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Abstract. In this paper, we investigate a boundary value problem of fractional differ-
ential equation. The nonlinear term includes fractional derivatives and is singular with
respect to space variables. By means of Schaefer’s fixed point theorem and Vitali con-
vergence theorem, an existence result of monotone solutions is obtained. The proofs
are based on regularization and sequential techniques. An example is also given to
illustrate our main result.
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1 Introduction

In this work, we consider the following boundary value problem (BVP for short){
CDα

0+u(t) = f (t, u(t), u′(t), CDβ
0+u(t)),

u(0) + u(1) = 0, u′(0) = 0,
(1.1)

where 1 < α < 2, 0 < β < 1, CDα
0+ and CDβ

0+ are Caputo fractional derivatives, f (t, x, y, z)
is singular at the value 0 of its space variables x, y and z. We establish an existence result of
monotone increasing and continuous solution u(t) of BVP (1.1). Since limx→0 f (t, x, y, z) = ∞,
it follows from the condition u(0) + u(1) = 0 that there exists ξ ∈ (0, 1) such that u(ξ) = 0
and thus ξ is a singular point of f .

Throughout the paper, AC[0, 1] and ACk[0, 1] are the set of absolutely continuous func-
tions on [0, 1] and the set of functions having absolutely continuous kth derivatives on [0, 1]

respectively, AC0[0, 1] = AC[0, 1] for k = 0. ‖x‖p =
( ∫ 1

0 |x(t)|
pdt
) 1

p is the norm in Lp[0, 1],
1 ≤ p < ∞. The basic space used in this paper is Banach space C1[0, 1] equipped with
the norm ‖x‖∗ = max{‖x‖, ‖x′‖}, here ‖x‖ = maxt∈[0,1] |x(t)|, ‖x′‖ = maxt∈[0,1] |x′(t)|. We
say that a monotone increasing function u ∈ C1[0, 1] is a solution of BVP (1.1) if u satisfies
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the boundary conditions in (1.1), u(ξ) = 0 for some ξ ∈ (0, 1), CDα
0+u(t) is continuous on

(0, 1] \ {ξ} and satisfies the equation in (1.1) for t ∈ (0, 1] \ {ξ}.
In recent years, there has been a significant development in ordinary and partial differen-

tial equations involving fractional derivatives due to their wide range of applications in varied
fields of sciences and engineering. Many research papers have appeared recently concerning
the existence of positive solutions for fractional boundary value problems with singularities
on time and/or space variables, see, for example, the papers [8, 10–12, 14, 21, 23] and the ref-
erences therein. In [1–4, 6, 7, 17–20, 22], using techniques of nonlinear analysis such as fixed
point theorems on cones and nonlinear alternatives combined with the methods of regular-
ization and sequential approximation, the authors proved the existence of positive solutions
for singular fractional boundary value problems in which the singularities are with respect to
space variables.

The singular boundary value problem{
CDα

0+u(t) + f (t, u(t), u′(t), CDµ
0+u(t)) = 0,

u′(0) = 0, u(1) = 0,

is studied in [2], where 1 < α < 2, 0 < µ < 1, f (t, x, y, z) is positive and may be singular at the
value 0 of its space variables x, y and z. f (t, x, y, z) is a Lq-Carathéodory function on [0, 1]×B
with q > 1

α−1 , B = (0, ∞) × (−∞, 0) × (−∞, 0). An existence result of positive solutions in
space C1[0, 1] is proved by the combination of regularization and sequential techniques with
the Guo–Krasnosel’skii fixed point theorem on cones.

