
Electronic Journal of Qualitative Theory of Differential Equations
2020, No. 61, 1–14; https://doi.org/10.14232/ejqtde.2020.1.61 www.math.u-szeged.hu/ejqtde/

Existence and uniqueness of positive solutions for
Kirchhoff type beam equations

Jinxiang WangB

Department of Applied Mathematics,
Lanzhou University of Technology, Lanzhou City, No. 287 Langongping Road, P. R. China

Received 6 September 2019, appeared 31 October 2020

Communicated by Gennaro Infante

Abstract. This paper is concerned with the existence and uniqueness of positive solu-
tions for the fourth order Kirchhoff type problemu′′′′(x)−

(
a + b

∫ 1
0 (u

′(x))2dx
)

u′′(x) = λ f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where a > 0, b ≥ 0 are constants, λ ∈ R is a parameter. For the case f (u) ≡ u, we use an
argument based on the linear eigenvalue problems of fourth order equations and their
properties to show that there exists a unique positive solution for all λ > λ1,a, here λ1,a
is the first eigenvalue of the above problem with b = 0; for the case f is sublinear, we
prove that there exists a unique positive solution for all λ > 0 and no positive solution
for λ < 0 by using bifurcation method.
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1 Introduction

Consider the following nonlinear fourth order Kirchhoff type problemu′′′′(x)−
(

a + b
∫ 1

0 (u
′(x))2dx

)
u′′(x) = λ f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where a > 0, b ≥ 0 are constants, λ ∈ R is a parameter, f : R → R is continuous. Due to the
presence of the integral term (b

∫ 1
0 (u

′(x))2dx)u′′(x), the equation is not a pointwise identity
and therefore is a nonlocal integro-differential problem.

Problem (1.1) describes the bending equilibrium of an extensible beam of length 1 which
is simply supported at two endpoints x = 0 and x = 1. The right side term λ f (u) in equation
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stands for a force exerted on the beam by the foundation. In fact, (1.1) is related to the
stationary problem associated with

∂2u
∂t2 +

EI
ρA

∂4u
∂x4 −

(
H
ρ
+

E
2ρL

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 = 0, (1.2)

which was proposed by Woinowsky-Krieger [29] as a model for the deflection of an extensible
beam of length L with hinged ends. In (1.2), u = u(x, t) is the lateral displacement at the space
coordinate x and the time t; the letters H, E, ρ, I and A denote, respectively, the tension in the
rest position, the Young elasticity modulus, the density, the cross-sectional moment of inertia
and the cross-sectional area. The nonlinear term in the brackets is a correction to the classical
Euler-Bernoulli equation

∂2u
∂t2 +

EI
ρA

∂4u
∂x4 = 0,

which does not consider the changes of the tension induced by the variation of the length
during the deflection. This kind of correction was proposed by Kirchhoff [9] to generalize
D’Alembert’s equation with clamped ends. For this reason (1.1) is often called a Kirchhoff
type beam equation. Other problems involving fourth-order equations of Kirchhoff type can
be found in [7, 19].

In the study of problem (1.1) and its generalizations, the nonlocal term under the integral
sign causes some mathematical difficulties which make the study of the problem particularly
interesting. The existence and multiplicity of solutions for (1.1) and its multi-dimensional
case have been studied by several authors, see [13,15–18,27,28,30] and the references there in.
Meanwhile, numerical methods of (1.1) have been developed in [3, 4, 20, 21, 23, 25, 26, 32].

In [15–17], by using variational methods, Ma considered existence and multiplicity of
solutions for (1.1) with λ ≡ 1 under different nonlinear boundary conditions. In [18], based
on the fixed point theorems in cones of ordered Banach spaces, Ma studied existence and
multiplicity of positive solutions results for (1.1) with right side term f (x, u, u′) in equation.

For multi-dimensional case of (1.1) with λ ≡ 1, Wang et al. studied the existence and
multiplicity of nontrivial solutions by using the mountain pass theorem and the truncation
method in [27, 28]; for a kind of problem similar to (1.1) in R3, Xu and Chen [30] established
the existence and multiplicity of negative energy solutions based on the genus properties in
critical point theory, and very rencently, Mao and Wang [13] studied the existence of nontrivial
mountain-pass type of solutions via the Mountain Pass lemma.

