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Abstract. In order to explore the impact of the growth rate of the habitat on the trans-
mission of rabies, we consider a SEI model for fox rabies on a growing spatial domain.
The basic reproduction number is introduced using the next infection operator, spec-
tral analysis and the corresponding eigenvalue problem. The stability of equilibria is
also established using the upper and lower solutions method in terms of this number.
Our results show that a large growth rate of the domain has a negative impact on the
prevention and control of rabies. Numerical simulations are presented to verify our
theoretical results.
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1 Introduction

Rabies, an acute infectious disease caused by virus infecting the central nervous system, is
mainly transmitted by direct contact such as biting [3]. Most mammals are susceptible to
the disease, and although only very few human fatalities occur every year, rabies is still a
considerable threat to human beings on account of inefficient treatment and a nearly 100%
mortality rate once it reaches the clinical stage [11]. In order to develop public policies for
prevention and control of rabies, various mathematical models have been established to study
the transmission mechanism of rabies.

The red fox is the main carrier of rabies in Europe [2]. The following SEI model for fox
rabies was proposed and studied by Murray et al. in [17]:

Et = βIS− σE−
[
b + (a− b)N

K

]
E,

It = D∆I + σE− αI −
[
b + (a− b)N

K

]
I,

St = (a− b)S
(
1− N

K

)
− βIS,

(1.1)
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where S(x, t), E(x, t) and I(x, t) are the densities of susceptible foxes, infected but non-
infectious foxes and rabid foxes at location x and time t, respectively. N = E + I + S is
the total fox population. On account of the random wandering of the rabid foxes, the dif-
fusion coefficient D is introduced in the equation for I. α represents the mortality rate of
the rabid foxes and β is the disease transmission coefficient. We assume that infected foxes
become infectious at the per capita rate σ. a is the birth rate, b is the intrinsic death rate and K
is the environmental carrying capacity. The term (a− b)N

K denotes the depletion of the food
supply by all foxes, where a > b ensures a sustainable population size. All coefficients in the
model (1.1) are nonnegative constants.

Letting W = K− S, model (1.1) becomes
Et = βI(K−W)− σE−

[
b + (a− b)N

K

]
E,

It = D∆I + σE− αI −
[
b + (a− b)N

K

]
I,

Wt = −(a− b)(K−W)
(
1− N

K

)
+ βI(K−W),

(1.2)

where N = E + I + K−W is the total fox population.
Problems describing ecological models on fixed spatial domains have been extensively

investigated in the literature. However, the habitats of species in nature are not invariable.
Some habitats are affected by climate, temperature and rainfall, and the shifting boundaries
are known, for example the area of Dongting Lake in China changes by season, that is, Dongt-
ing lake covers an average area of 1814 square kilometres in summer while it covers only 568
square kilometres in winter in the period 1996 to 2016, see [12, 15, 16, 18, 22, 26] and references
therein. Some habitats are influenced by the species itself and the boundaries are moving
and unknown. Such boundaries have recently been described by free boundaries, which have
been studied in [9, 13, 23] and [24] for invasive species and in [14] for the transmission of dis-
ease. Domain growth, as one possibility for domain evolution, plays an important role in the
formation of living patterns.

Inspired by the aforementioned works, we consider a SEI model (1.2) on a growing domain
as in [7] and [8]. Let Ωt ⊂ R2 be a bounded growing domain at time t, and its growing
boundary is denoted ∂Ωt. Also we assume that E(x(t), t), I(x(t), t) and W(x(t), t) are the
densities of the three kinds of fox population at location x(t) ∈ Ωt and time t. Additionally,
the growth of the domain Ωt generates a flow velocity a = ẋ(t), that is, the flow velocity
is identical to the domain velocity. According to the principle of mass conservation and the
Reynolds transport theorem [1], we can formulate the problem on a growing domain related
to (1.2) as

Et + a · ∇E + E(∇ · a) = βI(K−W)− σE−
[
b + (a− b)N

K

]
E in Ωt,

It − D∆I + a · ∇I + I(∇ · a) = σE− αI −
[
b + (a− b)N

K

]
I in Ωt,

Wt + a · ∇W + W(∇ · a) = −(a− b)(K−W)
(
1− N

K

)
+ βI(K−W) in Ωt,

E(x(t), t) = I(x(t), t) = W(x(t), t) = 0 on ∂Ωt,

E(x(0), 0) = E0(x), I(x(0), 0) = I0(x), W(x(0), 0) = W0(x) in Ω0.