In [17] the author discussed the existence of positive solutions for the singular fractional
boundary value problem{

Dα
0+u(t) + f (t, u(t), u′(t), Dµ

0+u(t)) = 0,

u(0) = 0, u′(0) = u′(1) = 0,

where 2 < α < 3, 0 < µ < 1, Dα
0+ and Dµ

0+ are the standard Riemann–Liouville fractional
derivatives of order α and µ respectively. The function f (t, x, y, z) is positive and may be
singular at the value 0 of its arguments x, y and z, moreover, f (t, x, y, z) satisfies the local
Carathéodory conditions on [0, 1]× (0, ∞)× (0, ∞)× (0, ∞). By regularization and sequential
techniques and by the Guo–Krasnosel’skii fixed point theorem on cones, positive solutions in
C1[0, 1] are obtained.

Although the singular fractional boundary value problems have been investigated widely,
the solutions allowing negative values of fractional boundary value problems with singular-
ities on space variables are seldom considered. By Schaefer’s fixed point theorem and Vitali
convergence theorem, O’Regan and Staněk in [13] investigated monotone solutions in space
C[0, 1] of the fractional boundary value problem{

CDα
0+u(t) = f (t, u(t)),

u(0) + u(1) = 0, u′(0) = 0,

where 1 < α < 2, f (t, x) ∈ C([0, 1]× (R\{0})). f (t, x) is nonnegative and may be singular at
x = 0.

Inspired by above works, we prove the existence of monotone increasing solutions for BVP
(1.1). The main tool used in this paper is Schaefer’s fixed point theorem. Our proofs are
based on regularization and sequential techniques. Compared with the existing literature,
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this paper presents the following new features. Firstly, as far as we know, the existence results
of solutions allowing negative values are even less for fractional boundary value problems
with singularities on space variables. Our result compensates for this deficiency to some
extent. Secondly, the significant difference with the problem discussed in [13] lies in that the
nonlinear term f in BVP (1.1) is related to fractional derivatives and permits singularities on
all its space variables. That is to say the problem considered in this paper performs a more
general form. Moreover, the conditions on f in our paper are more general than those in [13].

2 Preliminaries

In this section, we introduce some notations and preliminary facts which are used throughout
this paper.

The Riemann–Liouville fractional integral of order δ > 0 of a function f (t) ∈ L1(a, b) is
defined by (see [9, p. 69])

Iδ
a+ f (t) =

1
Γ(δ)

∫ t

a
(t− s)δ−1 f (s)ds, t > a.

The Riemann–Liouville fractional derivative of order δ > 0 of a continuous function f on
(a, b] is given by (see [9, p. 70])

Dδ
a+ f (t) =

(
d
dt

)n

In−δ
a+ f (t) =

1
Γ(n− δ)

(
d
dt

)n ∫ t

a
(t− s)n−δ−1 f (s)ds,

provided that the right-hand side is pointwise defined on (a, b], where n is the smallest integer
greater than or equal to δ. In particular, for δ = n, Dn

a+ f (t) = f (n)(t).
The Caputo fractional derivative of order δ > 0 of a function f (t) ∈ C(a, b] is defined by

(see [9, p. 91])

CDδ
a+ f (t) = Dδ

a+

[
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k

]
,

provided that the right-hand side is pointwise defined on (a, b], where n is the smallest integer
greater than or equal to δ. In particular, for δ = n, CDn

a+ f (t) = f (n)(t).

Remark 2.1. For a function f (t) ∈ L1(a, b), a sufficient condition for the existence of Riemann–
Liouville fractional derivative almost everywhere is that In−δ

a+ f (t) ∈ ACn−1[a, b]. In this case,
the function f is said to have a summable fractional derivative of order δ ([15, Definition 2.4]).
In view of the definition of Caputo fractional derivative, CDδ

a+ f (t) = Dδ
a+ f (t) for δ ∈ N and

CDδ
a+ f (t) = Dδ

a+ f (t)−∑n−1
k=0

f (k)(a)
Γ(k−δ+1) (t− a)k−δ for δ /∈ N (see (2.4.6) in [9]), thus this is also a

sufficient condition for the existence of Caputo fractional derivative. It is worth mentioning
that the solution u(t) in our main result not only has summable fractional derivative CDα

0+u(t)
on [0, 1] but also has continuous fractional derivative CDα

0+u(t) on (0, 1] \ {ξ}. For more details,
see Step 3 in the proof of Theorem 4.1 and Remark 4.2 in Section 4.

