On the Oscillation of Third Order Half-linear Neutral Type Difference Equations

Ethiraju Thandapani ${ }^{1}$ and Murugesan Vijaya ${ }^{2}$
Ramanujan Institute for Advanced Study in Mathematics
University of Madras
Chennai 600 005, India.
email: ${ }^{1}$ ethandapani@yahoo.co.in, ${ }^{2}$ vijayaanbalacan@gmail.com
and
Tongxing Li
School of Control Science and Engineering
Shandong University, Jinan
Shandong 250061, R. P. China.
email: litongx2007@163.com

Abstract

In this paper, the authors study the oscillatory properties of third order quasilinear neutral difference equation of the form $$
\begin{equation*} \Delta\left(a_{n}\left(\Delta^{2}\left(x_{n}+p_{n} x_{n-\delta}\right)\right)^{\alpha}\right)+q_{n} x_{n-\tau}^{\alpha}=0, \quad n \geq 0 \tag{E} \end{equation*}
$$ where $\alpha>0, q_{n} \geq 0,0 \leq p_{n} \leq p<\infty$. By using Riccati transformation we establish some new sufficient conditions which ensure that every solution of equation (E) is either oscillatory or converges to zero. These results improve some known results in the literature. Examples are provided to illustrate the main results. 2000 AMS Subjects Classification: 39A10 Keywords and Phrases: Third-order, neutral difference equation, oscillation, asymptotic behavior.

1 Introduction

Consider a neutral type difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta^{2}\left(x_{n}+p_{n} x_{n-\delta}\right)\right)^{\alpha}\right)+q_{n} x_{n-\tau}^{\alpha}=0, n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where δ and τ are nonnegative integers, $\left\{a_{n}\right\}$ is a positive real sequence with $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}^{\frac{1}{\alpha}}}=\infty$ for all $n_{0} \in \mathbb{N}=\{1,2, \ldots\},\left\{p_{n}\right\}$ is a bounded nonnegative real sequence, $\left\{q_{n}\right\}$ is a nonnegative real sequence, and α is a ratio of odd positive integers.

Let $\theta=\max (\delta, \tau)$. By solution of equation (1.1), we mean a real sequence $\left\{x_{n}\right\}$ defined for all $n \geq 1-\theta$ and satisfies equation (1.1) for all $n \in \mathbb{N}$. A nontrivial solution of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise. The equation (1.1) is said to be almost oscillatory if all its solutions are either oscillatory or tend to zero as $n \rightarrow \infty$.

The oscillation theory of difference equations and their applications have been receiving intensive attention in the last few decades, see for example $[1,5,11]$ and the references cited therein. Especially the study of oscillatory behavior of second order equations of various types occupied a great deal of interest. However, the study of third order difference equations
has received considerably less attention even though such equations have wide applications in the fields such as economics, mathematical biology and many other areas of mathematics.

In [7], the authors considered the equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n} \Delta x_{n}\right)\right)+q_{n} f\left(x_{n-\sigma+1}\right)=0 \tag{1.2}
\end{equation*}
$$

and studied oscillatory and asymptotic behavior of solutions of equation (1.2) subject to the conditions

$$
\begin{equation*}
\Delta c_{n} \geq 0, \sum_{n=n_{0}}^{\infty} \frac{1}{c_{n}}=\sum_{n=n_{0}}^{\infty} \frac{1}{d_{n}}=\infty \tag{1.3}
\end{equation*}
$$

In [2], the authors classified the nonoscillatory solutions of equation (1.2) into different classes and established conditions concerning the existence of solutions in these classes.

In [6], the authors considered the equation

$$
\begin{equation*}
\Delta\left(c_{n}\left(\Delta^{2} x_{n}\right)^{\alpha}\right)+q_{n} f\left(x_{\sigma(n)}\right)=0 \tag{1.4}
\end{equation*}
$$

where $\sigma(n)<n$ and α is a quotient of odd positive integers, and studied the oscillatory behavior of equation (1.4) under the condition $\sum_{n=n_{0}}^{\infty} \frac{1}{c_{n}^{\frac{1}{\alpha}}}<\infty$.

In [14], the authors studied the oscillatory and asymptotic behavior of solutions of the equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n}\left(\Delta x_{n}\right)^{\alpha}\right)\right)+q_{n} f\left(x_{n-\sigma}\right)=0 \tag{1.5}
\end{equation*}
$$

under the conditions $\sum_{n=n_{0}}^{\infty} \frac{1}{c_{n}^{\alpha}}=\infty$ and $\sum_{n=n_{0}}^{\infty} \frac{1}{d_{n}}=\infty$.
In [23], the authors considered the following equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta\left(d_{n} \Delta\left(x_{n}+p_{n} x_{n-k}\right)\right)\right)+q_{n} f\left(x_{n-m}\right)=0 \tag{1.6}
\end{equation*}
$$

and established criteria for the oscillation of all solutions of equation (1.6) under the condition (1.3).

In [15] the authors considered the third order equation of the form

$$
\begin{equation*}
\Delta\left(c_{n}\left(\Delta\left(d_{n} \Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right)\right)^{\alpha}\right)+q_{n} f\left(x_{n-\sigma}\right)=0 \tag{1.7}
\end{equation*}
$$

and established conditions for the oscillation of all solutions of equation (1.7) under the condition (1.3) without assuming $\Delta c_{n} \geq 0$. For further results concerning the oscillatory and asymptotic behavior of third order difference equation one can refer to [2, 13, 16-22] and the references cited there in.