(1.3)

Here a · ∇E, a · ∇I and a · ∇W are called advection terms related to the transport of material
across ∂Ωt with the flow a, and other extra terms introduced by the growth of the domain Ωt

are the dilution terms E(∇ · a), I(∇ · a) and W(∇ · a) due to the local volume expansion [5].
The null Dirichlet boundary conditions mean that there is no infection outside the growing
domain and on the boundary.
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In order to simplify problem (1.3), we assume that the growth of the domain Ωt is uniform
and isotropic. Biologically, the infected domain Ωt is supposed to grow at the same rate ρ(t)
in all directions as time t increases. Mathematically, we can formulate this as

x(t) = ρ(t)y for all x(t) ∈ Ωt and (y, t) ∈ Ω0 × [0,+∞),

where ρ(t) ∈ C1[0,+∞) is called the growth function and satisfies

ρ(0) = 1, ρ̇(t) > 0, lim
t→∞

ρ(t) = ρ∞ > 1 and lim
t→∞

ρ̇(t) = 0.

By Lagrangian transformations (see e.g. [4]), we define E(x(t), t) = u1(y, t), I(x(t), t) =

u2(y, t) and W(x(t), t) = u3(y, t). Then we have

u1t = Et + a · ∇E, u2t = It + a · ∇I, u3t = Wt + a · ∇W,

a = ẋ(t) = ρ̇(t)y =
ρ̇(t)
ρ(t)

x(t),

∇ · a =
nρ̇(t)
ρ(t)

, ∆I =
1

ρ2(t)
∆u2

and problem (1.3) can be transformed into the following reaction-diffusion model on the fixed
domain Ω0

u1t = βu2(K− u3)− σu1 −
[
b + (a− b)N

K

]
u1 − nρ̇(t)

ρ(t) u1, y ∈ Ω0, t > 0,

u2t − D
ρ2(t)∆u2 = σu1 − αu2 −

[
b + (a− b)N

K

]
u2 − nρ̇(t)

ρ(t) u2, y ∈ Ω0, t > 0,

u3t = −(a− b)(K− u3)
(
1− N

K

)
+ βu2(K− u3)− nρ̇(t)

ρ(t) u3, y ∈ Ω0, t > 0,

u1(y, t) = u2(y, t) = u3(y, t) = 0, y ∈ ∂Ω0, t > 0,

u1(y, 0) := η1(y), u2(y, 0) := η2(y), u3(y, 0) := η3(y), y ∈ Ω0,

(1.4)

where N = u1 + u2 + K− u3 is the total fox population.
The rest of the paper is organized as follows: Section 2 is devoted to the basic reproduction

number of problem (1.4) as well as its analytic properties. In Section 3, we investigate the
stability of the disease-free steady state. Numerical simulations and the discussion are finally
presented in Sections 4 and 5, respectively.

2 The basic reproduction number

In this section, we first present the principal eigenvalue R∗0 of the linearized system of problem
(1.4) at (0, 0, 0), then define the basic reproduction number R0 and analyze its properties.
Epidemiologically, the basic reproduction number is a critical threshold that reflects whether
the disease will be spread or disappear.

Problem (1.4) admits a disease-free steady state (0, 0, 0). Linearizing system (1.4) at (0, 0, 0)
and recalling that ρ̇(t)→ 0 as t→ ∞, we are led to consider the system

ut = βKv− (σ + a)u, y ∈ Ω0, t > 0,

vt − D∆v
ρ2

∞
= σu− (α + a)v, y ∈ Ω0, t > 0,

wt = (a− b)(u + v− w) + βKv, y ∈ Ω0, t > 0.