Remark 2.2. The following properties are useful for our discussion.

(i) ([9, Lemma 2.8]) Iδ
a+ : C[a, b]→ C[a, b] for δ > 0.

(ii) ([9, Lemma 2.3]) If δ > 0, γ > 0, δ + γ > 1 and f ∈ Lp(a, b) (1 ≤ p ≤ ∞), then
Iδ
a+ Iγ

a+ f (t) = Iδ+γ
a+ f (t), t ∈ [a, b].
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(iii) ([9, Theorem 2.2]) If n− 1 < δ ≤ n and f (t) ∈ Cn[a, b], then CDδ
a+ f (t) = In−δ

a+ f (n)(t), t ∈
[a, b].

(iv) ([9, Lemma 2.21]) If δ > 0 and f ∈ C[a, b], then CDδ
a+ Iδ

a+ f (t) = f (t), t ∈ [a, b].

(v) ([17, Lemma 2.1]) Iδ
a+ : L1[a, b] → L1[a, b] for δ ∈ (0, 1) and Iδ

a+ : L1[a, b] → AC[δ]−1[a, b]
for δ ≥ 1, where [δ] means the integral part of δ.

For convenience, in the following discussion we use Iα, CDα and Dα to denote Iα
0+ , CDα

0+

and Dα
0+ , respectively.

A sequence {φn} ⊂ L1[0, 1] is said to have uniformly absolutely continuous integrals on
[0, 1] if for any ε > 0, there exists δ > 0 such that if E ⊂ [0, 1] and meas(E) < δ, then∫

E |φn(t)|dt < ε for all n ∈N (see [5, p. 178]). To prove the main result, we need the following
Vitali convergence theorem and nonlinear alternative.

Lemma 2.3 ([5, pp. 178–179] Vitali convergence theorem). Let {φn} ⊂ L1[0, 1], limn→+∞ φn(t) =
φ(t) for a.e. t ∈ [0, 1] and |φ(t)| < ∞ for a.e. t ∈ [0, 1]. Then the following statements are equivalent.

(1) φ ∈ L1[0, 1] and limn→+∞ ‖φn − φ‖1 = 0.

(2) The sequence {φn} has uniformly absolutely continuous integrals on [0, 1].

Lemma 2.4 ([16, p. 29] Schaefer’s fixed point theorem). Let X be a Banach space and T : X → X
be completely continuous. Then the following alternative holds. Either the equation x = λT(x) has a
solution for every λ ∈ [0, 1] or the set A = {x ∈ X : x = λTx for some λ ∈ (0, 1)} is unbounded.

Denote R0 = R \ {0}, R+ = [0,+∞) and R+
0 = (0,+∞). We work with the following

conditions on the function f in (1.1).

(H1) f ∈C([0, 1]×R0×R+
0 ×R+

0 ), limx→0 f (t, x, y, z)= limy→0+ f (t, x, y, z)= limz→0+ f (t, x, y, z)=
+∞ and f (t, x, y, z) ≥ mt2−α for (t, x, y, z) ∈ [0, 1]×R0 ×R+

0 ×R+
0 .

(H2) f (t, x, y, z) ≤ ρ(t)g(|x|, y, z) + p(|x|) + q(y, z) for (t, x, y, z) ∈ [0, 1] × R0 × R+
0 × R+

0 ,
where ρ(t) is nonnegative on [0, 1], g(x, y, z) ∈ C(R+ ×R+ ×R+) is nonnegative and
nondecreasing in all its arguments, p(x) ∈ C(R+

0 ) is nonnegative and nonincreasing,
q(y, z) ∈ C(R+

0 ×R+
0 ) is nonnegative and nonincreasing in all its arguments.