From the review of literature it is found that most of the results for the oscillation of third order neutral type difference equations are obtained under the assumption $-1<p_{n}<1$. So it is interesting to study the oscillatory behavior of equation (1.1) under the condition $0 \leq p_{n} \leq p<\infty$. To the best of our knowledge, there are no results regarding the oscillation of equation(1.1) under the assumption $p_{n} \geq 1$. Therefore the purpose of this paper is to present some new oscillatory and asymptotic criteria for equation (1.1). We establish criteria for the equation (1.1) to be almost oscillatory.

The paper is organized as follows. In Section 2, we present the main results and in Section 3, we provide some examples to illustrate the main results.

2 Oscillation Results

In this section, we establish some new oscillation criteria for the equation (1.1). We begin with some useful lemmas, which will be used later. We set $z_{n}=x_{n}+p_{n} x_{n-\delta}$, and we may
deal only with the positive solutions of equation (1.1) since the proof for the opposite case is similar. We also introduce a usual convention, namely for any sequence $\left\{f_{k}\right\}$ and any $m \in \mathbb{N}$ we put $\sum_{k=m}^{m-1} f_{k}=0$ and $\prod_{k=m}^{m-1} f_{k}=1$.
Lemma 2.1. Assume that $\alpha \geq 1, x_{1}, x_{2} \in[0, \infty)$. Then

$$
\begin{equation*}
x_{1}^{\alpha}+x_{2}^{\alpha} \geq \frac{1}{2^{\alpha-1}}\left(x_{1}+x_{2}\right)^{\alpha} . \tag{2.1}
\end{equation*}
$$

Proof. The proof can be found in [8, pp. 292] and also in [9, Remark 2.1].
Lemma 2.2. Assume that $0<\alpha \leq 1, x_{1}, x_{2} \in[0, \infty)$. Then

$$
\begin{equation*}
x_{1}^{\alpha}+x_{2}^{\alpha} \geq\left(x_{1}+x_{2}\right)^{\alpha} \tag{2.2}
\end{equation*}
$$

Proof. Assume that $x_{1}=0$ or $x_{2}=0$. Then we have (2.2). Assume that $x_{1}>0, x_{2}>0$. Define $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha}+x_{2}^{\alpha}-\left(x_{1}+x_{2}\right)^{\alpha}$. Fix x_{1}. Then

$$
\begin{aligned}
\frac{d f\left(x_{1}, x_{2}\right)}{d x_{2}} & =\alpha x_{2}^{\alpha-1}-\alpha\left(x_{1}+x_{2}\right)^{\alpha-1} \\
& =\alpha\left[x_{2}^{\alpha-1}-\left(x_{1}+x_{2}\right)^{\alpha-1}\right] \geq 0, \text { since } 0<\alpha \leq 1
\end{aligned}
$$

Thus, f is nondecreasing with respect to x_{2}, which yields $f\left(x_{1}, x_{2}\right) \geq 0$. This completes the proof.

Lemma 2.3. Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be real sequences, and suppose there exists a $\sigma>0$ and a sequence $\left\{h_{n}\right\}$ such that $f_{n}=h_{n}+g_{n} h_{n-\sigma}$ holds for all $n \geq n_{0} \in \mathbb{N}$. Suppose that $\lim _{n \rightarrow \infty} f_{n}$ exists and $\lim _{n \rightarrow \infty} \inf g_{n}>-1$. Then $\lim _{n \rightarrow \infty} \sup h_{n}>0$ implies $\lim _{n \rightarrow \infty} f_{n}>0$.

Proof. The proof can be modeled similar to that of Lemma 3 of [10], and hence the details are omitted.

Lemma 2.4. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1) and $\lim _{n \rightarrow \infty} x_{n} \neq 0$. If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s-\delta}} \sum_{t=s}^{\infty} Q_{t}\right)^{\frac{1}{\alpha}}=\infty \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}=\min \left\{q_{n}, q_{n-\delta}\right\} \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
z_{n}>0, \Delta z_{n}>0, \Delta^{2} z_{n}>0, \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right) \leq 0 \tag{2.5}
\end{equation*}
$$

for $n \geq n_{1} \in \mathbb{N}$, where n_{1} is sufficiently large.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1). We may deal only with the case $\alpha \geq 1$, since the case $0<\alpha \leq 1$ is similar. From equation(1.1), we see that $z_{n} \geq x_{n}>0$ and

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)=-q_{n} x_{n-\tau}^{\alpha} \leq 0 \tag{2.6}
\end{equation*}
$$

Then, $\left\{\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)\right\}$ is nonincreasing and eventually of one sign. Therefore $\left\{\Delta^{2} z_{n}\right\}$ is also of one sign and so we have two possibilities: $\Delta^{2} z_{n}>0$ or $\Delta^{2} z_{n}<0$ for all $n \geq n_{1} \in \mathbb{N}$. We claim that $\Delta^{2} z_{n}>0$. If not, then there exists a constant $M>0$ such that

$$
\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right) \leq-M<0
$$

Summing the above inequality from n_{1} to $n-1$, we obtain

$$
\Delta z_{n} \leq \Delta z_{n_{1}}-M^{\frac{1}{\alpha}} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}^{\frac{1}{\alpha}}} .
$$

Therefore, $\lim _{n \rightarrow \infty} \Delta z_{n}=-\infty$. Then, from $\Delta^{2} z_{n}<0$ and $\Delta z_{n}<0$, we have $\lim _{n \rightarrow \infty} z_{n}=-\infty$. This contradiction proves that $\Delta^{2} z_{n}>0$.