It is worth noticing that, in the above mentioned research work, the uniqueness of solutions
for the problem has not been discussed. As far as the author knows, there are very few
results on the uniqueness of solutions for problem (1.1). In [3], when the right side term
λ f (u(x)) = g(x) is nonpositive, Dang and Luan proved that problem (1.1) has a unique
solution by reducing the problem to a nonlinear equation and proposed an iterative method
for finding the solution. Very recently, by using contraction mapping principle, Dang and
Nguyen [4] obtained a uniqueness result for (1.1) in multi-dimensional case with the right
side term λ f (u(x)) = g(x, u) is bounded. To the best of our knowledge, apart from the two
works mentioned above, there is no other result on the uniqueness of solutions for nonlocal
integro-differential problem (1.1).

Motivated by the above described works, the object of this paper is to study the existence
and uniqueness of positive solutions for (1.1), and our main tool is bifurcation method. It
should be emphasized that, global bifurcation phenomena for fourth order problem (1.1) with
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b = 0 have been investigated in [10, 14, 24], and [1, 5, 8, 11, 12] studied second order Kirch-
hoff type problem by using the bifurcation theory, but as far as we know, the bifurcation
phenomena for fourth order Kirchhoff problem (1.1) has not been discussed.

Concretely, in the present paper we are concerned with problem (1.1) under the two cases:
f (u) ≡ u or f is sublinear. For f (u) ≡ u, (1.1) can be seen as a nonlinear eigenvalue problem,
we use an argument based on the linear eigenvalue problems of fourth order equations and
their properties to show that there exists a unique positive solution for all λ > λ1,a, where λ1,a

is the first eigenvalue of (1.1) with b = 0; for the case f is sublinear, such as f (u) = c1up + c2uq

(c1, c2 ≥ 0, 0 < p, q < 1 , see Remark 4.1), we prove that there exists a unique positive solution
for all λ > 0 and no positive solution for λ < 0 by using bifurcation method.

The rest of the paper is arranged as follows: In Section 2, as preliminaries, we first construct
the operator equation corresponding to (1.1). In Section 3, we deal with the case f (u) ≡ u
based on the linear eigenvalue problem of fourth order equations and their properties. Finally,
for the case f is sublinear, we discuss the existence and uniqueness of positive solutions for
(1.1) by using bifurcation method in Section 4.

2 Preliminaries

Let P := {u ∈ C[0, 1] : u(x) ≥ 0, ∀ x ∈ [0, 1]} be the positive cone in C[0, 1] and let U :=
P ∪ (−P). A solution to problem (1.1) is a function u ∈ C4[0, 1] which satisfies the equation
and boundary conditions, and moreover, if u ∈ C4[0, 1] ∩ P we call u a positive solution.

Proposition 2.1. For each g ∈ C[0, 1], there exists a solution u ∈ C4[0, 1] to the problem{
u′′′′(x)− (a + b

∫ 1
0 (u

′(x))2dx)u′′(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.1)

and if g ∈ U, then u is unique. Moreover, the operator T : U → U defined by

T(g) := u

is positive and compact.

Proof. First, when g ≡ 0, we prove that (2.1) has only a unique solution u ≡ 0. Assume that u
is a solution of (2.1) with g ≡ 0, set w = −u′′, then by (2.1) we have{

−w′′(x) + (a + b
∫ 1

0 (u
′(x))2dx)w(x) = 0, x ∈ (0, 1),

w(0) = w(1) = 0,
(2.2)

{
−u′′(x) = w(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(2.3)

We claim that the solution of (2.2) is w ≡ 0. In fact, suppose on the contrary that w 6≡ 0 is a
solution of (2.2), and without loss of generality, w(τ) = max{w(x)|x ∈ [0, 1]} > 0 for some τ ∈
(0, 1), then we have w′′(τ) ≤ 0, which contradicts with w′′(τ) = (a+ b

∫ 1
0 (u

′(x))2dx)w(τ) > 0.
Substituting w ≡ 0 in (2.3), u ≡ 0 is an immediate conclusion.