(H3) limx→+∞
g(x,x,x)

x = 0. p(λx) ≤ λ−σ p(x) for some σ ∈ (0, α−1
2 ) and for any λ ∈ (0, 1],

x ∈ R+
0 . ρ(t), p(t2) and q(mΓ(3− α)t, mΓ(3−α)

Γ(3−β)
t2−β) ∈ Lν[0, 1] for some ν ∈ ( 1

α−1 , 1
2σ ).

Remark 2.5. In [13], the nonlinear term satisfies f (t, x) ≤ g(|x|) + A
|x|ν , where A > 0 is a

constant and ν > 0 is a suitable small number. It is easy to verify that the simple function
p(x) = 1

xω for 0 < ω < α−1
2 fulfils the conditions (H2) and (H3) with ω ≤ σ < α−1

2 and
ν ∈ ( 1

α−1 , 1
2σ ).

Remark 2.6. By Lemma 2.1 and 2.2 in [2], for any f (t) ∈ Lν[0, 1] with ν > 1
α−1 , Iα−1 f (t) ∈

C[0, 1] and
∣∣ ∫ t

0 (t− s)α−2 f (s)ds
∣∣ ≤ ( td

d

) 1
µ ‖ f ‖ν, where d = (α− 2)µ + 1 and µ = ν

ν−1 . Thus we
can know easily limt→0+ Iα−1 f (t) = 0. Similarly, Iα f (t) ∈ C[0, 1] and limt→0+ Iα f (t) = 0. The
continuity of Iα f (t) on [0, 1] can also be derived from the continuity of Iα−1 f (t), Remark 2.2
(i) and (ii).
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3 Auxiliary regular problem

This section deals with an auxiliary regular problem. We prove its solvability and give the
properties of its solutions. We also state a necessary lemma and its useful corollary.

Consider the integral equation defined by

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− 1
2Γ(α)

∫ 1

0
(1− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds,

(3.1)

where

fn(t, x, y, z) =


f (t, x, χn(y), χn(z)), x ≥ 1

n ,
n
2

[
f (t, 1

n , χn(y), χn(z))( 1
n + x) + f (t,− 1

n , χn(y), χn(z))( 1
n − x)

]
, |x| ≤ 1

n ,

f (t, x, χn(y), χn(z)), x ≤ − 1
n ,

and

χn(τ) =

{
τ, τ ≥ 1

n ,
1
n , τ ≤ 1

n .

Then the conditions (H1) and (H2) give

(K1) fn ∈ C([0, 1]×R×R×R) and fn(t, x, y, z) ≥ mt2−α for (t, x, y, z) ∈ [0, 1]×R×R×R.

(K2) fn(t, x, y, z) ≤ ρ(t)g(|x| + 1, y + 1, z + 1) + p( 1
n ) + q( 1

n , 1
n ) for (t, x, y, z) ∈ [0, 1] × R ×

R+ × R+, fn(t, x, y, z) ≤ ρ(t)g(|x| + 1, y + 1, z + 1) + p(|x|) + q(y, z) for (t, x, y, z) ∈
[0, 1]×R0 ×R+

0 ×R+
0 .

Define an operator Tn by the formula

Tnu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− 1
2Γ(α)

∫ 1

0
(1− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds.

(3.2)

Obviously, the fixed points of Tn are exactly the solutions of integral equation (3.1).

Lemma 3.1. Suppose that (H1) holds. Then Tn : C1[0, 1]→ C1[0, 1] is completely continuous.

