin of system (1.5) when the

parameter ε → 0. In other words, this limit cycle is a small limit cycle bifurcating from the
origin, i.e., is a limit cycle coming by a Hopf bifurcation.
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A Fifth order averaging formulae

fi(z) =
y+i (γ, z)− y−i (γ− 2π, z)

i!
, for i = 1, . . . , 5,

where

y±1 (θ, z) =
∫ θ

0
F±1 (ϕ, z)dϕ,

y±2 (θ, z) =
∫ θ

0

(
2F±2 (ϕ, z) + 2∂F±1 (ϕ, z)y±1 (ϕ, z)

)
dϕ,

y±3 (θ, z) =
∫ θ

0

(
6F±3 (ϕ, z) + 6∂F±2 (ϕ, z)y±1 (ϕ, z)

+ 3∂2F±1 (ϕ, z)y±1 (ϕ, z)2 + 3∂F±1 (ϕ, z)y±2 (ϕ, z)
)

dϕ,

y±4 (θ, z) =
∫ θ

0

(
24F±4 (ϕ, z) + 24∂F±3 (ϕ, z)y±1 (ϕ, z) + 12∂2F±2 (ϕ, z)y±1 (ϕ, z)2

+ 12∂F±2 (ϕ, z)y±2 (ϕ, z) + 12∂2F±1 (ϕ, z)y±1 (ϕ, z)y±2 (ϕ, z)

+ 4∂3F±1 (ϕ, z)y±1 (ϕ, z)3 + 4∂F±1 (ϕ, z)y±3 (ϕ, z)
)

dϕ,

y±5 (θ, z) =
∫ θ

0

(
120F±5 (ϕ, z) + 120∂F±4 (ϕ, z)y±1 (ϕ, z) + 60∂2F±3 (ϕ, z)y±1 (ϕ, z)2

+ 60∂F±3 (ϕ, z)y±2 (ϕ, z) + 60∂2F±2 (ϕ, z)y±1 (ϕ, z)y±2 (ϕ, z)

+ 20∂3F±2 (ϕ, z)y±1 (ϕ, z)3 + 20∂F±2 (ϕ, z)y±3 (ϕ, z)

+ 20∂2F±1 (ϕ, z)y±1 (ϕ, z)y±3 (ϕ, z) + 15∂2F±1 (ϕ, z)y±2 (ϕ, z)2

+ 30∂3F±1 (ϕ, z)y±1 (ϕ, z)2y±2 (ϕ, z) + 5∂4F±1 (ϕ, z)y±1 (ϕ, z)4

+ 5∂F±1 (ϕ, z)y±4 (ϕ, z)
)

dϕ.



22 B. Huang

B Algorithm for generating ω0

Algorithm 1

Input: a function G =
7
∑

i=0
ai fi(ω) + k f8(ω)

Output: a zero ω0 of G with multiplicity 8
1: with(RandomTools);
2: Ω:=Generate(list(rational(range=0..1,denominator=10001),500));
3: for ω0 in Ω do
4: G1 := subs(ω−ω0 = s, convert(series(G, ω = ω0, 9), polynom));
5: e0 := tcoeff(G1, s);
6: for i from 1 to 8 do
7: ei := coeff(G1, si);

8: S0 := solve({seq(ej = 0, j = 0..7)}, {seq(aj, j = 0..7)});
9: A := normal(subs(S0, e8)/k);

10: G2 := convert(series(subs(S0, G), ω = 0, 2), polynom);
11: B := normal(coeff(G2, ω)/k);
12: if signum(evalf(A)) − signum(limit(subs(S0, G), ω = 1, left)/signum(k)) = 0 and

signum(evalf(AB)) < 0 then

13: return ω0;

The following result is one output of Algorithm 1:

781
10001

,
834

10001
,

515
10001

,
878

10001
,

622
10001

,
740

10001
.
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