Next, we prove that $\Delta z_{n}>0$. Otherwise, we assume that $\Delta z_{n} \leq 0$. From equation (1.1), we have

$$
\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)+q_{n} x_{n-\tau}^{\alpha}+p^{\alpha} q_{n-\delta} x_{n-\tau-\delta}^{\alpha}=0
$$

and then using Lemma 2.1, we obtain

$$
\begin{equation*}
\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)+\frac{Q_{n}}{2^{\alpha-1}} z_{n-\tau}^{\alpha} \leq 0 \tag{2.7}
\end{equation*}
$$

Summing the last inequality from n to ∞, we obtain

$$
a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}+p^{\alpha}\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right) \geq \frac{1}{2^{\alpha-1}} \sum_{s=n}^{\infty} Q_{s} z_{s-\tau}^{\alpha}
$$

In view of (2.6), we see that

$$
a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha} \leq a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}
$$

Thus

$$
\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right) \geq \frac{1}{2^{\alpha-1}\left(1+p^{\alpha}\right)} \sum_{s=n}^{\infty} Q_{s} z_{s-\tau}^{\alpha}
$$

Since $\lim _{n \rightarrow \infty} x_{n} \neq 0$, from Lemma 2.3, $\lim _{n \rightarrow \infty} z_{n}=L>0$, and $z_{n-\tau}^{\alpha} \geq L^{\alpha}$. Then we obtain

$$
\Delta^{2} z_{n-\delta} \geq L\left(\frac{1}{2^{\alpha-1}\left(1+p^{\alpha}\right)}\right)^{\frac{1}{\alpha}}\left(\frac{1}{a_{s-\delta}} \sum_{s=n}^{\infty} Q_{s}\right)^{\frac{1}{\alpha}}
$$

Summing the last inequality from n to ∞, we have

$$
-\Delta z_{n-\delta} \geq L\left(\frac{1}{2^{\alpha-1}\left(1+p^{\alpha}\right)}\right)^{\frac{1}{\alpha}} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s-\delta}} \sum_{t=s}^{\infty} Q_{t}\right)^{\frac{1}{\alpha}}
$$

Summing the last inequality again from n_{1} to ∞, we have

$$
z_{n_{1}-\delta} \geq L\left(\frac{1}{2^{\alpha-1}\left(1+p^{\alpha}\right)}\right)^{\frac{1}{\alpha}} \sum_{n=n_{1}}^{\infty} \sum_{s=n}^{\infty}\left(\frac{1}{a_{s-\delta}} \sum_{t=s}^{\infty} Q_{t}\right)^{\frac{1}{\alpha}}
$$

which contradicts (2.3). Thus $\Delta z_{n}>0$. The proof is now complete.
Lemma 2.5. Assume that $\left\{z_{n}\right\}$ satisfies (2.5) for $n \geq n_{1} \in \mathbb{N}$. Then

$$
\begin{equation*}
\Delta z_{n} \geq\left(a_{n}^{\frac{1}{\alpha}} \Delta^{2} z_{n}\right) \beta_{1}\left(n, n_{1}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{n} \geq\left(a_{n}^{\frac{1}{\alpha}} \Delta^{2} z_{n}\right) \beta_{2}\left(n, n_{1}\right) \tag{2.9}
\end{equation*}
$$

where

$$
\beta_{1}\left(n, n_{1}\right)=\sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}^{\frac{1}{\alpha}}}, \quad \beta_{2}\left(n, n_{1}\right)=\sum_{s=n_{1}}^{n-1} \frac{(n-1-s)}{a_{s}^{\frac{1}{\alpha}}} .
$$

Proof. Since $\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right) \leq 0$, we have $a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}$ is nonincreasing. Then we obtain,

$$
\begin{aligned}
\Delta z_{n} \geq \Delta z_{n}-\Delta z_{n_{1}} & =\sum_{s=n_{1}}^{n-1} \frac{\left(a_{s}\left(\Delta^{2} z_{s}\right)^{\alpha}\right)^{\frac{1}{\alpha}}}{a_{s}^{\frac{1}{\alpha}}} \\
& \geq\left(a_{n}^{\frac{1}{\alpha}} \Delta^{2} z_{n}\right) \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}^{\frac{1}{\alpha}}}
\end{aligned}
$$

Similarly, we have

$$
z_{n} \geq\left(a_{n}^{\frac{1}{\alpha}} \Delta^{2} z_{n}\right) \sum_{s=n_{1}}^{n-1} \sum_{t=n_{1}}^{s-1} \frac{1}{a_{t}^{\frac{1}{\alpha}}}
$$

Since

$$
\sum_{s=n_{1}}^{n-1} \sum_{t=n_{1}}^{s-1} \frac{1}{a_{t}^{\frac{1}{\alpha}}}=\sum_{t=n_{1}}^{n-1} \sum_{s=t+1}^{n-1} \frac{1}{a_{t}^{\frac{1}{\alpha}}}=\sum_{t=n_{1}}^{n-1} \frac{(n-1-t)}{a_{t}^{\frac{1}{\alpha}}}
$$

and therefore

$$
z_{n} \geq\left(a_{n}^{\frac{1}{\alpha}} \Delta^{2} z_{n}\right) \beta_{2}\left(n, n_{1}\right)
$$