Next, we prove the existence and uniqueness of solutions for (2.1) with g 6= 0. For any
constant R ≥ 0, let uR stands for the unique solution of the linear fourth order problem{

u′′′′(x)− (a + bR)u′′(x) = g(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.4)
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then

uR(x) =
∫ 1

0

∫ 1

0
G1(x, t)G2,R(t, s)g(s)dsdt, x ∈ [0, 1], (2.5)

u′′R(x) = −
∫ 1

0
G2,R(x, t)g(t)dt, x ∈ [0, 1], (2.6)

here

G1(x, t) =

{
t(1− x), 0 ≤ t ≤ x ≤ 1,

x(1− t), 0 ≤ x ≤ t ≤ 1,
(2.7)

and

G2,R(t, s) =


sinh(

√
a+bRt) sinh(

√
a+bR(1−s))√

a+bR sinh
√

a+bR
, 0 ≤ t ≤ s ≤ 1,

sinh(
√

a+bRs) sinh(
√

a+bR(1−t))√
a+bR sinh

√
a+bR

, 0 ≤ s ≤ t ≤ 1,
(2.8)

are Green functions of {
−u′′(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(2.9)

and {
−w′′(t) + (a + bR)w(t) = 0, t ∈ (0, 1),

w(0) = w(1) = 0,
(2.10)

respectively. Since 0 ≤ G1(x, t) ≤ G1(x, x) and 0 ≤ G2,R(t, s) ≤ G2,R(t, t) ≤ (sinh
√

a
2 )2

√
a sinh

√
a , then by

(2.5)–(2.8) we have that there exist two positive constants C1 and C1 such that

‖uR‖∞ ≤ C1‖g‖∞, ‖u′′R‖∞ ≤ C2‖g‖∞. (2.11)

Multiplying the equation in (2.4) by uR and integrating it over [0, 1], based on boundary
conditions and integration by parts we obtain

∫ 1

0
(u′R(x))2dx =

∫ 1
0 g(x)uR(x)dx−

∫ 1
0 (u

′′
R(x))2dx

a + bR
. (2.12)

Now to get a solution of (2.1), we only need to find R such that

R = y(R) :=

∫ 1
0 g(x)uR(x)dx−

∫ 1
0 (u

′′
R(x))2dx

a + bR
=
∫ 1

0
(u′R(x))2dx, (2.13)

that is, find a fixed point of R = y(R). Obviously, y(0) > 0. On the other hand, by (2.11) we
have

|y(R)| =

∣∣∣∫ 1
0 g(x)uR(x)dx−

∫ 1
0 (u

′′
R(x))2dx

∣∣∣
a + bR

≤ C1‖g‖2
∞ + C2

2‖g‖2
∞

a
≤ C. (2.14)

This concludes the existence of fixed point for R = y(R) which yields a solution u of (2.1) in
C4[0, 1].

Now, we show that if g ∈ U, the solution of (2.1) is unique. Without loss of generality, we
assume on the contrary that for some g ∈ P, there exist two solutions u 6= v. By (2.5) and
(2.6), we have

u ≥ 0, u′′ ≤ 0; v ≥ 0, v′′ ≤ 0. (2.15)
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Since u and v satisfy the equation in (2.1), we have

u′′′′(x)− v′′′′(x)−
[

a + b
∫ 1

0
(u′(x))2dx

]
(u′′(x)− v′′(x))

− b
[∫ 1

0
(u′(x))2dx−

∫ 1

0
(v′(x))2dx

]
v′′(x) = 0. (2.16)

Set w = −(u′′ − v′′). If
∫ 1

0 (u
′(x))2dx =

∫ 1
0 (v

′(x))2dx, then (2.2) holds for w = −(u′′ − v′′)
and consequently we can obtain u ≡ v arguing as above. If we assume that

∫ 1
0 (u

′(x))2dx >∫ 1
0 (v

′(x))2dx, then by (2.16) and (2.15) we have

u′′′′(x)− v′′′′(x)−
[

a + b
∫ 1

0
(u′(x))2dx

]
(u′′(x)− v′′(x)) ≤ 0, (2.17)

that is

− w′′(x) +
[

a + b
∫ 1

0
(u′(x))2dx

]
w(x) ≤ 0. (2.18)