Proof. Let u∈C1[0, 1]. Using Remark 2.2 (i) and (iii) we have CDβu(t)= 1
Γ(1−β)

∫ t
0 (t−s)−βu′(s)ds

and CDβu(t) ∈ C[0, 1]. Thus, in view of (3.2), Remark 2.2 (i) and (K1) ensure Tnu(t) ∈
C[0, 1]. Moreover, according to (K1), Remark 2.2 (i), (ii) and (iv), we know (Tnu)′(t) =

1
Γ(α−1)

∫ t
0 (t− s)α−2 fn(s, u(s), u′(s), CDβu(s))ds and (Tnu)′(t)∈C[0, 1]. So we have Tn : C1[0, 1]→

C1[0, 1].
Tn is a continuous operator. In fact, let {uk} ⊂ C1[0, 1] be such that limk→+∞ ‖uk− u‖∗ = 0,

then u(t) ∈ C1[0, 1]. Since

|CDβuk(t)−C Dβu(t)| ≤ 1
Γ(1− β)

∫ t

0
(t− s)−β|u′k(s)− u′(s)|ds

≤
‖u′k − u′‖
Γ(1− β)

∫ t

0
(t− s)−βds ≤

‖u′k − u′‖
Γ(2− β)

,



6 X. Su and S. Zhang

we get ‖CDβuk −C Dβu‖ → 0 and thus ‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖ → 0 as k →
+∞. Note that

|Tnuk(t)− Tnu(t)|

=

∣∣∣∣ 1
Γ(α)

∫ t

0
(t− s)α−1

[
fn(s, uk(s), u′k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds

− 1
2Γ(α)

∫ 1

0
(1− s)α−1

[
fn(s, uk(s), u′k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds
∣∣∣∣

≤ 1
Γ(α)

∫ t

0
(t− s)α−1

∣∣∣ fn(s, uk(s), u′k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣∣∣ds

+
1

2Γ(α)

∫ 1

0
(1− s)α−1

∣∣∣ fn(s, uk(s), u′k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣∣∣ds

≤
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α)

∫ t

0
(t− s)α−1ds

+
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

2Γ(α)

∫ 1

0
(1− s)α−1ds

=
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α + 1)

(
tα +

1
2

)
≤

3‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖
2Γ(α + 1)

,

and

|(Tnuk)
′(t)− (Tnu)′(t)|

=

∣∣∣∣ 1
Γ(α− 1)

∫ t

0
(t− s)α−2

[
fn(s, uk(s), u′k(s),

CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))
]

ds
∣∣∣∣

≤ 1
Γ(α− 1)

∫ t

0
(t− s)α−2

∣∣∣ fn(s, uk(s), u′k(s),
CDβuk(s))− fn(s, u(s), u′(s), CDβu(s))

∣∣∣ds

≤
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α− 1)

∫ t

0
(t− s)α−2ds

=
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α)
tα−1

≤
‖ fn(t, uk, u′k, CDβuk)− fn(t, u, u′, CDβu)‖

Γ(α)
.

So we obtain limk→+∞ ‖Tnuk − Tnu‖∗ = 0. Therefore, Tn is a continuous operator.
Furthermore, Tn is completely continuous. Suppose that Ω ⊂ C1[0, 1] is bounded and let

Mn = sup{‖ fn(t, u, u′, CDβu)‖, u ∈ Ω}, here Mn is well defined because CDβu(t) ≤ ‖u′‖
Γ(2−β)

.
Then we have

|Tnu(t)| ≤ 1
Γ(α)

∫ t

0
(t− s)α−1∣∣ fn(s, u(s), u′(s), CDβu(s))

∣∣ds

+
1

2Γ(α)

∫ 1

0
(1− s)α−1∣∣ fn(s, u(s), u′(s), CDβu(s))

∣∣ds

≤ Mn

Γ(α)

∫ t

0
(t− s)α−1ds +

Mn

2Γ(α)

∫ 1

0
(1− s)α−1ds ≤ 3Mn

2Γ(α + 1)
,
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and

|(Tnu)′(t)| ≤ 1
Γ(α− 1)

∫ t

0
(t− s)α−2∣∣ fn(s, u(s), u′(s), CDβu(s))

∣∣ds

≤ Mn

Γ(α− 1)

∫ t

0
(t− s)α−2ds ≤ Mn

Γ(α)
.