Lemma 2.6. Let $\alpha>0$. If $f_{n}>0$ and $\Delta f_{n}>0$ for all $n \geq n_{0} \in \mathbb{N}$, then

$$
\Delta f_{n}^{\alpha} \geq \alpha f_{n}^{\alpha-1} \Delta f_{n} \text { if } \quad \alpha \geq 1
$$

and

$$
\Delta f_{n}^{\alpha} \geq \alpha f_{n+1}^{\alpha-1} \Delta f_{n} \text { if } \quad 0<\alpha \leq 1
$$

for all $n \geq n_{0}$.
Proof. By Mean value theorem, we have for $n \geq n_{0}$

$$
\Delta f_{n}^{\alpha}=f_{n+1}^{\alpha}-f_{n}^{\alpha}=\alpha t^{\alpha-1} \Delta f_{n}
$$

where $f_{n}<t<f_{n+1}$. The result follows by taking $t>f_{n}$ when $\alpha \geq 1$ and $t<f_{n+1}$ when $0<\alpha \leq 1$.

Next, we state and prove the main theorems.
Theorem 2.1. Let $\alpha \geq 1$. Assume that (2.3) holds and $\tau \geq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\tau, n_{1}\right)\right)^{\alpha}}\right]=\infty \tag{2.10}
\end{equation*}
$$

Then equation (1.1) is almost oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1) which does not tend to zero as $n \rightarrow \infty$. From the proof of Lemma 2.4, we obtain (2.5) and (2.7). Define

$$
\begin{equation*}
w_{n}=\rho_{n} \frac{a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}}{z_{n-\tau}^{\alpha}} . \tag{2.11}
\end{equation*}
$$

Then $w_{n}>0$ due to Lemma 2.4. From (2.11) and Lemma 2.6, we have

$$
\begin{align*}
\Delta w_{n} & =\Delta \rho_{n} \frac{a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha}}+\rho_{n} \Delta\left(\frac{a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}}{z_{n-\tau}^{\alpha}}\right) \\
& =\Delta \rho_{n} \frac{a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha}}+\rho_{n} \frac{\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\rho_{n} \frac{a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha} z_{n-\tau}^{\alpha}} \Delta z_{n-\tau}^{\alpha} \\
& \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\frac{\alpha \rho_{n} a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha} z_{n-\tau}^{\alpha}} z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau .} . \tag{2.12}
\end{align*}
$$

From (2.5) and (2.8), we have

$$
\Delta z_{n-\tau} \geq\left(a_{n-\tau}^{\frac{1}{\alpha}} \Delta^{2} z_{n-\tau}\right) \beta_{1}\left(n-\tau, n_{1}\right) \geq\left(a_{n+1}^{\frac{1}{\alpha}} \Delta^{2} z_{n+1}\right) \beta_{1}\left(n-\tau, n_{1}\right)
$$

It follows from (2.11) and (2.12) that

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right)}{\rho_{n+1}^{\frac{1}{\alpha}+1}} w_{n+1}^{\frac{\alpha+1}{\alpha}} . \tag{2.13}
\end{equation*}
$$

Similarly, define another function v_{n} by

$$
\begin{equation*}
v_{n}=\rho_{n} \frac{\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}} \tag{2.14}
\end{equation*}
$$

Then $v_{n}>0$ due to Lemma 2.4. From (2.14) and Lemma 2.6, we have

$$
\begin{align*}
\Delta v_{n} & =\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}+\rho_{n} \Delta\left(\frac{a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}}{z_{n-\tau}^{\alpha}}\right) \\
& =\rho_{n} \frac{\Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\rho_{n} a_{n+1-\delta}\left(\Delta^{2} z_{n+1-\delta}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha} z_{n-\tau}^{\alpha}} \Delta z_{n-\tau}^{\alpha} \\
& \leq \rho_{n} \frac{\Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha \frac{\rho_{n} a_{n+1-\delta}\left(\Delta^{2} z_{n+1-\delta}\right)^{\alpha}}{z_{n+1-\tau}^{\alpha} z_{n-\tau}} \Delta z_{n-\tau} . \tag{2.15}
\end{align*}
$$

From (2.5) and (2.8) and $\tau \geq \delta$, we have

$$
\Delta z_{n-\tau} \geq\left(a_{n-\tau}^{\frac{1}{\alpha}} \Delta^{2} z_{n-\tau}\right) \beta_{1}\left(n-\tau, n_{1}\right) \geq\left(a_{n-\delta}^{\frac{1}{\alpha}} \Delta^{2} z_{n-\delta}\right) \beta_{1}\left(n-\tau, n_{1}\right)
$$

Then from (2.15), we have

$$
\begin{equation*}
\Delta v_{n} \leq \rho_{n} \frac{\Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}} \tag{2.16}
\end{equation*}
$$

From (2.13) and (2.16), we obtain

$$
\begin{align*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} & \leq \frac{\rho_{n}\left[\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)\right]}{z_{n-\tau}^{\alpha}} \\
& +\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right)}{\rho_{n+1}^{1+\frac{1}{\alpha}}} w_{n+1}^{\frac{\alpha+1}{\alpha}} \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right] . \tag{2.17}
\end{align*}
$$

