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Abstract. This paper investigates solutions for subquadratic convex or B-concave oper-
ator equations. First, some existence results are obtained by the index theory and the
critical point theory. Then, some applications to second order Hamiltonian systems sat-
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odic solutions for second order Hamiltonian systems are special cases of these results.
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1 Introduction and main results

Mawhin and Willem [9] investigated the second order Hamiltonian system{
−ẍ(t)−m2ω2x(t) = ∇xV(t, x(t)), a.e. t ∈ [0, T],

x(0)− x(T) = ẋ(0)− ẋ(T) = 0,
(1.1)

where T > 0, ω = 2π
T , m ∈ {0, 1, 2, . . . }, V ∈ C([0, T]×Rn, R),∇xV denotes the gradient of V

with respect to x,∇xV ∈ C([0, T]×Rn, Rn), and for each x ∈ Rn, V(t, x) is periodic in t with
period T. Using the dual least action principle and the perturbation technique, the Authors,
in theirs excellent book [9], proved some existence theorems of solutions for problem (1.1)
with subquadratic convex or concave potential. Recently, using the reduction method, the
perturbation argument and the least action principle, Tang and Wu [12] proved an abstract
critical point theorem without the compactness assumptions which generalizes the results
in [7]. As a main application, they successively obtained some existence theorems of problem
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(1.1) with m = 0 and subquadratic convex potential or k(t)-concave potential, which unify and
generalize some earlier results in [9,13,14,16,17]. Later on, applying the abstract critical point
theory established in [12], Ye [15] proved some existence theorems of problem (1.1), where
m ≥ 1 and the potential is convex and satisfies conditions which are more general than the
subquadratic conditions in [9]. In this paper we reconsider in the framework of the operator
equations some theorems proved in [9, 12, 15].

Let X be a real infinite-dimensional separable Hilbert space with inner product (·, ·)X and
the corresponding norm ‖ · ‖X. Let A : D(A) ⊂ X → X be an unbounded linear self-adjoint
operator with σ(A) = σd(A) bounded from below. Hence, there is an orthonormal basis
{ej}∞

j=1 of X and λ1 ≤ λ2 ≤ · · · such that Aej = λjej, D(A) =
{

∑∞
j=1 cjej|∑∞

j=1 λ2
j c2

j < ∞
}

. In

addition, let Z ≡ D(|A| 12 ) =
{

∑∞
j=1 cjej|∑∞

j=1 |λj|c2
j < ∞

}
equipped with the norm ‖x‖2

Z =

‖x‖2 = ∑∞
j=1(1 + |λj|)c2

j . For any x = ∑∞
j=1 cjej ∈ Z, y = ∑∞

j=1 djej ∈ Z, we can define a bilinear
form

a(x, y) =
∞

∑
j=1

λjcjdj.

Note that (Ax, y)X = a(x, y) if x ∈ D(A), y ∈ Z, this shows that a(x, y) is the extension
of (Ax, y)X on Z. Moreover, let Ls(X) be the usual space consisting of bounded symmetric
operators in X. For given B ∈ Ls(X), we define

νA(B) = dim ker(A− B),

iA(B) = ∑
λ<0

νA(B + λId),

as introduced by Dong, see Definition 7.1.1 in [5] or Definition 3.1.1 and Proposition 3.1.4 in
[4]. We consider the following operator equation

Ax− B1x = ∇Φ(x), (1.2)

where B1 ∈ Ls(X), νA(B1) 6= 0, and Φ satisfies
(Φ0) Φ ∈ C1(Z, R) is weakly continuous with weakly continuous derivative, that is, xn ⇀

x0 in Z implies that Φ(xn) → Φ(x0) and Φ′(xn) → Φ′(x0). Moreover, for every x ∈ Z there
exists ∇Φ(x) ∈ X such that Φ′(x)y = (∇Φ(x), y)X for all y ∈ Z.

Let X1 be a nontrivial subspace of X. For B1, B2 ∈ Ls(X) we write B1 ≤ B2 with respect to
X1 if and only if (B1x, x)X ≤ (B2x, x)X for all x ∈ X1; we write B1 < B2 w.r.t. X1 if and only if
(B1x, x)X < (B2x, x)X for all x ∈ X1\{θ}. If X1 = X, then we just write B1 ≤ B2 or B1 < B2. In
addition, we write B1 < B2 properly if and only if B1 ≤ B2 and B1 < B2 w.r.t. ker(A− B) for
all B ∈ Ls(X).

Our main results can be stated as follows.

Theorem 1.1. Assume that Φ satisfies (Φ0) and

(Φ1) Φ is convex in X;

(Φ2) Φ and Φ′ are bounded in Z;

(Φ3) Φ(x)→ +∞ as ‖x‖ → ∞ with x ∈ ker(A− B1);

(Φ4) there exist c > 0 and B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A− B1), νA(B2) 6= 0
and iA(B2) = iA(B1) + νA(B1), such that

Φ(x) ≤ 1
2
((B2 − B1)x, x)X + c (1.3)
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for all x ∈ X, and

Φ(x)− 1
2
((B2 − B1)x, x)X → −∞ (1.4)

as ‖x‖ → ∞, where x = x̃ + x with x ∈ ker(A− B2) and ‖x̃‖ is bounded.

Then problem (1.2) has a solution in Z.

Theorem 1.2. The conclusion of Theorem 1.1 still holds if we replace (Φ4) with

(Φ′4) there exist c > 0 and B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A− B1), νA(B2) = 0
and iA(B2) = iA(B1) + νA(B1), such that

Φ(x) ≤ 1
2
((B2 − B1)x, x)X + c (1.5)

for all x ∈ X.

Theorem 1.3. The conclusion of Theorem 1.1 still holds if we replace (Φ1) and (Φ4) with

(Φ′1) Φ is (B2 − B1)-concave, that is, −Φ(x) + 1
2 ((B2 − B1)x, x)X is convex in X.

(Φ′′4 ) there exists B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A− B1), iA(B1) = 0, νA(B2) 6= 0
and iA(B2) = iA(B1) + νA(B1), such that

−Φ(x) +
1
2
((B2 − B1)x, x)X → +∞ (1.6)

as ‖x‖ → ∞ with x ∈ ker(A− B2), respectively.

Theorem 1.4. The conclusion of Theorem 1.1 still holds if we replace (Φ1) and (Φ4) with (Φ′1),

(Φ′′′4 ) there exists B2 ∈ Ls(X) with B2 ≥ B1 and B2 > B1 w.r.t. ker(A− B1), iA(B1) = 0, νA(B2) =

0, such that
iA(B2) = iA(B1) + νA(B1),

respectively.

The paper is organized as follows. In Section 2, we first recall a critical point theorem as
given in [12]. Then, following [4, 5], we recall some useful conclusions of index theory for
linear self-adjoint operator equations. Finally, we quote a lemma in [3], which shows that (1.2)
possesses a variational structure. In Section 3, we prove Theorems 1.1–1.4. In Section 4, we
investigate their applications to second order Hamiltonian systems with generalized periodic
boundary conditions and Sturm–Liouville boundary conditions. The corresponding results in
[9, 12, 15] are special cases of these results.

2 Preliminaries

In order to prove our main results, we recall first two lemmas due to Tang and Wu [12].