(2.1)
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Since the first two equations of (2.1) are decoupled from the last equation, we consider the
following eigenvalue problem

0 = βKψ
R∗0
− (σ + a)φ, y ∈ Ω0,

−D∆ψ
ρ2

∞
= σφ

R∗0
− (α + a)ψ, y ∈ Ω0,

φ(y) = ψ(y) = 0, y ∈ ∂Ω0,

(2.2)

which is equivalent to the eigenvalue problem{
−D∆ψ

ρ2
∞

= σβKψ
(σ+a)(R∗0)2 − (α + a)ψ, y ∈ Ω0,

φ(y) = 0, y ∈ ∂Ω0.
(2.3)

Direct calculation shows that the principal eigenvalue of problem (1.4)

R∗0 =

√
σβK

(σ + a)( D
ρ2

∞
λ1 + α + a)

, (2.4)

where (λ1, ζ(y)) is the principal eigen-pair of the eigenvalue problem{
−∆ζ = λ1ζ, y ∈ Ω0,

ζ(y) = 0, y ∈ ∂Ω0.
(2.5)

Now we define the basic reproduction number R0. Similarly as in [25] and [27], we write
the first two equations of (2.1) as the following equivalent single equation:{

Ut = d∆U + FU −VU, y ∈ Ω0, t > 0,

u = v = 0, y ∈ ∂Ω0, t > 0,

where U = (u, v)T, d = (0, D)T,

F =

(
0 βK
0 0

)
,

V =

(
σ + a 0
−σ α + a

)
.

Let X1 = C(Ω0, R2) and X+
1 := C(Ω0, R2

+), and let T(t) be the solution semigroup of the
following system on X1 {

Ut = d∆U −VU, y ∈ Ω0, t > 0,

u = v = 0, y ∈ ∂Ω0, t > 0,

and let φ(y) be the density of the initial infectious fox population. Define the next infection
operator L by

L(φ)(y) :=
∫ ∞

0
F(y)[T(t)φ](y)dt = F(y)

∫ ∞

0
[T(t)φ](y)dt.

Then R0 = r(L), where r(L) is the spectral radius of L. We have the following result, we refer
to Theorem 11.3.3 in [27] for more details:
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Lemma 2.1. R0 = R∗0 and sign (1 − R0) = sign λ∗, where λ∗ is the principal eigenvalue of the
following eigenvalue problem

0 = βKψ− (σ + a)φ + λφ, y ∈ Ω0,

−D∆ψ
ρ2

∞
= σφ− (α + a)ψ + λψ, y ∈ Ω0,

φ(y) = ψ(y) = 0, y ∈ ∂Ω0.

(2.6)

According to the explicit expression of R0, we can list some properties of R0.

Theorem 2.2. The following assertions hold.

(i) R0(ρ∞, Ω) is a positive and strictly increasing function with respect to Ω, that is, R0(ρ∞, Ω1) ≤
R0(ρ∞, Ω2) provided that Ω1 ⊆ Ω2, with strict inequality if Ω2\Ω1 is a non-empty open set;

(ii) R0(ρ∞, Ω) is a monotonically increasing function with respect to ρ∞, in the sense that
R0(ρ∞, Ω) < R0(ρ∗∞, Ω) provided that ρ∞ < ρ∗∞.

Proof. The proof of the monotonicity in (i) is similar to Corollary 2.3 in [6]. The proof of (ii)
follows directly from (2.4).

Remark 2.3. The basic reproduction number is used as a threshold parameter for the trans-
mission mechanism of the disease and plays a central role in mathematical epidemiology.
Biologically, R0 is the average number of new infections produced by a typical infective indi-
vidual over its infection period. R0 can be obtained by the second generation matrix method
[10] for epidemic models described by spatially-independent systems, and it can be calculated
as the spectral radius of the next-generation operator for models in a constant environment
[25] or in a periodic environment [27].