From (2.7) and (2.17), we have

$$
\begin{align*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} & \leq-\rho_{n} \frac{Q_{n}}{2^{\alpha-1}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right)}{\rho_{n+1}^{1+\frac{1}{\alpha}}} w_{n+1}^{\frac{\alpha+1}{\alpha}} \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\tau, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right] \tag{2.18}
\end{align*}
$$

Using (2.18) and the inequality

$$
\begin{equation*}
B u-A u^{\frac{(\alpha+1)}{\alpha}} \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{A^{\alpha}}, \quad A>0 \tag{2.19}
\end{equation*}
$$

we have

$$
\Delta w_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{Q_{n}}{2^{\alpha-1}}+\frac{1}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} \beta_{1}\left(n-\tau, n_{1}\right)\right)^{\alpha}}+\frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} \beta_{1}\left(n-\tau, n_{1}\right)\right)^{\alpha}} \frac{p^{\alpha}}{(\alpha+1)^{\alpha+1}}
$$

Summing the last inequality from n_{2} to $n-1$, we obtain

$$
\sum_{s=n_{2}}^{n-1}\left[\rho_{s} \frac{Q_{s}}{2^{\alpha-1}}-\frac{1}{(\alpha+1)^{\alpha+1}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\tau, n_{1}\right)\right)^{\alpha}}\right] \leq w_{n_{2}}+p^{\alpha} v_{n_{2}}
$$

Taking limsup in the above inequality, we obtain a contradiction with (2.10). The proof is complete.

By using the inequality in Lemma 2.2, we obtain the following result.
Theorem 2.2. Let $0<\alpha \leq 1$. Assume that (2.3) holds and $\tau \geq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\rho_{s} Q_{s}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\tau, n_{1}\right)\right)^{\alpha}}\right]=\infty .
$$

Then equation (1.1) is almost oscillatory.
Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.
Theorem 2.3. Let $\alpha \geq 1$. Assume that (2.3) holds and $\tau \geq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s}\left(\beta_{2}\left(s-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\tau, n_{1}\right)}\right]=\infty \tag{2.20}
\end{equation*}
$$

Then equation (1.1) is almost oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1), which does not tend to zero asymptotically. By the proof of Lemma 2.4, we have (2.5) and (2.7). Then from Lemma 2.5 , we obtain (2.8) and (2.9).

Define w_{n} and v_{n} by (2.11) and (2.14) respectively. Proceeding as in the proof of Theorem 2.1, we obtain (2.12) and (2.15). It follows from (2.12) that

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\frac{\alpha \rho_{n}\left(\rho_{n+1} a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}\right)^{2} z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{\rho_{n+1} z_{n+1-\tau}^{2 \alpha}\left(\rho_{n+1} a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}\right)} \tag{2.21}
\end{equation*}
$$

In view of $(2.5),(2.8)$ and (2.9), we see that

$$
\begin{equation*}
\frac{z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}} \geq \frac{z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}} \geq\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) \tag{2.22}
\end{equation*}
$$

Substituting (2.22) in (2.21), we have

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\frac{\alpha \rho_{n}}{\rho_{n+1}^{2}}\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) w_{n+1}^{2} \tag{2.23}
\end{equation*}
$$

On the other hand, from (2.15), we have

$$
\begin{equation*}
\Delta v_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}+\frac{\rho_{n} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\frac{\alpha \rho_{n}\left(\rho_{n+1} a_{n+1-\delta}\left(\Delta^{2} z_{n+1-\delta}\right)^{\alpha}\right)^{2} z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{\rho_{n+1}^{2} z_{n+1-\tau}^{2 \alpha} a_{n+1-\delta}\left(\Delta^{2} z_{n+1-\delta}\right)^{\alpha}} \tag{2.24}
\end{equation*}
$$

By (2.5),(2.8),(2.9) and $\tau>\delta$, we see that

$$
\begin{equation*}
\frac{z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{a_{n+1-\delta}\left(\Delta^{2} z_{n+1-\delta}\right)^{\alpha}} \geq \frac{z_{n-\tau}^{\alpha-1} \Delta z_{n-\tau}}{a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}} \geq\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) \tag{2.25}
\end{equation*}
$$

Substituting (2.25) into (2.24), we obtain

$$
\begin{equation*}
\Delta v_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}+\frac{\rho_{n} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}}-\frac{\alpha \rho_{n}}{\rho_{n+1}^{2}}\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) v_{n+1}^{2} \tag{2.26}
\end{equation*}
$$

Using (2.23) and (2.26), we have

$$
\begin{align*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} & \leq \frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\tau}^{\alpha}} \\
& +\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n}}{\rho_{n+1}^{2}}\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) w_{n+1}^{2} \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n}}{\rho_{n+1}^{2}}\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right) v_{n+1}^{2}\right] \tag{2.27}
\end{align*}
$$

Applying (2.7), and the inequality $B u-A u^{2} \leq \frac{B^{2}}{4 A}, \quad A>0$ in (2.27), we have

$$
\begin{equation*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{Q_{n}}{2^{\alpha-1}}+\frac{\left(1+p^{\alpha}\right)}{4 \alpha \rho_{n}} \frac{\left(\Delta \rho_{n}\right)^{2}}{\left(\beta_{2}\left(n-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(n-\tau, n_{1}\right)} \tag{2.28}
\end{equation*}
$$

Summing (2.28) from $n_{2}\left(n_{2} \geq n_{1}\right)$ to $n-1$, we obtain

$$
\sum_{s=n_{2}}^{n-1}\left[\rho_{s} \frac{Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha \rho_{s}} \frac{\left(\Delta \rho_{s}\right)^{2}}{\left(\beta_{2}\left(s-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\tau, n_{1}\right)}\right] \leq w_{n_{2}}+p^{\alpha} v_{n_{2}}
$$

Taking limsup in the above inequality, we obtain a contradiction with (2.20). The proof is complete.