Lemma 2.1 ([12, Theorem 1.1]). Suppose that X1 and X2 are reflexive Banach spaces, I ∈ C1(X1 ×
X2, R). I(x1, ·) is weakly upper semi-continuous for all x1 ∈ X1 and I(·, x2) : X1 → R is convex for
all x2 ∈ X2, and I ′ is weakly continuous. Assume that

I(θ, x2)→ −∞ (2.1)
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as ‖x2‖ → +∞ and, for every M > 0

I(x1, x2)→ +∞ (2.2)

as ‖x1‖ → +∞ uniformly for ‖x2‖ ≤ M. Then I has at least one critical point.

Lemma 2.2 ([12, Lemma 5.1]). Suppose that H is a real Hilbert space, f : H × H → R is a bilinear
functional. Then g : H → R given by

g(x) = f (x, x), ∀x ∈ H

is convex if and only if
g(x) ≥ 0, ∀x ∈ H.

Now we also recall some definitions and propositions in [4, 5].

Definition 2.3 ([5, Page 108]). For any B ∈ Ls(X), we define

ψa,B(x, y) = a(x, y)− (Bx, y)X, ∀x, y ∈ Z.

For any x, y ∈ Z if ψa,B(x, y) = 0 we say that x and y are ψa,B-orthogonal. For any two
subspaces Z1 and Z2 of Z if ψa,B(x, y) = 0 for any x ∈ Z1, y ∈ Z2 we say that Z1 and Z2 are
ψa,B-orthogonal.

Proposition 2.4 ([5, Proposition 7.2.1]). For any B ∈ Ls(X), the space Z has a ψa,B-orthogonal
decomposition

Z = Z+
a (B)⊕ Z0

a(B)⊕ Z−a (B)

such that ψa,B is positive definite, null and negative definite on Z+
a (B), Z0

a(B) and Z−a (B) respectively.
Moreover, Z0

a(B) and Z−a (B) are finitely dimensional.

Definition 2.5 ([5, Definition 7.2.1]). For any B ∈ Ls(X), we define νa(B) = dim Z0
a(B), ia(B) =

dim Z−a (B).

Proposition 2.6.

(1) For any B ∈ Ls(X), we have

νA(B) = νa(B), iA(B) = ia(B), ker(A− B) = Z0
a(B).

([5], Proposition 7.2.2 (i))

(2) For any B1, B2 ∈ Ls(X), if B1 ≤ B2 with respect to Z−a (B1), then ia(B1) ≤ ia(B2); if B1 ≤
B2 with respect to Z−a (B1) ⊕ Z0

a(B1), then ia(B1) + νa(B1) ≤ ia(B2) + νa(B2); if B1 < B2

with respect to Z0
a(B1) and B1 ≤ B2 with respect to Z−a (B1), then ia(B1) + νa(B1) ≤ ia(B2).

([5], Proposition 7.2.2 (ii))

(3) For any B1, B2 ∈ Ls(X), if B1(t) ≤ B2(t) and B1(t) < B2(t) properly, then

ia(B2)− ia(B1) = ∑
λ∈[0,1)

νa(B1 + λ(B2 − B1)).

([5], Proposition 7.2.2 (iii))
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(4) (Poincaré inequality.) For any B ∈ Ls(X), if ia(B) = 0, then

ψa,B(x, x) ≥ 0, ∀x ∈ Z.

And the equality holds if and only if x ∈ Z0
a(B). ([5], Proposition 7.2.2 (v))

(5) For any B1, B2 ∈ Ls(X), if B1 ≤ B2 and B1 < B2 w.r.t. ker(A − B1) and iA(B2) =

iA(B1) + νA(B1), then Z = Z−a (B1)⊕ Z0
a(B1)⊕ Z0

a(B2)⊕ Z+
a (B2), and (−ψa,B1(x1, x1))

1
2 +

(ψa,B2(x2, x2))
1
2 is an equivalent norm on Z for x = x1 + x2 with x1 ∈ Z−a (B1), x2 ∈

Z+
a (B2). In particular, for any B1 ∈ Ls(X), then Z = Z−a (B1) ⊕ Z0

a(B1) ⊕ Z+
a (B1) and

(−ψa,B1(x1, x1))
1
2 + (ψa,B1(x2, x2))

1
2 is also an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−a (B1), x2 ∈ Z+
a (B1).

Proof. We only prove (5). Let Z1 = Z−a (B1) ⊕ Z0
a(B1), Z2 = Z0

a(B2) ⊕ Z+
a (B2). Noticing that

ψa,B1(x, x) ≥ ψa,B2(x, x) for all x ∈ Z, ψa,B1(x, x) ≤ 0 for all x ∈ Z1 and ψa,B2(x, x) ≥ 0 for all
x ∈ Z2, if x ∈ Z1

⋂
Z2 then ψa,B2(x, x) = 0 = ψa,B1(x, x), which shows that x ∈ Z0

a(B2)
⋂

Z0
a(B1).

By B1 ≤ B2 and B1 < B2 w.r.t. ker(A− B1), we have 0 = ψa,B1(x, x) > ψa,B2(x, x) = 0 provided
x ∈ Z0

a(B2)
⋂

Z0
a(B1)\{θ}. This is a contradiction, which implies that Z1

⋂
Z2 = {θ}. It

remains to prove that Z = Z1 + Z2. By Proposition 2.4, we have Z = Z2 ⊕ Z−a (B2) and for any
x ∈ Z there exists a unique pair (x1, x2) ∈ Z2 × Z−a (B2) such that x = x1 + x2. Let {ej}k

j=1 be
a basis of Z1, ej = e2

j + e−j with e2
j ∈ Z2, e−j ∈ Z−a (B2) for j = 1, 2, · · · , k = iA(B1) + νA(B1). By

iA(B2) = iA(B1) + νA(B1) = k, in order to prove {e−j }k
j=1 is a basis of Z−a (B2) we only need to

show that {e−j }k
j=1 is linear independent. In fact, otherwise there exist not all zero constants

c1, . . . , ck such that ∑k
j=1 cje−j = 0. This leads to ∑k

j=1 cjej ∈ Z1
⋂

Z2, a contradiction. The linear

independent shows that there exist constants {αj}k
j=1 such that x2 = ∑k

j=1 αje−j . And hence

x = x1 + x2 = x = x1 + ∑k
j=1 αje−j = ∑k

j=1 αjej +
(
x1 −∑k

j=1 αje2
j
)
.

Similar to the proof of Proposition 7.2.2 (iv) in [5], we can prove that (−ψa,B1(x1, x1))
1
2 +

(ψa,B2(x2, x2))
1
2 is an equivalent norm on Z for x = x1 + x2 with x1 ∈ Z−a (B1), x2 ∈ Z+

a (B2),
and (−ψa,B1(x1, x1))

1
2 + (ψa,B1(x2, x2))

1
2 is also an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−a (B1), x2 ∈ Z+
a (B1).

Finally, let us consider the functional I defined by

I(x) = −1
2

a(x, x) +
1
2
(B1x, x)X + Φ(x), (2.3)

for every x ∈ Z. Under assumption (Φ0), from Theorem 1.2 in [9] it is easy to verify that
I ∈ C1(Z, R) is weakly upper semi-continuous on Z and I′ is weakly continuous with

I′(x)y = −a(x, y) + (B1x, y)X + Φ′(x)y, (2.4)

for every x, y ∈ Z.
The following important lemma is an immediate conclusion of Lemma 2.1 in [3].