Therefore, Tn(Ω) is bounded. Now we are in the position to prove Tn(Ω) ⊂ C1[0, 1] is an
equicontinuous set. Let t1, t2 ∈ [0, 1] and t1 < t2, then |Tnu(t2)− Tnu(t1)| ≤ Mn

Γ(α) (t2 − t1) by

the mean value theorem and |(Tnu)′(t)| ≤ Mn
Γ(α) . Moreover,

|(Tnu)′(t2)− (Tnu)′(t1)|

=
1

Γ(α− 1)

∣∣∣∣ ∫ t2

0
(t2 − s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

−
∫ t1

0
(t1 − s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

∣∣∣∣
≤ 1

Γ(α− 1)

∫ t1

0

[
(t1 − s)α−2 − (t2 − s)α−2] ∣∣ fn(s, u(s), u′(s), CDβu(s))

∣∣ds

+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2∣∣ fn(s, u(s), u′(s), CDβu(s))
∣∣ds

≤ Mn

Γ(α− 1)

∫ t1

0

[
(t1 − s)α−2 − (t2 − s)α−2] ds +

Mn

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2ds

=
Mn

Γ(α)
(
tα−1
1 − tα−1

2 + 2(t2 − t1)
α−1).

Keeping in mind that the function tα−1 is uniformly continuous on [0, 1], we have Tn(Ω) is
equicontinuous. Consequently, the Arzelà–Ascoli theorem guarantees that Tn is a completely
continuous operator. The proof of Lemma 3.1 is finished.

The next lemma presents the existence of fixed points for the operator Tn.

Lemma 3.2. Assume that the conditions (H1), (H2) and (H3) are satisfied. Then Tn has a fixed point
in C1[0, 1] for any n ∈N.

Proof. In view of Lemma 2.4 and Lemma 3.1, it is sufficient to prove the set An = {u ∈
C1[0, 1] : u = λTnu for some λ ∈ (0, 1)} is bounded. For any u ∈ An, we have

u(t) =
λ

Γ(α)

∫ t

0
(t− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds

− λ

2Γ(α)

∫ 1

0
(1− s)α−1 fn(s, u(s), u′(s), CDβu(s))ds,

(3.3)

u′(t) =
λ

Γ(α− 1)

∫ t

0
(t− s)α−2 fn(s, u(s), u′(s), CDβu(s))ds

≥ mλ

Γ(α− 1)

∫ t

0
(t− s)α−2s2−αds

=
mλt

Γ(α− 1)

∫ 1

0
(1− s)α−2s2−αds = mλΓ(3− α)t ≥ 0

(3.4)
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by (K1). According to (3.3) and (3.4), one has u(0) + u(1) = 0, u′(0) > 0 on (0, 1]. Thus there
exists ξ ∈ (0, 1) such that u(ξ) = 0. It follows that |u(t)| = |u(t)− u(ξ)| ≤ ‖u′‖|t− ξ| and
hence ‖u‖ ≤ ‖u′‖. Since CDβu(t) ≥ 0 by (3.4) and CDβu(t) ≤ ‖u′‖

Γ(2−β)
, applying the conditions

(H2), (H3) and (K2) we can derive

u′(t)≤ 1
Γ(α− 1)

∫ t

0
(t− s)α−2

[
ρ(s)g(|u(s)|+ 1, u′(s) + 1, CDβu(s) + 1) + p

(
1
n

)
+ q
(

1
n

,
1
n

)]
ds

≤ 1
Γ(α− 1)

∫ t

0
(t− s)α−2

[
ρ(s)g(‖u′‖+ 1, ‖u′‖+ 1,

‖u′‖
Γ(2− β)

+ 1) + p
(

1
n

)
+ q
(

1
n

,
1
n

)]
ds

≤
g(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖

Γ(2−β)
+ 1)

Γ(α− 1)