From Lemma 2.2, similar to the proof of Theorem 2.3, we obtain the following result.
Theorem 2.4. Let $0<\alpha \leq 1$. Assume that (2.3) holds and $\tau \geq \delta$. Further more, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\rho_{s} Q_{s}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s}\left(\beta_{2}\left(s-\tau, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\tau, n_{1}\right)}\right]=\infty
$$

Then equation (1.1) is almost oscillatory.

Next we establish some criteria for the oscillation of equation (1.1) for the case when $\tau \leq \delta$.

Theorem 2.5. Assume that (2.3) holds, $\alpha \geq 1$ and $\tau \leq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\rho_{s}\left(\beta_{1}\left(s-\delta, n_{1}\right)\right)^{\alpha}}\right]=\infty \tag{2.29}
\end{equation*}
$$

Then equation (1.1) is almost oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1), which does not tend to zero as $n \rightarrow \infty$. From the proof of Lemma 2.4, we obtain (2.5) and (2.7). Hence by Lemma 2.5 , we have (2.8). Define

$$
\begin{equation*}
w_{n}=\rho_{n} \frac{a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}}{z_{n-\delta}^{\alpha}} . \tag{2.30}
\end{equation*}
$$

Then $w_{n}>0$. From (2.30) and Lemma 2.6 we have

$$
\begin{align*}
\Delta w_{n} & =\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\rho_{n} \Delta\left(\frac{a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}}{z_{n-\delta}^{\alpha}}\right) \\
& \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}+\rho_{n} \frac{\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\delta}^{\alpha}}-\frac{\alpha \rho_{n} a_{n+1}\left(\Delta^{2} z_{n+1}\right)^{\alpha}}{z_{n+1-\delta}^{\alpha} z_{n-\delta}^{\alpha}} z_{n-\delta}^{\alpha-1} \Delta z_{n-\delta .} \tag{2.31}
\end{align*}
$$

By (2.5) and (2.8), we have

$$
\Delta z_{n-\delta} \geq\left(a_{n-\delta}^{\frac{1}{\alpha}}\left(\Delta^{2} z_{n-\delta}\right)\right) \beta_{1}\left(n-\delta, n_{1}\right) \geq\left(a_{n+1}^{\frac{1}{\alpha}} \Delta^{2} z_{n+1}\right) \beta_{1}\left(n-\delta, n_{1}\right)
$$

It follows from (2.31) and (2.30) that

$$
\begin{equation*}
\Delta w_{n} \leq \frac{\rho_{n} \Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)}{z_{n-\delta}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right) w_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}} \tag{2.32}
\end{equation*}
$$

Similarly, define another function v_{n} by

$$
\begin{equation*}
v_{n}=\rho_{n} \frac{a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}}{z_{n-\delta}^{\alpha}} \tag{2.33}
\end{equation*}
$$

Then $v_{n}>0$,

$$
\begin{equation*}
\Delta v_{n} \leq \rho_{n} \frac{\Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)}{z_{n-\delta}^{\alpha}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}} \tag{2.34}
\end{equation*}
$$

From (2.32) and (2.34), we have

$$
\begin{align*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} & \leq \frac{\rho_{n}\left[\Delta\left(a_{n}\left(\Delta^{2} z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\delta}\left(\Delta^{2} z_{n-\delta}\right)^{\alpha}\right)\right]}{z_{n-\delta}^{\alpha}} \\
& +\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right)}{\rho_{n+1}^{1+\frac{1}{\alpha}}} w_{n+1}^{\frac{\alpha+1}{\alpha}} \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right] . \tag{2.35}
\end{align*}
$$

By (2.5),(2.7),(2.35) and $\tau \leq \delta$, we obtain

$$
\begin{align*}
\Delta w_{n}+p^{\alpha} \Delta v_{n} & \leq-\rho_{n} \frac{Q_{n}}{2^{\alpha-1}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right)}{\rho_{n+1}^{1+\frac{1}{\alpha}}} w_{n+1}^{\frac{\alpha+1}{\alpha}} \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\frac{\alpha \rho_{n} \beta_{1}\left(n-\delta, n_{1}\right) v_{n+1}^{\frac{(\alpha+1)}{\alpha}}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right] \tag{2.36}
\end{align*}
$$

From (2.36) and the inequality (2.19), we have
$\Delta w_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{Q_{n}}{2^{\alpha-1}}+\frac{1}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} \beta_{1}\left(n-\delta, n_{1}\right)\right)^{\alpha}}+\frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} \beta_{1}\left(n-\delta, n_{1}\right)\right)^{\alpha}} \frac{p^{\alpha}}{(\alpha+1)^{\alpha+1}}$.
Summing the last inequality from $n_{2}\left(n_{2} \geq n_{1}\right)$ to $n-1$, we obtain

$$
\sum_{s=n_{2}}^{n-1}\left[\rho_{s} \frac{Q_{s}}{2^{\alpha-1}}-\frac{1}{(\alpha+1)^{\alpha+1}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\delta, n_{1}\right)\right)^{\alpha}}\right] \leq w_{n_{2}}+p^{\alpha} v_{n_{2}}
$$

Taking limsup in the above inequality, we obtain a contradiction with (2.29).The proof is complete.