Lemma 2.7. Assume that (Φ0) holds. Then a critical point of I(x) is a solution for problem (1.2).

3 Proofs of the Theorems

In this section, we present the proof of Theorems 1.1–1.4.
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Proof of Theorem 1.1. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A− B1) and iA(B2) =

iA(B1) + νA(B1), we have Z = Z−a (B1)⊕ Z0
a(B1)⊕ Z0

a(B2)⊕ Z+
a (B2) via (5) of Proposition 2.6.

Set X1 = Z−a (B1)⊕ Z0
a(B1), X2 = Z0

a(B2)⊕ Z+
a (B2) = Z+

a (B1), x ∈ Z, x = x1 + x2 with x1 ∈ X1

and x2 ∈ X2. Next, we divide the proof into three steps.

Step 1. We show that I(·, x2) : X1 → R is convex for all x2 ∈ X2. By (Φ1), it is obvious that
Φ(x1 + x2) is convex in x1 ∈ X1. From Definition 2.3 and Proposition 2.4 we can see that for
every x1 ∈ X1,

−1
2

ψa,B1(x1, x1) = −
1
2

a(x1, x1) +
1
2
(B1x1, x1)X ≥ 0,

which implies that − 1
2 ψa,B1(x1, x1) is convex in x1 ∈ X1 via Lemma 2.2. Hence, for every

x2 ∈ X2,

I(x1 + x2) = −
1
2

a(x1 + x2, x1 + x2) +
1
2
(B1(x1 + x2), x1 + x2)X + Φ(x1 + x2)

= −1
2

ψa,B1(x1, x1) + Φ(x1 + x2)−
1
2

ψa,B1(x2, x2)

is convex in x1 ∈ X1.

Step 2. By contradiction, we prove that (2.2) of Lemma 2.1 holds. Assume that (2.2) of Lemma
2.1 does not hold. Then there exist M > 0, c0 > 0 and two sequences {x1,n} ⊂ X1 and
{x2,n} ⊂ X2 with ‖x1,n‖ → +∞ as n→ ∞ and ‖x2,n‖ ≤ M for all n such that

I(x1,n + x2,n) ≤ c0, ∀n ∈ N. (3.1)

For x1 ∈ X1, write x1 = x−1 + x0
1, where x−1 ∈ Z−a (B1) and x0

1 ∈ Z0
a(B1). We consider the

functional Φ|Z0
a (B1). By (Φ0), we easily see that Φ|Z0

a (B1) is weakly lower semi-continuous on
Z0

a(B1). Using (Φ3), by the least action principle (see Theorem 1.1 in [9]), Φ|Z0
a (B1) has a

minimum at some x0
1,0 ∈ Z0

a(B1) for which

0 = Φ′(x0
1,0)x0

1 = (∇Φ(x0
1,0), x0

1)X, ∀x0
1 ∈ Z0

a(B1).

By assumption (Φ0) and the convexity of Φ, we have

Φ(x1 + x2)−Φ(x0
1,0) ≥ (∇Φ(x0

1,0), x−1 + x2 + x0
1 − x0

1,0)X

= (∇Φ(x0
1,0), x−1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

Φ(x1 + x2) ≥ Φ(x0
1,0)− ‖∇Φ(x0

1,0)‖X · ‖x−1 + x2‖X

≥ Φ(x0
1,0)− ‖∇Φ(x0

1,0)‖X · (‖x−1 ‖+ ‖x2‖)
= c1 − c2 · (‖x−1 ‖+ ‖x2‖)

where c1 = Φ(x0
1,0), c2 = ‖∇Φ(x0

1,0)‖X ≥ 0. Rewrite x1,n = x−1,n + x0
1,n, where x−1,n ∈ Z−a (B1)

and x0
1,n ∈ Z0

a(B1). By (3.1), we have

c0 ≥ I(x1,n + x2,n)

= −1
2

ψa,B1(x−1,n, x−1,n)−
1
2

ψa,B1(x2,n, x2,n) + Φ(x1,n + x2,n)

≥ −1
2

ψa,B1(x−1,n, x−1,n)−
1
2

ψa,B1(x2,n, x2,n) + c1 − c2 · (‖x−1,n‖+ ‖x2,n‖).
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From (Φ4) and (5) of Proposition 2.6, we know that (−ψa,B1(x−1 , x−1 ))
1
2 is an equivalent norm

on Z for x−1 ∈ Z−a (B1) and (ψa,B1(x2, x2))
1
2 is an equivalent norm on Z for x2 ∈ Z+

a (B1). This
means that there exist c3 > 0 and c4 > 0 such that

c0 ≥ I(x1,n + x2,n)

≥ c2
3

2
‖x−1,n‖

2 − c2
4

2
‖x2,n‖2 + c1 − c2 · (‖x−1,n‖+ ‖x2,n‖)

≥ c2
3

2
‖x−1,n‖

2 − c2
4M2

2
+ c1 − c2 · (‖x−1,n‖+ M)

via ‖x2,n‖ ≤ M, which shows that {‖x−1,n‖} is bounded. Combining this with assumption (Φ2)

and the convexity of Φ, we see that there exist c5 > 0 and c6 = sup
n

Φ(−x−1,n − x2,n) such that

c0 ≥ I(x1,n + x2,n)

= −1
2

ψa,B1(x−1,n, x−1,n)−
1
2

ψa,B1(x2,n, x2,n) + Φ(x1,n + x2,n)

≥ (c3c5)2

2
− c2

4M2

2
+ 2Φ

(
1
2

x0
1,n

)
−Φ(−x−1,n − x2,n)

≥ (c3c5)2

2
− c2

4M2

2
+ 2Φ

(
1
2

x0
1,n

)
− c6.

By (Φ3), we know that {‖x0
1,n‖} is also bounded. This contradicts the fact that ‖x−1,n‖ +

‖x0
1,n‖ ≥ ‖x1,n‖ → +∞ as n→ ∞. Therefore (2.2) of Lemma 2.1 holds.

Step 3. We check that (2.1) of Lemma 2.1 holds. If not, there exist a constant c7 and a sequence
{x2,n} in X2 such that ‖x2,n‖ → +∞ as n→ ∞ and

I(x2,n) ≥ c7 (3.2)

for all n. For x2 ∈ X2, write x2 = x0
2 + x+2 , where x0

2 ∈ Z0
a(B2) and x+2 ∈ Z+

a (B2). Notice that
νs

M(B2) 6= 0 and X2 = Z0
a(B2)⊕ Z+

a (B2). Let x2,n = x0
2,n + x+2,n, x0

2,n ∈ Z0
a(B2), x+2,n ∈ Z+

a (B2).
Then by (1.3) of (Φ4), (3.2), Definition 2.3 and Proposition 2.4, we have

c7 ≤ I(x2,n)

≤ −1
2

a(x0
2,n + x+2,n, x0

2,n + x+2,n) +
1
2
(B2(x0

2,n + x+2,n), x0
2,n + x+2,n)X + c

= −1
2

ψa,B2(x+2,n, x+2,n) + c

which implies that {x+2,n} is bounded since (−ψa,B1(x1, x1))
1
2 + (ψa,B2(x2, x2))

1
2 is an equivalent

norm on Z for x = x1 + x2 with x1 ∈ Z−a (B1) and x2 ∈ Z+
a (B2), where x1 = θ. Since

‖x2,n‖ ≤ ‖x0
2,n‖+ ‖x

+
2,n‖, we have ‖x0

2,n‖ → ∞ as n → +∞. By x2,n ∈ X2 = Z0
a(B2)⊕ Z+

a (B2),
we have ψa,B2(x2,n, x2,n) ≥ 0 for all n via Proposition 2.4. From ‖x0

2,n‖ → ∞ as n → +∞ we
have

I(x2,n) ≤ Φ(x2,n)−
1
2
((B2 − B1)x2,n, x2,n)X → −∞

via (1.4) of (Φ4), which contradicts (3.2). Hence (2.1) of Lemma 2.1 holds.
By Lemma 2.1, I has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.
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Proof of Theorem 1.2. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A− B1) and iA(B2) =

iA(B1) + νA(B1), we have Z = Z−a (B1)⊕ Z0
a(B1)⊕ Z0

a(B2)⊕ Z+
a (B2) via (5) of Proposition 2.6.