∫ t

0
(t− s)α−2ρ(s)ds +

p( 1
n ) + q( 1

n , 1
n )

Γ(α)

≤ Cg
(
‖u′‖+ 1, ‖u′‖+ 1,

‖u′‖
Γ(2− β)

+ 1
)
+

p( 1
n ) + q( 1

n , 1
n )

Γ(α)
,

here C = maxt∈[0,1]
1

Γ(α−1)

∫ t
0 (t − s)α−2ρ(s)ds, C is well defined by Remark 2.6 and (H3). In

particular, the inequality

1 ≤
Cg(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖

Γ(2−β)
+ 1)

‖u′‖ +
p( 1

n ) + q( 1
n , 1

n )

‖u′‖Γ(α)

is fulfilled. The condition limx→+∞
g(x,x,x)

x = 0 in (H3) guarantees that there exists L > 0 such
that

Cg(‖u′‖+ 1, ‖u′‖+ 1, ‖u′‖
Γ(2−β)

+ 1)

‖u′‖ +
p( 1

n ) + q( 1
n , 1

n )

‖u′‖Γ(α) < 1

for ‖u′‖ > L. Consequently, we obtain ‖u‖ ≤ ‖u′‖ ≤ L for u ∈ An. Therefore, An is bounded
and we complete the proof.

Lemma 3.2 shows that the integral equation (3.1) admits a solution un in C1[0, 1] for any
n ∈N. The properties of solutions to (3.1) are collected in the following lemma.

Lemma 3.3. Let the conditions (H1), (H2) and (H3) be valid and un be solution of (3.1). Then

(1) un(0) + un(1) = 0, u′n(0) = 0, u′n(t) ≥ mΓ(3 − α)t and there exists ξn ∈ (0, 1) such that
un(ξn) = 0.

(2) |un(t)| ≥ mΓ(3−α)
2 |t2 − ξ2

n|.

(3) {un(t), n ∈N} is a compact subset of C1[0, 1].

(4) There exists a constant l ∈ (0, 1) such that l ≤ ξn < 1 for any n ∈N.

Proof. Proof of (1). Similar to (3.4), the condition (K1) ensures u′n(t) ≥ mΓ(3− α)t. Other
assertions in (1) are obvious so we omit their proofs.
Proof of (2). Using (1), one has easily |un(t)| =

∣∣ ∫ t
ξn

u′n(s)ds
∣∣ ≥ mΓ(3 − α)

∣∣ ∫ t
ξn

sds
∣∣ =

mΓ(3−α)
2 |t2 − ξ2

n|.
Proof of (3). In order to apply the Arzelà–Ascoli theorem, we need to prove {un(t)} is
bounded in C1[0, 1] and {u′n(t)} is equicontinuous. Firstly, we prove {un(t)} is bounded.
In view of (1), we get

‖un‖ ≤ ‖u′n‖, CDβun(t) ≥ m
Γ(3− α)

Γ(1− β)

∫ t

0
(t− s)−βsds =

mΓ(3− α)

Γ(3− β)
t2−β.
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We also know CDβun(t) ≤ ‖u′n‖
Γ(2−β)

. Thus, for t ∈ (0, 1] \ {ξn}, by (H2), (K2), (1) and (2) we
derive

fn(t, un(t), u′n(t),
CDβun(t)) ≤ ρ(t)g(|un(t)|+ 1, u′n(t) + 1, CDβun(t) + 1)

+ p(|un(t)|) + q(u′n(t),
CDβun(t))

≤ ρ(t)g
(
‖u′n‖+ 1, ‖u′n‖+ 1,

‖u′n‖
Γ(2− β)

+ 1
)

+ p
(

mΓ(3− α)

2
|t2 − ξ2

n|
)
+ q

(
mΓ(3− α)t,

mΓ(3− α)

Γ(3− β)
t2−β

)
.