We claim that (2.18) implies w ≤ 0. In fact, suppose on the contrary that w(τ) = max{w(x)|x ∈
[0, 1]} > 0 for some τ ∈ (0, 1), then w′′(τ) ≤ 0. This contradicts with (2.18) with x = τ. On
the other hand, based on boundary conditions and integration by parts, from the assumption∫ 1

0
(u′(x))2dx−

∫ 1

0
(v′(x))2dx =

∫ 1

0
[u′(x) + v′(x)][u′(x)− v′(x)]dx

= −
∫ 1

0
(u(x) + v(x))(u′′(x)− v′′(x))dx

=
∫ 1

0
(u(x) + v(x))w(x)dx > 0.

(2.19)

Since (2.15) guarantees that u(x) + v(x) ≥ 0, then (2.19) contradicts with w ≤ 0. The unique-
ness of solutions for (2.1) is proved.

At the end, let T : U → C[0, 1] be the operator defined by Tg = u, where u is the solution
of (2.1). By (2.5) and the positiveness of Green functions G1(x, t), G2,R(t, s) in (2.7) and (2.8),
we conclude that T is a positive operator, that is T : U → U. Now, we show that T is compact.
Without loss of generality, let B ⊆ P be any bounded set. Combining (2.5) with (2.11) we
can see that TB is a bounded set in P; On the other hand, (2.6) with (2.11) imply that TB
is bounded in C2[0, 1] and then we can deduce that TB is equicontinuous. Consequently, by
Arzelà–Ascoli theorem we have that T : P→ P is a completely continuous operator. Therefore
T : U → U is a compact operator and the proof is completed.

Remark 2.2. When g(x) is nonpositive, Dang and Luan [3] proved that problem (2.1) has a
unique solution by reducing the problem to a nonlinear equation. Compared with [3], our
proof in 2.1 is more concise.

3 Nonlinear eigenvalue problem

In this section, we study (1.1) with f (u) ≡ u, that is the nonlinear eigenvalue problem{
u′′′′(x)− (a + b

∫ 1
0 (u

′(x))2dx)u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.1)
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The solutions of (3.1) are closely related to the following linear eigenvalue problem:{
u′′′′(x)− Au′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.2)

In [6], Del Pino and Manásevich proposed that: a pair of constants (λ, A) such that (3.2) pos-
sesses a nontrivial solution will be called an eigenvalue pair, and the corresponding nontrivial
solution will be called an eigenfunction. Furthermore, they proved that the eigenvalue pair
(λ, A) of (3.2) must satisfy

λ

(kπ)4 −
A

(kπ)2 = 1, for some k ∈N,

and the corresponding eigenfunction is ϕk = c sin kπx(c 6= 0 is an arbitrary constant).
Now, given a positive constant A, we use λ1,A to denote the principal eigenvalue of prob-

lem (3.2), then we have the following results:

Lemma 3.1. (i) If A1, A2 are positive constants such that A1 < A2, then λ1,A1 < λ1,A2 .
(ii) Let B, C be two fixed positive constants. Consider the map

λ1(µ) := λ1,B+µC, µ ≥ 0,

then λ1(·) is a continuous and strictly increasing function and

λ1(0) = λ1,B, lim
µ→+∞

λ1(µ) = +∞.

Proof. By [6], we know that the principal eigenvalue λ1,A of (3.2) satisfy

λ1,A

π4 −
A
π2 = 1, (3.3)

and the corresponding first eigenfunction is ϕ1(x) = c sin πx, where c 6= 0 is an arbitrary
constant. According to (3.3), λ1,A = (1 + A

π2 )π
4, then (i) and (ii) are immediate consequences.

By using Lemma 3.1, we prove the following results on the nonlinear eigenvalue problem
(3.1).