Note that νA(B2) = 0, we have Z0
a(B2) = {θ}, which implies that Z = Z−a (B1) ⊕ Z0

a(B1) ⊕
Z+

a (B2) and Z+
a (B2) = Z+

a (B1). Set X1 = Z−a (B1) ⊕ Z0
a(B1), X2 = Z+

a (B2) = Z+
a (B1), x ∈

Z, x = x1 + x2 with x1 ∈ X1 and x2 ∈ X2.
Let us follow the proof of Theorem 1.1 until (3.2). For x2,n ∈ Z+

a (B2) = Z+
a (B1), by (1.5) of

(Φ′4), (3.2), Definition 2.3 and Proposition 2.4, we have

c7 ≤ I(x2,n)

≤ −1
2

a(x2,n, x2,n) +
1
2
(B2x2,n, x2,n)X + c

= −1
2

ψa,B2(x2,n, x2,n) + c.

Since (−ψa,B1(x1, x1))
1
2 + (ψa,B2(x2, x2))

1
2 is an equivalent norm on Z for x = x1 + x2 with

x1 ∈ Z−a (B1) and x2 ∈ Z+
a (B2), where x1 = θ, we have ψa,B2(x2,n, x2,n) → +∞ via ‖x2,n‖ → ∞

as n→ +∞. Thus, we have

I(x2,n) ≤ −
1
2

ψa,B2(x2,n, x2,n) + c→ −∞

as n→ +∞, which contradicts (3.2). Hence (2.1) of Lemma 2.1 holds.
By Lemma 2.1, I has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.

Proof of Theorem 1.3. We apply Lemma 2.1. Consider the functional I1 defined by

I1(x) = −I(x) =
1
2

a(x, x)− 1
2
(B1x, x)X −Φ(x), (3.3)

for every x ∈ Z. Under assumption (Φ0), it is easy to verify that I1 ∈ C1(Z, R) and I′1 is
weakly continuous.

Note that iA(B1) = 0, we have Z−a (B1) = {θ}. By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t.
ker(A− B1) and iA(B2) = iA(B1) + νA(B1), we have Z = Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2) via (5) of
Proposition 2.6. Set X1 = Z0

a(B2)⊕ Z+
a (B2) = Z+

a (B1), X2 = Z0
a(B1), x ∈ Z, x = x1 + x2 with

x1 ∈ X1 and x2 ∈ X2. From Definition 2.3 and Proposition 2.4, we have

I1(x) = I1(x1 + x2) =
1
2

a(x1, x1)−
1
2
(B1x1, x1)X −Φ(x1 + x2),

for every x ∈ Z. Thus, I1(x1, ·) is weakly upper semi-continuous for all x1 ∈ X1 via Φ ∈
C1(Z, R) is weakly continuous.

Next, we still divide the proof into three steps.

Step 1. We show that I1(·, x2) : X1 → R is convex for all x2 ∈ X2. By (Φ′1), it is obvious that
−Φ(x1 + x2) +

1
2 ((B2 − B1)(x1 + x2), x1 + x2)X is convex in x1 ∈ X1. From Definition 2.3 and

Proposition 2.4 we know that for every x1 ∈ X1,

1
2

ψa,B2(x1, x1) =
1
2

a(x1, x1)−
1
2
(B2x1, x1)X ≥ 0,

which shows that 1
2 ψa,B2(x1, x1) is convex in x1 ∈ X1 via Lemma 2.2. Hence, for every x2 ∈ X2,

I1(x1 + x2) =
1
2

a(x1 + x2, x1 + x2)−
1
2
(B1(x1 + x2), x1 + x2)X −Φ(x1 + x2)

=
1
2

ψa,B2(x1, x1)−Φ(x1 + x2) +
1
2
((B2 − B1)(x1 + x2), x1 + x2)X +

1
2

ψa,B2(x2, x2)
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is convex in x1 ∈ X1.

Step 2. By contradiction, we verify that (2.2) of Lemma 2.1 holds. If (2.2) of Lemma 2.1 does
not hold, there exist M > 0, c8 > 0 and two sequences {x1,n} ⊂ X1 and {x2,n} ⊂ X2 with
‖x1,n‖ → +∞ as n→ ∞ and ‖x2,n‖ ≤ M for all n such that

I1(x1,n + x2,n) ≤ c8, ∀n ∈ N. (3.4)

For x1 ∈ X1, write x1 = x0
1 + x+1 , where x0

1 ∈ Z0
a(B2) and x+1 ∈ Z+

a (B2). Let us consider the
functional

ϕ(x) = −Φ(x) +
1
2
((B2 − B1)x, x)X

for all x ∈ X. By (Φ0) and (Φ′1), we easily see that ϕ ∈ C1(Z, R) and ϕ is weakly lower
semi-continuous on Z0

a(B2). Using (1.6) of (Φ′′4 ), by the least action principle (see Theorem 1.1
in [9]), ϕ has a minimum at some x0

1,0 ∈ Z0
a(B2) for which

0 = ϕ′(x0
1,0)x0

1 = −(∇Φ(x0
1,0), x0

1)X + ((B2 − B1)x0
1,0, x0

1)X, ∀x0
1 ∈ Z0

a(B2).

By ϕ ∈ C1(Z, R) and the (B2 − B1)-concavity of Φ, we have

ϕ(x1 + x2)− ϕ(x0
1,0)

≥ −(∇Φ(x0
1,0), x+1 + x2 + x0

1 − x0
1,0)X + ((B2 − B1)x0

1,0, x+1 + x2 + x0
1 − x0

1,0)X

= −(∇Φ(x0
1,0), x+1 + x2)X + ((B2 − B1)x0

1,0, x+1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

ϕ(x1 + x2) ≥ ϕ(x0
1,0)− (‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X) · ‖x+1 + x2‖X

≥ ϕ(x0
1,0)− (‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X) · (‖x+1 ‖+ ‖x2‖)

= c9 − c10 · (‖x+1 ‖+ ‖x2‖)

where c9 = ϕ(x0
1,0), c10 = ‖∇Φ(x0

1,0)‖X + ‖(B2 − B1)x0
1,0‖X ≥ 0. Rewrite x1,n = x+1,n + x0

1,n,
where x+1,n ∈ Z+

a (B2) and x0
1,n ∈ Z0

a(B2). By (3.4), we have

c8 ≥ I1(x1,n + x2,n) =
1
2

ψa,B2(x1,n + x2,n, x1,n + x2,n)

+
1
2
((B2 − B1)(x1,n + x2,n), x1,n + x2,n)X −Φ(x1,n + x2,n)

=
1
2

ψa,B2(x+1,n, x+1,n) +
1
2

ψa,B2(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥ 1
2

ψa,B2(x+1,n, x+1,n) +
1
2

ψa,B2(x2,n, x2,n) + c9 − c10 · (‖x+1,n‖+ ‖x2,n‖).