3 The stability of the disease-free equilibrium

In this section we will investigate the stability of the disease-free equilibrium (0, 0, 0) in terms
of the threshold R0. First we introduce the definition of the pair of coupled upper and lower
solutions.

Definition 3.1. Let (ũ1(y, t), ũ2(y, t), ũ3(y, t)), (û1(y, t), û2(y, t), û3(y, t)) be a pair of (triplets
of) functions in C2,1(Ω0 × (0,+∞))

⋂
C(Ω̄0 × [0,+∞)), satisfying (0, 0, 0) ≤ (û1, û2, û3) ≤

(ũ1, ũ2, ũ3) ≤ (K, K, K). The pair (of triplets) is called coupled upper and lower solutions
of (1.4), if the following relations are satisfied:

û1t ≤ βû2(K− ũ3)− σû1 −
[
b + (a− b) û1+ũ2+K−û3

K

]
û1 − nρ̇(t)

ρ(t) û1,

û2t − D
ρ2(t)∆û2 ≤ σû1 − αû2 −

[
b + (a− b) ũ1+û2+K−û3

K

]
û2 − nρ̇(t)

ρ(t) û2,

û3t ≤ −(a− b)(K− û3)
(
1− û1+û2+K−û3

K

)
+ βû2(K− û3)− nρ̇(t)

ρ(t) û3,

ũ1t ≥ βũ2(K− û3)− σũ1 −
[
b + (a− b) ũ1+û2+K−ũ3

K

]
ũ1 − nρ̇(t)

ρ(t) ũ1,

ũ2t − D
ρ2(t)∆ũ2 ≥ σũ1 − αũ2 −

[
b + (a− b) û1+ũ2+K−ũ3

K

]
ũ2 − nρ̇(t)

ρ(t) ũ2,

ũ3t ≥ −(a− b)(K− ũ3)
(
1− ũ1+ũ2+K−ũ3

K

)
+ βũ2(K− ũ3)− nρ̇(t)

ρ(t) ũ3, y ∈ Ω0, t > 0,

û1(y, t) = 0 ≤ ũ1(y, t), û2(y, t) = 0 ≤ ũ2(y, t), û3(y, t) = 0 ≤ ũ3(y, t), y ∈ ∂Ω0, t > 0,

û1(y, 0) ≤ η1(y), û2(y, 0) ≤ η2(y), û3(y, 0) ≤ η3(y), y ∈ Ω0,

ũ1(y, 0) ≥ η1(y), ũ2(y, 0) ≥ η2(y), ũ3(y, 0) ≥ η3(y), y ∈ Ω0.
(3.1)



6 Y. Meng, Z. G. Lin and M. Pedersen

R0 is a threshold value for the local stability of the disease-free equilibrium [25]. In the
following we investigate the local stability of the disease-free equilibrium (0, 0, 0) in the two
cases R0 < 1 and R0 > 1.

Theorem 3.2. If R0 < 1, then the disease-free steady state (0, 0, 0) is a locally asymptotically stable
equilibrium for problem (1.4).

Proof. The upper and lower solutions method is used to prove this theorem. Let

(û1, û2, û3)(y, t) = (0, 0, 0), (ũ1, ũ2, ũ3)(y, t) = (εφ(y), εψ(y), εξ(y)), (3.2)

where ε is sufficiently small, φ(y) and ψ(y) are the normalized positive eigenfunctions in
problem (2.2), and ξ(y) satisfies

0 =
(a− b)φ + (a− b + βK)ψ

R0
− (a− b)ξ. (3.3)

Plugging (3.2) back into (3.1), it is easy to verify that the first three inequalities in (3.1)
hold. The fourth inequality becomes

0 ≥ βKψ− σφ−
[

b + (a− b)
εφ + K− εξ

K

]
φ− nρ̇(t)

ρ(t)
φ.