Theorem 3.2. Problem (3.1) has a positive solution uλ if and only if λ ∈ (λ1,a,+∞), moreover, the
solution uλ is unique and satisfying

lim
λ→λ1,a

‖uλ‖∞ = 0, lim
λ→+∞

‖uλ‖∞ = +∞. (3.4)

Proof. Assume that u is a positive solution of (3.1), then
∫ 1

0 (u
′(x))2dx > 0, consequently by

Lemma 3.1 (i) we have
λ = λ1,a+b

∫ 1
0 (u

′(x))2dx > λ1,a.

To any λ ∈ (λ1,a,+∞), by Lemma 3.1 (ii), there exists a unique t0(λ) > 0 such that

λ1,a+bt0 = λ,

moreover,
lim

λ→λ1,a
t0(λ) = 0, lim

λ→+∞
t0(λ) = +∞. (3.5)
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For the fixed t0, take appropriate principal eigenfunction ϕ1(x) = c sin πx(c > 0) of (3.2)
associated to λ1,a+bt0 such that ∫ 1

0
(ϕ′1(x))2dx = t0. (3.6)

Then it is easy to see that uλ = ϕ1 > 0 is a positive solution of (3.1).
To prove the uniqueness, we assume that there exist two positive solutions u 6= v, since

λ = λ1,a+b
∫ 1

0 (u
′(x))2dx = λ1,a+b

∫ 1
0 (v

′(x))2dx,

then Lemma 3.1 (ii) guarantees that
∫ 1

0 (u
′(x))2dx =

∫ 1
0 (v

′(x))2dx and u is proportional to v,
which implies that u = v.

Finally, we prove (3.4). Since the unique positive solution of (3.1) is uλ = ϕ1(x) = cλ sin πx,
where cλ is a positive constant depending on λ, then by (3.6) and (3.5), we have

lim
λ→λ1,a

∫ 1

0
(u′λ(x))2dx = lim

λ→λ1,a

∫ 1

0
[(cλ sin πx)′]2dx = lim

λ→λ1,a

1
2

c2
λπ2 → 0, (3.7)

and similarly

lim
λ→+∞

∫ 1

0
(u′λ(x))2dx = lim

λ→+∞

1
2

c2
λπ2 → ∞, (3.8)

that is
lim

λ→λ1,a
cλ → 0, lim

λ→+∞
cλ → +∞, (3.9)

then (3.4) is an immediate consequence.

4 The sublinear case

In this section, we study (1.1) when the nonlinear term f is sublinear which means that f
satisfying:
(H1) f : R→ R is continuous, f (s) > 0 for all s > 0, f (0) = 0 and f0 := lim

s→0+

f (s)
s = +∞;

(H2) f∞ := lim
s→+∞

f (s)
s = 0.

The main tool we will use in this section is global bifurcation theory.
We first state some notation. Let X := {u ∈ C2[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}

with the norm ‖u‖X = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}. Bρ := {u ∈ X : ‖u‖X < ρ}. For any u ∈ X,
denote u+ = max{u, 0}. Define the operator F : R× X 7→ X by

F(λ, u)(x) := T(λ f (u+(x))), (4.1)

where T is the operator defined in Proposition 2.1. Obviously, if u is a nonnegative solution
of (1.1), then u satisfies

u = F(λ, u). (4.2)

On the other hand, if u is a solution of (4.2), we show that u must be a nonnegative solution
of (1.1). In fact, by (H1) we have f (u+) ≥ 0 for any u ∈ C[0, 1]. Then the positiveness of
the operator T yields that the solution of (4.2) must be nonnegative or nonpositive according
to λ ≥ 0 or λ ≤ 0. If we assume that the latter happens, that is, u(x) ≤ 0, ∀x ∈ [0, 1], then
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f (u+) ≡ 0 and consequently (4.2) implies that u ≡ 0. From the above discussion, u is a
nonnegative solution of (1.1) if and only if (4.2) holds.

Since the map from X into U := P ∪ (−P) defined by u 7→ λ f (u+) is continuous, and
C4[0, 1]∩ X is compactly imbedded in X, then by Proposition 2.1, the operator F : R× X 7→ X
as in (4.1) is completely continuous. In order to prove the main result of this section, we need
the following lemmas.