From (Φ′′4 ) and (5) of Proposition 2.6, we know that (ψa,B2(x, x))
1
2 is an equivalent norm on Z

for x ∈ Z+
a (B2). Noticing that −ψa,B2(x, x) > 0 for all x ∈ Z−a (B2)\{θ}, so (−ψa,B2(x, x))

1
2 is a

norm on Z−a (B2), which is equivalent to ‖ · ‖Z = ‖ · ‖ because of the finiteness of the subspace
Z−a (B2). This means that there exist c11 > 0 and c12 > 0 such that

c8 ≥ I1(x1,n + x2,n)

≥ c2
11
2
‖x+1,n‖

2 − c2
12
2
‖x2,n‖2 + c9 − c10 · (‖x+1,n‖+ ‖x2,n‖)

≥ c2
11
2
‖x+1,n‖

2 − c2
12M2

2
+ c9 − c10 · (‖x+1,n‖+ M)
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via ‖x2,n‖ ≤ M, which shows that {‖x+1,n‖} is bounded. Combining this with assumption (Φ2)

and the (B2− B1)-concavity of Φ, we see that there exist c13 > 0 and c14 = supn ϕ(−x+1,n− x2,n)

such that

c8 ≥ I1(x1,n + x2,n)

=
1
2

ψa,B2(x+1,n, x+1,n) +
1
2

ψa,B2(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥ (c11c13)
2

2
− c2

12M2

2
+ 2ϕ

(
1
2

x0
1,n

)
− ϕ(−x+1,n − x2,n)

≥ (c11c13)
2

2
− c2

12M2

2
+ 2ϕ

(
1
2

x0
1,n

)
− c14.

By (1.6) of (Φ′′4 ), we know that {‖x0
1,n‖} is also bounded. This contradicts the fact that ‖x+1,n‖+

‖x0
1,n‖ ≥ ‖x1,n‖ → +∞ as n→ ∞. Therefore (2.2) of Lemma 2.1 holds.

Step 3. By X2 = Z0
a(B1), we have I1(x2) = −Φ(x2) for all x2 ∈ X2. Thus, (2.1) of Lemma 2.1

holds via (Φ3).
By Lemma 2.1, I1 has at least one critical point. Hence problem (1.2) has at least one

solution in Z via Lemma 2.7. The proof is complete.

Proof of Theorem 1.4. we still consider the functional I1 defined by (3.3). Under assumption
(Φ0), it is easy to verify that I1 ∈ C1(Z, R) and I′1 is weakly continuous.

By νA(B1) 6= 0, B1 ≤ B2 and B1 < B2 w.r.t. ker(A− B1) and iA(B2) = iA(B1) + νA(B1), we
have Z = Z−a (B1)⊕ Z0

a(B1)⊕ Z0
a(B2)⊕ Z+

a (B2) via (5) of Proposition 2.6. Note that iA(B1) = 0
and νA(B2) = 0, we have Z−a (B1) = Z0

a(B2) = {θ}, which implies that Z = Z0
a(B1)⊕ Z+

a (B2),
Z−a (B2) = Z0

a(B1) and Z+
a (B2) = Z+

a (B1). Set X1 = Z+
a (B2) = Z+

a (B1), X2 = Z0
a(B1), x ∈ Z, x =

x1 + x2 with x1 ∈ X1 and x2 ∈ X2.
From the proof of Theorem 1.3, it is not difficult to see that we only need to verify the

validity of (2.2) in Lemma 2.1. If (2.2) of Lemma 2.1 does not hold, there exist M > 0, c15 > 0
and two sequences {x1,n} ⊂ X1 and {x2,n} ⊂ X2 with ‖x1,n‖ → +∞ as n→ ∞ and ‖x2,n‖ ≤ M
for all n such that

I1(x1,n + x2,n) ≤ c15, ∀n ∈ N. (3.5)

We consider the functional

ϕ(x) = −Φ(x) +
1
2
((B2 − B1)x, x)X

for all x ∈ X. By (Φ0) and (Φ′1), we easily see that ϕ ∈ C1(Z, R). From the (B2− B1)-concavity
of Φ, we have

ϕ(x1 + x2)− ϕ(θ) ≥ −(∇Φ(θ), x1 + x2)X + ((B2 − B1)θ, x1 + x2)X

= −(∇Φ(θ), x1 + x2)X,

and then, from ‖x‖X ≤ ‖x‖ for all x ∈ Z,

ϕ(x1 + x2) ≥ ϕ(θ)− ‖∇Φ(θ)‖X · ‖x1 + x2‖X

≥ ϕ(θ)− ‖∇Φ(θ)‖X(‖x1‖+ ‖x2‖).

From (Φ′′′4 ) and (5) of Proposition 2.6, we know that (ψa,B2(x, x))
1
2 is an equivalent norm on Z

for x ∈ Z+
a (B2). Noticing that −ψa,B2(x, x) > 0 for all x ∈ Z−a (B2)\{θ}, so (−ψa,B2(x, x))

1
2 is a
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norm on Z−a (B2), which is equivalent to ‖ · ‖Z = ‖ · ‖ because of the finiteness of the subspace
Z−a (B2). Combining (3.5), we know that there exist c16 > 0 and c17 > 0 such that

c15 ≥ I1(x1,n + x2,n)

=
1
2

ψa,B2(x1,n, x1,n) +
1
2

ψa,B2(x2,n, x2,n) + ϕ(x1,n + x2,n)

≥
c2

16
2
‖x1,n‖2 − c2

17M2

2
+ ϕ(θ)− ‖∇Φ(θ)‖X(‖x1,n‖+ M),

which shows that {‖x1,n‖} is bounded. This contradicts the fact that ‖x1,n‖ → +∞ as n→ ∞.
Therefore (2.2) of Lemma 2.1 holds. The proof is complete.

4 Applications to the second order Hamiltonian systems

In this section, we consider the applications of the main results to the second order Hamilto-
nian systems satisfying two boundary value conditions including generalized periodic bound-
ary value conditions and Sturm-Liouville boundary value conditions. For more details about
Hamiltonian systems, we refer to the excellent books [6, 8, 9, 11] and the papers [1, 2, 10].

4.1 Second order Hamiltonian systems satisfying generalized periodic boundary
value conditions

As a first example, we consider a generalized periodic boundary value problem

−ẍ− B̄1(t)x = ∇xV(t, x) a.e. t ∈ [0, 1], (4.1)

x(1) = Mx(0), ẋ(1) = Nẋ(0), (4.2)

where B̄1(t)∈ L∞([0, 1], Ls(Rn))={B(t)= (bjk)n×n|bjk(t)= bkj(t), t∈ [0, 1], bjk(t) ∈ L∞([0, 1])},
M, N ∈ GL(n) = {A = (ajk)n×n |ajk ∈ R and det(A) 6= 0}, and MNT = In, where In is the
unit matrix of order n, and ∇xV(t, x) denotes the gradient of V(t, x) for x ∈ Rn. We suppose
that V : [0, 1]×Rn → R satisfies the following condition:

(H0) V(t, x) is measurable in t for every x ∈ Rn and continuously differentiable in x for a.e.
t ∈ [0, 1].