According to the first equation in (2.2), we only need to prove that

b + (a− b)
εφ + K− εξ

K
+ σ +

nρ̇(t)
ρ(t)

≥ R0(σ + a). (3.4)

Since R0 < 1 and ε is sufficiently small, (3.4) holds and the fourth inequality in (3.1) holds.
The fifth inequality becomes

− D∆ψ

ρ(t)2 ≥ σφ− αψ−
[

b + (a− b)
εψ + K− εξ

K

]
ψ− nρ̇(t)

ρ(t)
ψ. (3.5)

It is easy to check that ψ(y) = ζ(y), where ζ(y) satisfies (2.5). We have −D∆ψ
ρ2(t) ≥ −

D∆ψ
ρ2

∞
due to

∆ψ = ∆ζ = −λ1ζ ≤ 0. We have that (3.5) is satisfied if

− D∆ψ

ρ2
∞
≥ σφ− αψ−

[
b + (a− b)

εψ + K− εξ

K

]
ψ− nρ̇(t)

ρ(t)
ψ (3.6)

holds. From the second equation in (2.2), (3.5) becomes(
1

R0
− 1
)

σφ ≥
{

a−
[

b + (a− b)
εψ + K− εξ

K

]}
ψ− nρ̇(t)

ρ(t)
ψ. (3.7)

Since R0 < 1 and that the right of (3.7) tends to 0 as ε → 0, the fifth inequality in (3.1) holds
for sufficiently small ε. The sixth inequality in (3.1) is equivalent to

0 ≥ (a− b)(K− εξ)
φ + ψ− ξ

K
+ βφ(K− εξ)− nρ̇(t)

ρ(t)
. (3.8)

Due to (3.3), (3.8) becomes

(a− b)(1− R0) +
nρ̇(t)
ρ(t)

≥ −ε

[
(a− b)

φ + ψ− ξ

K
+ βψ

]
. (3.9)
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Since R0 < 1 and ρ̇(t) > 0, (3.8) is also true for sufficiently small ε.
Therefore, the function-pairs

(û1, û2, û3)(y, t) = (0, 0, 0), (ũ1, ũ2, ũ3)(y, t) = (εφ(y), εψ(y), εξ(y))

are the upper and lower solutions of problem (1.4). This implies that the solutions of problem
(1.4) lies between the lower solutions and the upper solutions as long as the initial values
belong to the prescribed intervals. Therefore, given the condition R0 < 1, we can conclude
local stability of the disease-free equilibrium (0, 0, 0).

The next result shows that the disease-free equilibrium (0, 0, 0) is unstable if R0 > 1.

Theorem 3.3. If R0 > 1, then there exists a δ0 > 0 such that any positive solution of problem (1.4)
satisfies lim supt→∞ ‖ (u1(·, t), u2(·, t), u3(·, t))− (0, 0, 0) ‖≥ δ0.

Proof. We argue by contradiction and assume that for any δ ∈ (0, K), there exists a Tδ > 0
such that

0 < u1(y, t), u2(y, t), u3(y, t) < δ for all y ∈ Ω0, t ≥ Tδ. (3.10)

We consider the following eigenvalue problem:
0 = βu2(K− δ)− σu1 −

[
b + (a− b)K+3δ

K

]
u1 − δu1 + λu1, y ∈ Ω0,

− D∆u2
(ρ∞−δ)2 = σu1 − αu2 −

[
b + (a− b)K+3δ

K

]
u2 − δu2 + λu2, y ∈ Ω0,

u1 = u2 = 0, y ∈ ∂Ω0.

(3.11)

Problem (3.11) has a principal eigenvalue λ∗δ and a pair of positive corresponding eigenfunc-
tions (φ∗δ (y), ψ∗δ (y)). It is easy to check that ψ∗δ (y) = ζ(y), where ζ(y) satisfies (2.5). By Lemma
2.1, R0 > 1 implies that λ∗ < 0. Therefore, limδ→0 λ∗δ = λ∗ < 0. We can fix a small δ0 ∈ (0, K)
such that λ∗δ0

< 0. Then there exists a T1 > 0 such that

0 < u1(y, t), u2(y, t), u3(y, t) < δ0 for all y ∈ Ω0, t ≥ T1.