Lemma 4.1. For any fixed λ < 0, there exists a number ρ > 0 such that

deg(I − F(λ, ·), Bρ(0), 0) = 1.

Proof. First, we claim that there exists δ > 0 such that

u 6= tF(λ, u) = tT(λ f (u+)) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exists a sequence {un} in X \ 0 with ‖un‖X −→ 0 and {tn}
in [0, 1] such that

un = tnF(λ, un) = tnT(λ f (u+
n )),

that is

u′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
u′′n(x) = tnλ f (u+

n (x)) ≤ 0, x ∈ (0, 1). (4.3)

Set wn = −u′′n , then by (4.3) we can get an inequality for wn similar to (2.18), which can deduce
that wn ≤ 0. Consequently, −u′′n = wn ≤ 0 and un(0) = un(1) = 0 guarantee that un ≤ 0,
which implies f (u+

n ) ≡ 0 according to (H1). Then by Proposition 2.1, (4.3) has only a unique
solution un ≡ 0, a contradiction with un ∈ X \ 0.

Take ρ ∈ (0, δ], according to the homotopy invariance of topological degree and the nor-
malization property, we have

deg(I − F(λ, ·), Bρ(0), 0) = deg(I, Bρ(0), 0) = 1.

Lemma 4.2. For any fixed λ > 0, there exists a number ρ > 0 such that

deg(I − F(λ, ·), Bρ(0), 0) = 0.

Proof. First, take a ψ ∈ X, ψ > 0, we claim that there exists δ > 0 such that

u 6= T(λ f (u+) + tψ) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Suppose on the contrary that there exists a sequence {un} in X \ 0 with ‖un‖X −→ 0 and {tn}
in [0, 1] such that

un = T(λ f (u+
n ) + tnψ),

that is

u′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
u′′n(x) = λ f (u+

n (x)) + tnψ(x), x ∈ (0, 1), (4.4)

Since tnψ(x) > 0, ∀x ∈ (0, 1), from the similar argument in Lemma 4.1 we have that un(x) >
0, ∀x ∈ (0, 1).
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On the other hand, ‖un‖X −→ 0 implies that∫ 1

0
(u′n(x))2dx ≤ C

for some positive constant C. Hence, according to Lemma 3.1 we have that

λ1,a+b
∫ 1

0 (u
′
n(x))2dx ≤ λ1,a+bC =: Λ.

Fix this value of Λ, since ‖un‖∞ −→ 0, then according to (H1), for n large we have that
λ f (u+

n (x)) > Λun(x), ∀x ∈ (0, 1). Combining this with u′′n(x) ≤ 0, ∀x ∈ [0, 1] we can conclude
that for any x ∈ (0, 1) the following inequality holds

u′′′′n (x)− (a + bC)u′′n(x) ≥ u′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
u′′n(x)

= λ f (u+
n (x)) + tnψ(x) > Λun(x),

which implies that λ1,a+bC > Λ, a contradiction.
Take ρ ∈ (0, δ], since the equation u − T(λ f (u) + ψ) = 0 has no solution in Bρ(0), then

according to the homotopy invariance of topological degree we have

deg(I − F(λ, ·), Bρ(0), 0) = deg(I − T(λ f (·) + ψ), Bρ(0), 0) = 0.

Now, we are ready to consider the bifurcation of positive solutions of (1.1) from the line of
trivial solutions {(λ, 0) ∈ R× X : λ ∈ R}.

Theorem 4.3. Assume that (H1) and (H2) hold. Then from (0, 0) there emanate an unbounded
continuum C0 of positive solutions of (4.2) in R× X.