From Lemma 2.2, similar to the proof of Theorem 2.5, we obtain the following result.
Theorem 2.6. Assume that (2.3) holds, $0<\alpha \leq 1$ and $\tau \leq \delta$. Further, assume that there exists a positive nondecreasing function $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\rho_{s} Q_{s}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\delta, n_{1}\right)\right)^{\alpha}}\right]=\infty .
$$

Then equation (1.1) is almost oscillatory.
Using the method of proof adapted in Theorem 2.3, we obtain the following result.
Theorem 2.7. Assume that (2.3) holds, $\alpha \geq 1$ and $\tau \leq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s}\left(\beta_{2}\left(s-\delta, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\delta, n_{1}\right)}\right]=\infty
$$

Then equation (1.1) is almost oscillatory.
From Lemma 2.2 and Theorem 2.7, similar to the proof of Theorem 2.3 we establish the following result.
Theorem 2.8. Assume (2.3) holds, $0<\alpha \leq 1$ and $\tau \leq \delta$. Further, assume that there exists a positive nondecreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in \mathbb{N}$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=n_{2}}^{n-1}\left[\rho_{s} Q_{s}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s}\left(\beta_{2}\left(s-\delta, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\delta, n_{1}\right)}\right]=\infty .
$$

Then equation (1.1) is almost oscillatory.
Remark 1: From Theorems 2.1-2.8, one can derive several oscillation criteria for the equation (1.1) by choosing specific sequence for $\left\{\rho_{n}\right\}$.

3 Examples

In this section, we present three examples to illustrate the main results.
Example 3.1. Consider the third order half-linear neutral difference equation

$$
\begin{equation*}
\Delta\left(n\left(\Delta^{2}\left(x_{n}+p x_{n-1}\right)\right)^{3}\right)+\frac{\lambda}{n^{6}} x_{n-2}^{3}=0, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

Here $a_{n}=n, p_{n}=p>0, \tau=2, \delta=1, \alpha=3, q_{n}=\frac{\lambda}{n^{6}}, \lambda>0$. Then $Q_{n}=q_{n}=\frac{\lambda}{n^{6}}$ and $\beta_{1}(n, 1)=\sum_{s=1}^{n-1} \frac{1}{s^{\frac{1}{3}}} \geq(n-1)^{\frac{2}{3}}$, for n sufficiently large. It is easy to see that (2.3) holds. Set $\rho_{n}=n^{5}$. We obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \\
& \sum_{s=4}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\tau, n_{1}\right)\right)^{\alpha}}\right] \\
& \quad \geq \lim _{n \rightarrow \infty} \sup \sum_{s=4}^{n-1}\left(\frac{\lambda}{4 s}-\frac{5^{4}\left(1+p^{3}\right)}{4^{4}} \frac{s}{(s-3)^{2}}\right)=\infty
\end{aligned}
$$

if $\lambda>\frac{5^{4}\left(1+p^{3}\right)}{4^{3}}$. Hence by Theorem 2.1, equation (3.1) is almost oscillatory when $\lambda>\frac{5^{4}\left(1+p^{3}\right)}{4^{3}}$.

Example 3.2. Consider the third order half - linear difference equation

$$
\begin{equation*}
\Delta\left(\frac{1}{n^{3}}\left(\Delta^{2}\left(x_{n}+p x_{n-1}\right)\right)^{3}\right)+\frac{\lambda}{n^{6}} x_{n-1}^{3}=0, \quad n \geq 1 \tag{3.2}
\end{equation*}
$$

Here $a_{n}=\frac{1}{n^{3}}, p_{n}=p>0, \tau=\delta=1, \alpha=3$ and $q_{n}=\frac{\lambda}{n^{6}}, \lambda>0$. Then $Q_{n}=q_{n}=\frac{\lambda}{n^{6}}$,

$$
\beta_{1}(n, 1)=\frac{n(n-1)}{2} \text { and } \beta_{2}(n, 1)=\frac{1}{6} n(n-1)(n-2)
$$

for n sufficiently large. It is easy to see that (2.3) holds. Set $\rho_{n}=n^{5}$. We obtain

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \sup \sum_{s=4}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{4 \alpha} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s}\left(\beta_{2}\left(s-\delta, n_{1}\right)\right)^{\alpha-1} \beta_{1}\left(s-\delta, n_{1}\right)}\right] \\
\quad=\lim _{n \rightarrow \infty} \sup \sum_{s=4}^{n-1}\left(\frac{\lambda}{4 s}-\frac{150\left(1+p^{3}\right) n^{3}}{(n-1)^{3}(n-2)^{3}(n-3)^{2}}\right)=\infty,
\end{array}
$$

if $\lambda>0$. Hence, by Theorem 2.7, equation (3.2) is almost oscillatory when $\lambda>0$.
Example 3.3. Consider the third order difference equation of the form

$$
\begin{equation*}
\Delta^{3}\left(x_{n}+\frac{1}{3} x_{n-2}\right)+\frac{\lambda}{n^{2}} x_{n-1}=0, \quad n \geq 1 . \tag{3.3}
\end{equation*}
$$

Here $a_{n}=1, p_{n}=\frac{1}{3}, \tau=1, \delta=2, \alpha=1, q_{n}=\frac{\lambda}{n^{2}}, \lambda>0$. Then $Q_{n}=q_{n}=\frac{\lambda}{n^{2}}$, $\beta_{1}(n, 1)=n-1$. It is easy to see that (2.3) holds. Set $\rho_{n}=n$.