Since limt→∞ ρ(t) = ρ∞, there exists a T2 > 0 such that

ρ∞ − δ0 < ρ(t) ≤ ρ∞ for t ≥ T2.

Similarly, the limit limt→∞
n ˙ρ(t)
ρ(t) = 0 implies that there exists a T3 > 0 such that

n ˙ρ(t)
ρ(t)

< δ0 for t ≥ T3.

Now choose a large T∗ = max{T1, T2, T3}. Note that any positive solution (u1, u2, u3) of the
problem (1.4) satisfiesu1t ≥ βu2(K− δ0)− σu1 −

[
b + (a− b)K+3δ0

K

]
u1 − δ0u1,

u2t − D∆u2
ρ(t)2 ≥ σu1 − αu2 −

[
b + (a− b)K+3δ0

K

]
u2 − δ0u2,

for all y ∈ Ω0, t ≥ T∗. Define (u1(y, t), u2(y, t)) to be a positive solution of the problem

u1t = βu2(K− δ0)− σu1 −
[
b + (a− b)K+3δ0

K

]
u1 − δ0u1, y ∈ Ω0, t ≥ T∗,

u2t −
D∆u2
ρ2(t) = σu1 − αu2 −

[
b + (a− b)K+3δ0

K

]
u2 − δ0u2, y ∈ Ω0, t ≥ T∗,

u1 = u2 = 0, y ∈ ∂Ω0, t ≥ T∗,

u1(y, T∗) = u1(y, T∗), u2(y, T∗) = u2(y, T∗), y ∈ Ω0.

(3.12)
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It then follows from the comparison principle that

(u1(y, t), u2(y, t)) ≥ (u1(y, t), u2(y, t)) > (0, 0) for all y ∈ Ω0, t ≥ T∗. (3.13)

Now we conclude that (u1(y, T∗), u2(y, T∗)) ≥ (µφ∗δ0
(y), µψ∗δ0

(y)) in Ω0 for sufficiently
small µ. In fact, since u1(y, T∗), u2(y, T∗), φ∗δ0

(y) and ψ∗δ0
(y) are all > 0 for y ∈ Ω0, we have

∂u1(y,T∗)
∂η

∣∣
∂Ω0

, ∂u2(y,T∗)
∂η

∣∣
∂Ω0

,
∂φ∗δ0

(y)
∂η

∣∣
∂Ω0

and
∂ψ∗δ0

(y)
∂η

∣∣
∂Ω0

< 0 by the strong maximum principle [19],
where η is the outer unit normal on ∂Ω0. For y0 ∈ ∂Ω0, there exists a small ε(y0) > 0 such
that

∂u1(y, T∗)
∂η

<
1
2

∂u1(y, T∗)
∂η

∣∣∣∣
∂Ω0

< 0,
∂u2(y, T∗)

∂η
<

1
2

∂u2(y, T∗)
∂η

∣∣∣∣
∂Ω0

< 0,

∂φ∗δ0
(y)

∂η
<

1
2

∂φ∗δ0
(y)

∂η

∣∣∣∣
∂Ω0

< 0,
∂ψ∗δ0

(y)
∂η

<
1
2

∂ψ∗δ0
(y)

∂η

∣∣∣∣
∂Ω0

< 0

for y∈B(y0, ε(y0))
⋂

Ω0. Set µ1 = min
{ ∂u1(y,T∗)

∂η /
∂φ∗δ0

(y)
∂η , ∂u2(y,T∗)

∂η /
∂ψ∗δ0

(y)
∂η

}
, y∈B(y0, ε(y0))

⋂
Ω0,

then

∂u1(y, T∗)
∂η

≥ µ1
∂φ∗δ0

(y)
∂η

,
∂u2(y, T∗)

∂η
≥ µ1

∂ψ∗δ0
(y)

∂η
for y ∈ B(y0, ε(y0))

⋂
Ω0.