Proof. First, we show that (0, 0) is a bifurcation point from the line of trivial solutions {(λ, 0) ∈
R× X : λ ∈ R} for the equation (1.1). In fact, this can be obtained following from a simple
modification of the global bifurcation theorem of Rabinowitz [22, Theorem 1.3], and the similar
arguments has been used in [2, Proposition 3.5] Suppose on the contrary that (0, 0) is not a
bifurcation point for (4.2), then there is a neighborhood of (0, 0) containing no nontrivial
solutions of (4.2). In particular there exists a small ε > 0 such that there are no solutions of
(4.2) on [−ε, ε]× ∂Bε(0). Then deg(I − F(λ, ·), Bε(0), 0) is well defined for λ ∈ [−ε, ε] and, by
the homotopy invariance property of degree we have

deg(I − F(λ, ·), Bε(0), 0) ≡ constant, ∀λ ∈ [−ε, ε],

which is a contradict with Lemma 4.1 and 4.2.
Then according to Rabinowitz’s global bifurcation theorem, an continuum C0 of positive

solutions of (4.2) emanates from (0, 0), and either

(i) C0 is unbounded in R× X, or

(ii) C0 ∩ [(R \ 0)× {0}] 6= ∅.

To prove the unboundedness of C0, we only need to show that the case (ii) cannot occur,
that is: C0 can not meet (λ, 0) for any λ 6= 0. It is easy to see that for λ < 0 problem (1.1)
does not possess a positive solution. For the case λ > 0, we assume on the contrary that there
exist some λ0 > 0 and a sequence of parameters {λn} and corresponding positive solutions
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{un} of (1.1) such that λn −→ λ0 and ‖un‖X −→ 0. Since ‖un‖∞ −→ 0, then by (H1), for fixed
ε ∈ (0, λ0) there exists n0 ∈N such that when n > n0 we have

u′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
u′′n(x)

= λn f (un(x)) ≥ (λ0 − ε) f (un(x)) > Λun(x), ∀x ∈ (0, 1),

where Λ is defined as in Lemma 4.2. Now, we can get a contradiction in a similar way that in
the proof of Lemma 4.2.

The main result of this section is following:

Theorem 4.4. Assume that (H1) and (H2) hold, then (1.1) has a positive solution if and only if λ > 0.
In addition, if f is monotone increasing and there exists α ∈ (0, 1) such that

f (τs) ≥ τα f (s) (4.5)

for any τ ∈ (0, 1) and s > 0, then the positive solution of (1.1) is unique.

Proof. By Theorem 4.3, there exists an unbounded continuum C0 ∈ R×X of positive solutions
of (1.1). We will show that ‖u‖X is bounded for any fixed λ > 0, that is, C0 can not blow up
at finite λ ∈ (0,+∞). To do this, we first prove ‖u‖∞ is bounded for any fixed λ > 0. Assume
on the contrary that there exist λ0 > 0 and a sequence of parameters {λn} and corresponding
positive solutions {un} of (1.1) such that λn −→ λ0, ‖un‖∞ −→ ∞. Since

u′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
u′′n(x) = λn f (un), (4.6)

divide (4.6) by ‖un‖∞ and set vn = un
‖un‖∞

, then we get

v′′′′n (x)−
(

a + b
∫ 1

0
(u′n(x))2dx

)
v′′n(x) = λn

f (un(x))
‖un‖∞

. (4.7)

Multiplying (4.7) by vn and integrating it over [0, 1], based on boundary conditions and inte-
gration by parts we obtain

∫ 1

0
(v′n(x))2dx =

∫ 1
0 λn

f (un(x))
‖un‖∞

vn(x)dx−
∫ 1

0 (v
′′
n(x))2dx

a + b
∫ 1

0 (u
′
n(x))2dx

. (4.8)

Since ‖vn‖∞ ≡ 1, {λn} is bounded and (H2) guarantees that f (un(x))
‖un‖∞

−→ 0 as n −→ ∞, then
(4.8) implies

0 ≤
∫ 1

0
(v′n(x))2dx ≤

∫ 1
0 λn

f (un(x))
‖un‖∞

vn(x)dx

a
−→ 0 as n −→ ∞,

that is ‖v′n‖∞ −→ 0. By the boundary conditions vn(0) = vn(1) = 0, there exist ξn ∈ (0, 1)
such that vn(x) =

∫ x
ξn

v′n(t)dt, ∀x ∈ [0, 1]. Combining this with ‖v′n‖∞ −→ 0 we can conclude
that ‖vn‖∞ −→ 0. This contradicts ‖vn‖∞ ≡ 1, and then we get the boundedness of ‖u‖∞.
Next, we show that the boundedness of ‖u‖∞ can deduce the boundedness of ‖u′‖∞ and
‖u′′‖∞. Since

u′′′′(x)−
(

a + b
∫ 1

0
(u′(x))2dx

)
u′′(x) = λ f (u(x)), (4.9)
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multiplying (4.9) by u and integrating it over [0, 1], similarly we can obtain