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sup \sum_{s=3}^{n-1}\left[\frac{\rho_{s} Q_{s}}{2^{\alpha-1}}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} \beta_{1}\left(s-\tau, n_{1}\right)\right)^{\alpha}}\right] \\
=\lim _{n \rightarrow \infty} \sup \sum_{s=3}^{n-1}\left(\frac{\lambda}{s}-\frac{1}{3} \frac{1}{s(s-2)}\right)=\infty
\end{gathered}
$$

if $\lambda>0$. Hence by Theorem 2.5, equation (3.3) is almost oscillatory. However one cannot derive this conclusion from Theorem 3.1 of [15] since condition (h_{4}) of Theorem 3.1 of [15] is not satisfied.

4 Conclusion

In this paper, we have established some new oscillation theorems for the equation (1.1) for the case $0 \leq p_{n} \leq p<\infty$, and τ and δ are nonnegative integers. If τ is nonnegative and δ is negative then the condition $\tau \geq \delta$ in Theorems 2.1 to 2.4 and if τ is negative and δ is nonnegative then the condition $\delta \geq \tau$ in Theorems 2.5 to 2.8 is satisfied and hence our results can be extended to these cases and the details are left to the reader. The reader can refer $[3,9,12,24]$ for oscillation results of higher order neutral difference equations with different ranges of the neutral coefficient. It would be interesting to study equation (1.1) under the cases when $p_{n}<-1$ or $\lim _{n \rightarrow \infty} p_{n}=\infty$ or $\left\{p_{n}\right\}$ is an oscillatory sequence.

Acknowledgement: The authors sincerely thank the editor and anonymous referees for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

References

[1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Marcel Dekker, New York, 2000.
[2] R. P. Agarwal and S. R. Grace, Oscillation of certain third-order difference equations, Comp. Math. Appl., 42(2001), 379-384.
[3] Y. Bolat, Oscillation criteria for a higher order functional difference equation with oscillating coefficient, Demons. Math., 40 (2007), No. 1, 161-168.
[4] Z. Došlá and A. Kobza, Global asymptotic properties of third-order difference equations, Comp. Math. Appl., 48(2004), 191-200.
[5] S. Elayadi, An Introduction to Difference Equations, Third Edition, Springer, New York, 2005.
[6] S. R. Grace, R. P. Agarwal and J. Graef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Disc. Math., 3(2009), 27-38.
[7] J. Graef and E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funk. Ekvac., 42 (1999), 355-369.
[8] T. H. Hilderbrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.
[9] B. Karpuz, R. N. Rath and S. K. Rath, On oscillation and asymptotic behavior of higher order functional difference equation of neutral type, Int. J. Diff. Eqn., 4(2009), No. 1, 69-96.
[10] B. Karpuz, O. Ocalan and S. Ozturk, Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equation, Glasgow Math. J., 52(2010), 107-114.
[11] W. G. Kelly and A. C. Peterson, Difference Equations; An Introduction with Applications, Academic Press, New York 1991.
[12] M. Migda, Oscillation criteria for higher order neutral difference equations with oscillating coefficient, Fasc. Math., No.44(2010), 85-93.
[13] J. Popenda and E. Schmeidal, Nonoscillatory solutions of third order difference equations, Port. Math., 49(1992), 233-239.
[14] S. H. Saker, J. O. Alzabut and A. Mukheimer, On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Elec. J. Qual. Theo. Diff. Eqn., 67 2010(2010), 1-16.
[15] S. H. Saker, Oscillation and asymptotic behavior of third order nonlinear neutral delay difference equations, Dyna. Sys. Appl., 15(2006), 549-568.
[16] E. Schmeidal, Oscillatory and asymptotically zero solutions of third order difference equations with quasidifferences, Opus. Math., 26(2006), No 2, 361-369.
[17] S. H. Saker, Oscillation of third - order difference equations, Port. Math., 61 (2004), 249-257.
[18] B. Smith, Linear third - order difference equations: oscillatory and asymptotic behavior, Rocky Mountain J. Math., 22(1992) 1559-1564.
[19] B. Smith, Oscillation and nonoscillation theorems for third order quasi-adjoint difference equation, Port. Math., 45 (1988), 229-234.
[20] B. Smith and Jr. W. E. Taylor, Nonlinear third order difference equation: oscillatory and asymptotic behavior, Tamakang J. Math., 19 (1988) 91-95.
[21] B. Smith and Jr. W. E. Taylor, Asymptotic behavior of solutions of a third order difference equations, Port. Math., 44(1987) 113-117.
[22] B. Smith, Oscillatory and asymptotic behavior in certain third order difference equations, Rocky Mountain J. Math., 17(1987) 597-606.
[23] E. Thandapani and K. Mahalingam, Oscillatory properties of third order neutral delay difference equations, Demons. Math., 35(2002), No.2, 325-336.
[24] X. L. Zhou, Oscillatory and asymptotic properties of higher order nonlinear neutral difference equations with oscillating coefficients, Appl. Math. Lett., 21(2008), No. 11, 1142-1148.