By the mean value theorem, we have

u1(y, T∗) ≥ µ1φ∗δ0
(y), u2(y, T∗) ≥ µ1ψ∗δ0

(y) for y ∈ B(y0, ε(y0))
⋂

Ω0.

Since ∂Ω0 is bounded, we can find finitely many points yi
0 ∈ ∂Ω0, radii ε(yi

0) > 0 (i = 1, . . . , N)

such that ∂Ω0 ⊂
⋃N

i=1 B(yi
0, ε(yi

0)), hence there exists a small h = mini ε(yi
0) > 0 such that

u1(y, T∗) ≥ µ1φ∗δ0
(y), u2(y, T∗) ≥ µ1ψ∗δ0

(y) for y ∈ {y ∈ Ω0| dist(y, ∂Ω0) ≤ h}.

Meanwhile, for any y ∈ {y ∈ Ω0 | dist(y, ∂Ω0) > h}, since u1(y, T∗), u2(y, T∗), φ∗δ0
(y) and

ψ∗δ0
(y) are all > 0 , there exists a small µ2 > 0 such that u1(y,T∗)

φ∗δ0
(y) and u2(y,T∗)

ψ∗δ0
(y) ≥ µ2 for y ∈ {y ∈

Ω0 | dist(y, ∂Ω0) > h}. Therefore, a sufficiently small µ > 0 satisfying µ ≤ min{µ1, µ2} can
be chosen to make sure (u1(y, T∗), u2(y, T∗)) ≥ (µφ∗δ0

(y), µψ∗δ0
(y)) in Ω0.

Set
U1 = µe−λ∗δ0

(t−T∗)
φ∗δ0

(y) and U2 = µe−λ∗δ0
(t−T∗)

ψ∗δ0
(y).

It is easy to verify that (U1(y, t), U2(y, t)) is a positive solution of the problem
U1t = βU2(K− δ0)− σU1 −

[
b + (a− b)K+3δ0

K

]
U1 − δ0U1, y ∈ Ω0, t ≥ T∗,

U2t =
D∆U2

(ρ∞−δ0)2 + σu1 − αU2 −
[
b + (a− b)K+3δ0

K

]
U2 − δ0U2, y ∈ Ω0, t ≥ T∗,

U1 = U2 = 0, y ∈ ∂Ω0, t ≥ T∗,

U1(y, T∗) = µφ∗δ0
(y), U2(y, T∗) = µψ∗δ0

(y), y ∈ Ω0.

Recalling that ∆ψ∗δ0
(y) = ∆ζ(y) = −λ1ζ(y) ≤ 0 yields

U2t ≤
D∆U2

ρ2(t)
+ σu1 − αU2 −

[
b + (a− b)

K + 3δ0

K

]
U2 − δ0U2 for all y ∈ Ω0, t ≥ T∗,

which means that (U1(y, t), U2(y, t)) is a lower solution of problem (3.12), so by the compari-
son principle we have that

(u1(y, t), u2(y, t)) ≥ (U1(y, t), U2(y, t)) for all y ∈ Ω0, t ≥ T∗,
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which together with (3.13) gives

(u1(y, t), u2(y, t)) ≥ (U1(y, t), U2(y, t)) = (µe−λ∗δ0
(t−T∗)

φ∗δ0
(y), µe−λ∗δ0

(t−T∗)
ψ∗δ0

(y)),

for all y ∈ Ω0, t ≥ T∗. But since λ∗δ0
< 0, u1(y, t) and u2(y, t) tends to ∞ as t goes to ∞, for any

fixed y ∈ Ω0 which contradicts (3.10). The proof is now completed.

4 Numerical simulations

In this section we carry out some numerical simulations in one space dimension to illustrate
our theoretical analysis.