∫ 1

0
(u′(x))2dx =

∫ 1
0 λ f (u(x))u(x)dx−

∫ 1
0 (u

′′(x))2dx

a + b
∫ 1

0 (u
′(x))2dx

≤
∫ 1

0 λ f (u(x))u(x)dx
a

. (4.10)

(4.10) implies that ‖u′‖∞ is bounded, and consequently, ‖u′′‖∞ is bounded too. According to
the definition of ‖u‖X, the above conclusion means that ‖u‖X is bounded for any fixed λ > 0.
Combining this with the unboundedness of C0, we conclude that sup{λ| (λ, u) ∈ C0} = ∞,
then for any λ > 0 there exists a positive solution for (1.1).

Now, we prove that if f is monotone increasing and satisfies (4.5), then (1.1) has only a
unique positive solution. Assume that there exist two positive solutions u 6= v corresponding
to some fixed λ > 0. If

∫ 1
0 (u

′(x))2dx =
∫ 1

0 (v
′(x))2dx = R > 0, consider the problemω′′′′(x)−

(
a + b

∫ 1
0 (u

′(x))2dx
)

ω′′(x) = λ f (ω(x)), x ∈ (0, 1),

ω(0) = ω(1) = ω′′(0) = ω′′(1) = 0,
(4.11)

and its corresponding integral operator H : P→ P given by

H(ω) = T(λ f (ω)) = λ
∫ 1

0

∫ 1

0
G1(x, t)G2,R(t, s) f (ω(s))dsdt.

By the monotonicity of f and (4.5), H is an increasing α-concave operator according to [31,
Definition 2.3], then by [31, Theorem 2.1, Remark 2.1], the operator equation H(ω) = ω has a
unique solution, which is also the unique positive solution of (4.11). That is, u = v.

If we assume that
∫ 1

0 (u
′(x))2dx >

∫ 1
0 (v

′(x))2dx, since v′′ ≤ 0, we have

v′′′′(x)−
(

a + b
∫ 1

0
(u′(x))2dx

)
v′′(x)

≥ v′′′′(x)−
(

a + b
∫ 1

0
(v′(x))2dx

)
v′′(x) = λ f (v(x)), (4.12)

which means that v is actually an upper solution of (4.11). Constructing an iterative sequence
vn+1 = Hvn, n = 0, 1, 2, . . ., where v0 = v, then (4.12) and the monotonicity of f guarantee that
{vn} is decreasing. Moreover, by [31, Theorem 2.1, Remark 2.1], {vn} must converge to the
unique solution u of (4.11), and consequently we have

0 ≤ u(x) ≤ v(x), ∀x ∈ [0, 1]. (4.13)

On the other hand, based on boundary conditions and integration by parts, from the assump-
tion

∫ 1
0 (u

′(x))2dx >
∫ 1

0 (v
′(x))2dx we have that

∫ 1

0
(u′(x))2dx−

∫ 1

0
(v′(x))2dx =

∫ 1

0
[u′(x) + v′(x)][u′(x)− v′(x)]dx

= −
∫ 1

0
(u(x)− v(x))(u′′(x) + v′′(x))dx > 0,

(4.14)

since −(u′′(x) + v′′(x)) ≥ 0 following from (2.15), then (4.14) contradicts with (4.13). This
concludes the proof.
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Remark 4.5. If c1, c2 are nonnegative constants satisfying c2
1 + c2

2 6= 0, 0 < p, q < 1, then it is
easy to check that the function

f (u) = c1up + c2uq

is increasing and satisfies (H1),(H2) and (4.5). Consequently, Theorem 4.4 guarantees that the
problem{

u′′′′(x)− (a + b
∫ 1

0 (u
′(x))2dx)u′′(x) = λ(c1up(x) + c2uq(x)), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

has a positive solution if and only if λ > 0, moreover, the positive solution is unique.
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