Moreover, there exist a(·) ∈ C(R+, R+) and b(t) ∈ L1([0, 1], R+) such that

|V(t, x)| ≤ a(|x|)b(t) and |∇xV(t, x)| ≤ a(|x|)b(t)

for all x ∈ Rn and a.e. t ∈ [0, 1], where R+ = [0,+∞).
Let X = L2([0, 1], Rn). Define A1 : D(A1)→ X by (A1x)(t) = −ẍ(t) where D(A1) = {x ∈

H2([0, 1], Rn)|x satisfies (4.2)}. Set (B1x)(t) = B̄1(t)x(t) with D(B1) = X. From Corollary
1.21 in [3], we know that A1 is self-adjoint in X and σ(A1) = σd(A1) ⊂ [0,+∞). Define
iM(B̄1) = iA1(B1), νM(B̄1) = νA1(B1), that is, νM(B̄1) is the dimension of the solution subspace
of (4.1)–(4.2) with V(t, x) ≡ 0 and iM(B̄1) = ∑λ<0 νM(B̄1 + λIn).

Assume that νM(B̄1) 6= 0. Meanwhile, set Z1 = {x ∈ H1([0, 1], Rn)|x(1) = Mx(0)}. Then,
from Corollary 1.21 in [3] again, we have Z1 = D(|A1|

1
2 ).
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Remark 4.1 ([5, Remark 7.1.3], [4, Example 2.4.3]). Let α1 ≤ α2 ≤ · · · ≤ αn be the eigenvalues
of a constant n× n symmetric matrix B. Then

iIn(B) = #{k : αk > 0}+ 2
n

∑
k=1

#{j ∈ N : 4(jπ)2 < αk}, (4.3)

νIn(B) = #{k : αk = 0}+ 2
n

∑
k=1

#{j ∈ N : 4(jπ)2 = αk}, (4.4)

i−In(B) = 2
n

∑
k=1

#{j ∈ N : ((2j− 1)π)2 < αk},

ν−In(B) = 2
n

∑
k=1

#{j ∈ N : ((2j− 1)π)2 = αk},

where #E denotes the number of elements in a set E. For η∈ R\{±1, 0}with λ0= arccos 2
η−1+η

,
we have

iη In(B) =
n

∑
k=1

#{j ∈ N : (2jπ + λ0)
2 < αk}+

n

∑
k=1

#{j ∈ N : (2π − λ0 + 2jπ)2 < αk},

νη In(B) =
n

∑
k=1

#{j ∈ N : (2jπ + λ0)
2 = αk}+

n

∑
k=1

#{j ∈ N : (2π − λ0 + 2jπ)2 = αk}.

In particular, formulae (4.3) and (4.4) were given first by Mawhin and Willem in [9].
In addition, set

Φ(x) =
∫ 1

0
V(t, x)dt, ∀x ∈ Z1.

Then, Φ ∈ C1(Z1, R) is weakly continuous with weakly continuous derivative and for every
x ∈ Z1,

Φ′(x)y =
∫ 1

0
(∇xV(t, x), y)dt, ∀y ∈ Z1

because of (H0). Hence, (Φ0) holds. Moreover, for each x ∈ Z1, we can write the norm

‖x‖2 =
∫ 1

0
[|ẋ(t)|2 + |x(t)|2]dt.

Let ‖ · ‖∞ be the norm of C([0, 1], Rn). Then, there is a constant δ0 > 0 such that

|x| ≤ ‖x‖∞ ≤ δ0‖x‖ (4.5)

for any x ∈ Z1. By (4.5) and (H0), we can verify that (Φ2) holds.

For any B̄1(t), B̄2(t) ∈ L∞([0, 1],Ls(Rn)), we write B̄1 ≤ B̄2 if B̄1(t) ≤ B̄2(t) for a.e. t ∈ [0, 1]
and define B̄1 < B̄2 if B̄1 ≤ B̄2 and B̄1(t) < B̄2(t) on a subset of (0, 1) with positive measure.

Now, the following four results hold.

Theorem 4.2. Assume that V(t, x) satisfies (H0) and

(H1) V(t, x) is convex in x for a.e. t ∈ [0, 1];

(H2)
∫ 1

0 V(t, x)dt as ‖x‖ → ∞ with x ∈ ker(A1 − B̄1);
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(H3) there exist γ(t) ∈ L1([0, 1], R+) and B̄2(t) ∈ L∞([0, 1],Ls(Rn)) with B̄2 > B̄1, νM(B̄2) 6= 0
and iM(B̄2) = iM(B̄1) + νM(B̄1), such that

V(t, x) ≤ 1
2
((B̄2(t)− B̄1(t))x, x) + γ(t) (4.6)

for all x ∈ Rn and a.e. t ∈ [0, 1], and

meas
{

t ∈ [0, 1]
∣∣∣V(t, x)− 1

2
((B̄2(t)− B̄1(t))x, x)→ −∞ as ‖x‖ → ∞

}
> 0, (4.7)

where x = x̃ + x ∈ Z1 with x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded.

Then problem (4.1)–(4.2) has a solution in Z1.

Proof. Clearly, (H0) implies that (Φ0) and (Φ2) hold, (H1) implies that (Φ1) holds, and (H2)

implies that (Φ3). We need only to show that (Φ4) follows from (H3). First, since B̄2 > B̄1,
then exists E0 ⊂ [0, 1] with measE0 > 0 such that B̄2(t) > B̄1(t) for all t ∈ E0 and B̄2(t) ≥ B̄1(t)
for all t ∈ [0, 1]\E0. Hence

((B̄2 − B̄1)x, x)X =
∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt

≥
∫

E0

((B̄2(t)− B̄1(t))x(t), x(t))dt > 0

for all x ∈ ker(A1 − B̄1), because x(t) ∈ ker(A1 − B̄1) only has finite zeros. This implies that
B̄2 ≥ B̄1 and B̄2 > B̄1 w.r.t. ker(A1 − B̄1). Next, by (4.6), we have

Φ(x) =
∫ 1

0
V(t, x)dt ≤ 1

2

∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt +

∫ 1

0
γ(t)dt

=
1
2
((B̄2 − B̄1)x, x)X + c

for all x ∈ X, where c =
∫ 1

0 γ(t)dt, which shows that (1.3) of (Φ4) holds. Finally, set E1 ={
t ∈ [0, 1]

∣∣ V(t, x)− 1
2 ((B̄2(t)− B̄1(t))x, x) → −∞ as ‖x‖ → ∞

}
, where x = x̃ + x ∈ Z1 with

x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded. Thus, by (4.7) and measE1 > 0, we have

Φ(x)− 1
2
((B̄2 − B̄1)x, x)X

=
∫ 1

0
[V(t, x)− 1

2
((B̄2(t)− B̄1(t))x, x)]dt

≤
∫

E1

[V(t, x)− 1
2
((B̄2(t)− B̄1(t))x, x)]dt +

∫ 1

0
γ(t)dt→ −∞

as ‖x‖ → ∞ with x = x̃ + x, x ∈ ker(A1 − B̄2) and ‖x̃‖ is bounded, which implies that (1.4)
of (Φ4) holds. Now, we can apply Theorem 1.1 to conclude that the system (4.1)− (4.2) has
a solution in Z1.