Regarding the domain growth, we choose Ω(t) = (0, x(t)) = (0, ρ(t)y), where ρ(t) =
et

1+ 1
m (et−1)

and y ∈ Ω0 = (0, 1). Then, the domain grows like ρ(t) from initial rate ρ(0) = 1

to the final rate ρ∞ = m with m > 1. To highlight the impacts of the domain growth on the
transmission of rabies, we first fix the following parameters

D = 1, a = 1, b = 0.2, K = 1000, α = 0.01, β = 0.08, σ = 0.05

and subsequently obtain λ1 = π2. Next, we choose a different growth rate ρ(t) for the domain
and study the asymptotic behavior of the solution to the problem (1.4).

Example 4.1. Set m = 1.2 and we have

R0 =

√√√√ σβK
(σ + a)( D

ρ2
1∞

λ1 + α + a)
= 0.64 < 1.

By Theorem 3.2, we know that the disease-free equilibrium of problem (1.4) is stable. One
can see from Fig. 4.1 that the solution (u1(y, t), u2(y, t), u3(y, t)) decays to zero, which consists
with the result of Theorem 3.2.

Example 4.2. Set m = 4 and a direct calculation shows that

R0 =

√√√√ σβK
(σ + a)( D

ρ2
2∞

λ1 + α + a)
= 1.05 > 1.

Theorem 3.3 shows that the disease-free equilibrium (0, 0, 0) is now unstable. It is easily seen
from Fig. 4.2 that (u1, u2, u3) stabilizes to a positive steady state.

Comparing the above two cases, it can be seen that the infected but non-infectious pop-
ulation u1 and rabid population u2 vanish at small growth rate, but spread at large growth
rate.
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Figure 4.1: ρ1(t) = et

1+ 1
1.2 (e

t−1)
. For small growth rate ρ1(t), we have R0 < 1.

The first three graphs show that (u1, u2, u3) decays to zero quickly. The last
two graphs in line 3 are the cross-sectional view (the left) and contour map
(the right) of species u1, respectively. The color bar in the graph of the cross-
sectional view shows the density of the species u1. The contour map shows the
convergence of the temporal solution u1 to the trivial solution (red dashed line).
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Figure 4.2: ρ2(t) = et

1+ 1
4 (e

t−1)
. In this case, the growth rate ρ2(t) is now large

enough to give that R0 > 1. (u1, u2, u3) tends to a positive steady state from
the first three graphs. The last two graphs present the growth of the domain.
The color bar in the graph of the cross-sectional view shows the density of the
species u1. The contour map shows the convergence of the temporal solution u1

to the positive solution (red dashed line).
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5 Discussion

Domain growth plays a significant role in the evolution of a biological population, and this
has drawn much attention recently. In order to explore the impact of the domain growth on
the transmission of fox rabies, we investigate a SEI model for fox rabies with uniform and
isotropic domain growth.

We first transform the SEI model on the growing domain into a reaction-diffusion system
on a fixed domain, and the basic reproduction number R0 is introduced by spectral analysis
and the so-called next infection operator. The relationship between R0 and ρ∞ directly follows
by the explicit expression of R0 which is determined by the variational method. Then, the
stability of the disease-free equilibrium in terms of the threshold value R0 is investigated
by the upper and lower solutions method. It is proved in Theorem 3.2 that if R0 < 1, the
disease-free steady state (0, 0, 0) for the problem (1.4) is locally asymptotically stable, while if
R0 > 1, the disease-free equilibrium (0, 0, 0) is unstable according to Theorem 3.3. Finally our
analytical results are clearly supported by numerical simulations. When R0 < 1, the solution
of (1.4) decays to zero when the domain growth is small (see Fig. 4.1) while when R0 > 1,
the disease-free equilibrium is unstable at a large domain growth (see Fig. 4.2). Our results
show that a large growth of the domain has a negative effect on the stability of disease-free
equilibrium, in the sense that it works against the prevention and control of rabies.

However, we can not derive the existence and uniqueness of the positive equilibrium.
Moreover, all coefficients except ρ(t) are constants in the problem (1.4), but in fact rabies is
mainly affected by spatial heterogeneity and spatial distribution of habitats [20, 21], which
implies that the diffusion coefficient D and the disease transmission coefficient β (and other
constants) depend on the location x. We plan to investigate these problems in the future.
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