Remark 4.3. In particular, set B̄1(t) ≡ m2(2π)2, B̄2(t) = (m + 1)2(2π)2, m ∈ {0, 1, 2, . . . } and
M = In. Then, Z1 = {x ∈ H1([0, 1], Rn)|x(1) = x(0)}, σ(A1) = {(2mπ)2|m ∈ N} and
ker(A1 − B̄1) = {a cos(2mtπ) + b sin(2mtπ)|a, b ∈ Rn}. Hence, the following problem

−ẍ(t)−m2(2kπ)2x(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0
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has a solution via Theorems 4.2. In addition, for the interval [0, T] considered in second order
Hamiltonian systems satisfying periodic boundary value conditions, if T = 1, in Theorem 3.1
(m = 0) of [12] and Theorem 1.1 (m 6= 0) of [15], assume that V(t, x) satisfies (H0), (H1), (H2),
and

(H3,1) there exists γ(t) ∈ L1([0, 1], R+) such that

V(t, x) ≤ 2m + 1
2

(2π)2|x|2 + γ(t) (4.8)

for all x ∈ Rn and a.e. t ∈ [0, 1], and

meas
{

t ∈ [0, 1]
∣∣∣V(t, x)− 2m + 1

2
(2π)2|x|2 → −∞ as |x| → ∞

}
> 0, (4.9)

then the conclusion of Theorem 4.2 is also true. In fact, set B̄2(t) = (m + 1)2(2π)2, x = x̃ + x ∈
Z1 with x ∈ ker(A1 − (m + 1)2(2π)2). If ‖x̄‖ → ∞ and ‖x̃‖ is bounded, we can obtain that
|x| → ∞ via the proof of Theorem 1.1 in [15]. From (4.9), we know that (4.7) holds. Noticing
that iIn((m + 1)2(2π)2) = νIn(m

2(2π)2) + iIn(m
2(2π)2), we have (H3) holds via (H3,1). So

Theorem 4.2 generalizes in Theorem 3.1 (m = 0) of [12] and Theorem 1.1 (m 6= 0) of [15]. By
the remarks in [12] and [15] we can see that Theorem 4.2 also generalizes the corresponding
theorems in [9] as T = 1.

Theorem 4.4. The conclusion of Theorem 4.2 still holds if we replace (H3) with

(H′3) there exist α(t) ∈ L∞([0, 1], R+), γ(t) ∈ L1([0, 1], R+) and B̄3(t) ∈ L∞([0, 1],Ls(Rn)) with
B̄3 > B̄1, νM(B̄3) 6= 0 and iM(B̄3) = iM(B̄1) + νM(B̄1), such that α(t)In ≤ B̄3(t)− B̄1(t) for
a.e. t ∈ [0, 1] with

meas
{

t ∈ [0, 1]
∣∣∣0 < α(t)In < B̄3(t)− B̄1(t)

}
> 0, (4.10)

and
V(t, x) ≤ 1

2
α(t)|x|2 + γ(t) (4.11)

for a.e. t ∈ [0, 1] and for all x ∈ Rn.

Proof. Similarly to the proof of Theorem 4.2, We need only to show that (Φ′4) follows from
(H′3). Set B̄2(t) = B̄1(t) + α(t)In, we have B̄2(t) ∈ L∞([0, 1],Ls(Rn)) via α(t) ∈ L∞([0, 1], R+)

and B̄2(t) ≥ B̄1(t). By (4.10), we have B̄2 ≥ B̄1 and B̄2 > B̄1 w.r.t. ker(A1− B̄1) and B̄3 ≥ B̄2 and
B̄3 > B̄2 w.r.t. ker(A1 − B̄2) via the similar proof in Theorem 4.2. From (2) of Proposition 2.6,
we can find that

iM(B̄1) + νM(B̄1) = iM(B̄3) ≥ iM(B̄2) + νM(B̄2) ≥ iM(B̄2) ≥ iM(B̄1) + νM(B̄1),

which implies that iM(B̄2) = iM(B̄1) + νM(B̄1) and νM(B̄2) = 0. Again by (4.11), we have

Φ(x) =
∫ 1

0
V(t, x)dt ≤ 1

2

∫ 1

0
((B̄2(t)− B̄1(t))x(t), x(t))dt +

∫ 1

0
γ(t)dt

=
1
2
((B̄2 − B̄1)x, x)X + c

for all x ∈ X, where c =
∫ 1

0 γ(t)dt. This shows that (Φ′4) holds. Next, we can apply Theo-
rem 1.2 to conclude that the system (4.1)–(4.2) has a solution in Z1.
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Remark 4.5. In particular, set B̄1(t) ≡ m2(2π)2, B̄2(t) = (m + 1)2(2π)2, m ∈ {0, 1, 2, . . . } and
M = In. Then, the following problem

−ẍ(t)−m2(2kπ)2x(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.4. In addition, as T = 1, in Theorem 3.3 (m = 0) of [12] and
Theorem 1.10 (m 6= 0) of [15], assume that V(t, x) satisfies (H0), (H1), (H2), and

(H′3,1) there exist γ(t), α(t) ∈ L1([0, 1], R+) with
∫ 1

0 α(t)dt < 12(2m+1)
(m+1)2 , such that (4.11) holds.

Then the conclusion of Theorem 4.4 is also true.
Obviously, α(t) ∈ L∞([0, 1], R+) ⊂ L1([0, 1], R+). But, for α(t) ∈ L∞([0, 1], R+), we

have
∫ 1

0 α(t)dt < 12(2m+1)
(m+1)2 6⇒ 0 < α(t) < (2m + 1)(2π)2 and 0 < α(t) < (2m + 1)(2π)2 6⇒∫ 1

0 α(t)dt < 12(2m+1)
(m+1)2 . Indeed, if

α(t) =

(2m + 1)(2π)2, x ∈ [0, 1
(2m+1)(2π)2 ],

0, x ∈ ( 1
(2m+1)(2π)2 , 1],

then
∫ 1

0 α(t)dt = 1 ≤ 12(2m+1)
(m+1)2 as m ≤ 22 and α(t) ≥ (2m + 1)(2π)2 for x ∈ [0, 1

(2m+1)(2π)2 ]; if
12(2m+1)
(m+1)2 < α(t) < (2m + 1)(2π)2, then

∫ 1
0 α(t)dt > 12(2m+1)

(m+1)2 . So Theorem 4.4 is a new result
and, in some sence, it represent a development of Theorem 3.3 (m = 0) of [12] and Theorem
1.10 (m 6= 0) of [15].

Theorem 4.6. The conclusion of Theorem 4.2 still holds if we replace (H1) and (H3) with

(H′1) V(t, ·) is (B̄2(t)− B̄1(t))-concave, that is, −V(t, x) + 1
2 ((B̄2(t)− B̄1(t))x, x) is convex in x

for a.e. t ∈ [0, 1].

(H′′3 ) there exists B̄2(t) ∈ L∞([0, 1],Ls(Rn)) with B̄2 > B̄1, iM(B̄1) = 0, νM(B̄2) 6= 0 and
iM(B̄2) = iM(B̄1) + νM(B̄1), such that∫ 1

0

(
−V(t, x) +

1
2
((B̄2(t)− B̄1(t))x, x)

)
dt→ +∞ (4.12)

as ‖x‖ → ∞ with x ∈ ker(A1 − B̄2),

respectively.

The proof Theorem 4.6 is similar to that of Theorem 4.2. Here we omit it.

Remark 4.7. In particular, set B̄1(t) ≡ 0, B̄2(t) = (2π)2 and M = In. Then, the following
problem

−ẍ(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.6. In addition, as T = 1, then Theorem 4.6 reduces to Theo-
rem 5.2 in [12].

Theorem 4.8. The conclusion of Theorem 4.2 still holds if we replace (H1) and (H3) with

(H′′1 ) V(t, ·) is β(t)-concave, that is, −V(t, x) + 1
2 β(t)|x|2 is convex in x for a.e. t ∈ [0, 1].
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(H′′′3 ) there exist β(t) ∈ L∞([0, 1], R+) and B̄3(t) ∈ L∞([0, 1],Ls(Rn)) with B̄3 > B̄1, iM(B̄1) = 0,
νM(B̄3) 6= 0 and iM(B̄3) = iM(B̄1) + νM(B̄1), such that β(t) ≤ B̄3(t) − B̄1(t) for a.e.
t ∈ [0, 1] with

meas
{

t ∈ [0, 1]
∣∣∣ 0 < β(t) < B̄3(t)− B̄1(t)

}
> 0, (4.13)

respectively.

The proof Theorem 4.8 is similar to that of Theorem 4.4. Here we omit it.

Remark 4.9. In particular, set B̄1(t) ≡ 0, B̄2(t) = (2π)2 and M = In. Then, the following
problem

−ẍ(t) = ∇xV(t, x(t)), x(0)− x(1) = ẋ(0)− ẋ(1) = 0

has a solution via Theorems 4.8. Moreover, as T = 1, then Theorem 4.8 reduces to Theorem 5.1
of [12] as k(t) ∈ L∞([0, 1], R+).

In addition, as T = 1, in Theorem 1.4 of [12], assume that V(t, x) satisfies (H0), (H2), and

(H′′1,1) there exist β(t) ∈ L1([0, 1], R+) with
∫ 1

0 β(t)dt < 12, such that V(t, ·) is β(t)-concave.

Then the conclusion of Theorem 4.8 is also true.
Obviously, β(t) ∈ L∞([0, 1], R+) ⊂ L1([0, 1], R+). But, for β(t) ∈ L∞([0, 1], R+), we have∫ 1

0 β(t)dt < 12 6⇒ 0 < β(t) < (2π)2 and 0 < β(t) < (2π)2 6⇒
∫ 1

0 β(t)dt < 12. Indeed, if

β(t) =

(2π)2, x ∈ [0, 1
(2π)2 ],

0, x ∈ ( 1
(2π)2 , 1],

then
∫ 1

0 β(t)dt = 1 and β(t) ≥ (2π)2 for x ∈ [0, 1
(2π)2 ]; if 12 < β(t) < (2π)2, then

∫ 1
0 β(t)dt >

12. So Theorem 4.8 is a new result and, in some sence, it represent a development of The-
orem 1.4 of [12]. By the remarks in [12] we can see that Theorem 4.8 also generalizes the
corresponding theorems in [9, 14, 16, 17] as T = 1.

4.2 Second order Hamiltonian systems satisfying Sturm–Liouville boundary
value conditions

As a second example, we consider Sturm–Liouville boundary value problem

−ẍ− B̃1(t)x = ∇xV(t, x), (4.14)

x(0) cos α− ẋ(0) sin α = 0, (4.15)

x(1) cos β− ẋ(1) sin β = 0, (4.16)

where B̃1 ∈ L∞([0, 1],Ls(Rn)) , ∇xV(t, x) denotes the gradient of V(t, x) for x ∈ Rn and
0 ≤ α < π, 0 < β ≤ π. We suppose that V : [0, 1]×Rn → R satisfies (H0).

Let X = L2([0, 1], Rn). Define A2 : D(A2) → X by (A2x)(t) = −ẍ(t) with D(A2) = {x ∈
H2([0, 1], Rn)|x satisfies (4.15) and (4.16)}. Set (B1x)(t) = B̃1(t)x(t) with D(B1) = X. From
Proposition 1.17 in [3], we know that A2 is self-adjoint in X and σ(A2) = σd(A2) is bounded
from below. Define iα,β(B̃1) = iA1(B1), να,β(B̃1) = νA1(B1), that is, να,β(B̃1) is the dimension of
the solution subspace of (4.14)–(4.16) with V(t, x) ≡ 0.
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Assume that να,β(B̃1) 6= 0. Meanwhile, set

Z2 =


{x ∈ H1([0, 1], Rn)|x(1) = 0}, α = 0, β ∈ (0, π);

{x ∈ H1([0, 1], Rn)|x(0) = 0}, α ∈ (0, π), β = π;

{x ∈ H1([0, 1], Rn)|x(1) = x(0) = 0}, α = 0, β = π;

H1([0, 1], Rn), α, β ∈ (0, π).

Then, from Proposition 1.17 in [3] again, we have Z2 = D(|A1|
1
2 ). Moreover, set

Φ(x) =
∫ 1

0
V(t, x)dt, ∀x ∈ Z2.

Then, Φ ∈ C1(Z2, R) is weakly continuous with weakly continuous derivative and for every
x ∈ Z2,

Φ′(x)y =
∫ 1

0
(∇xV(t, x), y)dt, ∀y ∈ Z2

because of (H0). Hence, (Φ0) holds. Further, for each x ∈ Z2, we can write the norm

‖x‖2 =
∫ 1

0
[|ẋ(t)|2 + |x(t)|2]dt.

By (4.5) and (H0), we can verify that (Φ2) holds. Then, the following four results hold. Since
their proofs are similar to Theorems 4.2–4.8, and we omit them here.

Theorem 4.10. Assume that V(t, x) satisfies (H0), (H1), (H2) and (H3) with B̄1, B̄2 and A1 replaced
with B̃1, B̃2 and A2 respectively, then problem (4.14)–(4.16) has a solution in Z2.

Theorem 4.11. The conclusion of Theorem 4.10 still holds if we replace (H3) and B̄3 with (H′3) and
B̃3, respectively.

Theorem 4.12. The conclusion of Theorem 4.10 still holds if we replace (H1) and (H3) with (H′1) and
(H′′3 ), respectively.

Theorem 4.13. The conclusion of Theorem 4.10 still holds if we replace B̄3, (H1) and (H3) with B̃3,
(H′′1 ) and (H′′′3 ), respectively.

Remark 4.14. In particular, set B̃1(t) ≡ π2 In and α = 0, β = π. Then, Z2 = H1
0 , σ(A2) =

{k2π2|k ∈ N\{0}} and ker(A2 − B̃1) = {a sin tπ | a ∈ Rn}. Hence, the following problem

−ẍ(t) = ∇xV(t, x(t)), x(0) = x(1) = 0

has a solution via Theorems 4.10–4.13 respectively, where B̃2(t) ≡ 4π2 In = B̃3(t).
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