Hence,

u′n(t) ≤
g(‖u′n‖+ 1, ‖u′n‖+ 1, ‖u

′
n‖

Γ(2−β)
+ 1)

Γ(α− 1)

∫ t

0
(t− s)α−2ρ(s)ds

+
1

Γ(α− 1)

∫ t

0
(t− s)α−2 p

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds

+
1

Γ(α− 1)

∫ t

0
(t− s)α−2q

(
mΓ(3− α)s,

mΓ(3− α)

Γ(3− β)
s2−β

)
ds.

(3.5)

Furthermore, by (H3) and Remark 2.6, we can let

C1 = max
t∈[0,1]

1
Γ(α− 1)

∫ t

0
(t− s)α−2ρ(s)ds, (3.6)

C2 = max
t∈[0,1]

1
Γ(α− 1)

∫ t

0
(t− s)α−2q

(
mΓ(3− α)s,

mΓ(3− α)

Γ(3− β)
s2−β

)
ds (3.7)

and by the Hölder inequality one has∫ t

0
(t− s)α−2 p

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds

≤ [(α− 2)µ + 1]−
1
µ

( ∫ t

0
pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds
) 1

ν

,

(3.8)

here (α− 2)µ + 1 > 0 and 1
µ + 1

ν = 1, µ is well defined by the choice of ν in condition (H3).
Next we estimate the integral on the right side of (3.8).∫ t

0
pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds

≤
∫ 1

0
pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds

=
∫ ξn

0
pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds +
∫ 1

ξn

pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds

= I1 + I2.

(3.9)

In view of the monotone property of p and (H3), we get

I1 ≤
∫ ξn

0
pν

(
mΓ(3− α)

2
ξn(ξn − s)

)
ds =

∫ 1

0
ξn pν

(
mΓ(3− α)

2
ξ2

n(1− s)
)

ds

≤ Aξ1−2σν
n

∫ 1

0
(p(1− s))νds ≤ A

∫ 1

0
(p(s))νds ≤ A

∫ 1

0
(p(s2))νds = C3 < +∞,

(3.10)
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where A = 1 if mΓ(3−α)
2 ≥ 1, otherwise A =

(mΓ(3−α)
2

)−σν.

I2 =
∫ 1

ξn

pν

(
mΓ(3− α)

2
(s + ξn)(s− ξn)

)
ds

=
∫ 1

0
(1− ξn)pν

(
mΓ(3− α)

2
(1− ξn)s((1− ξn)s + 2ξn)

)
ds

≤
∫ 1

0
(1− ξn)pν

(
mΓ(3− α)

2
(1− ξn)

2s2
)

ds ≤ A(1− ξn)
1−2σν

∫ 1

0
(p(s2))νds

≤ A
∫ 1

0
(p(s2))νds = C3 < +∞.

(3.11)

As a result, the inequalities from (3.5) to (3.11) show that for any n ∈N and t ∈ [0, 1],

u′n(t) ≤ C1g
(
‖u′n‖+ 1, ‖u′n‖+ 1,

‖u′n‖
Γ(2− β)

+ 1
)
+

[(α− 2)µ + 1]−
1
µ

Γ(α− 1)
(2C3)

1
ν + C2.

Consequently, similar to the proof in Lemma 3.2, we can conclude that {un(t)} is bounded.
Now it remains to prove that {u′n(t)} is equicontinuous. Let t1, t2 ∈ [0, 1] be such that

t1 < t2 and L = sup{‖un‖∗, n ∈N}. Then

|u′n(t2)− u′n(t1)| ≤
1

Γ(α− 1)

∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2) fn(s, un(s), u′n(s),

CDβun(s))ds

+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2 fn(s, un(s), u′n(s),
CDβun(s))ds

≤
‖ρ‖νg(L + 1, L + 1, L

Γ(2−β)
+ 1)

Γ(α− 1)

( ∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2)µds

) 1
µ

+
1

Γ(α− 1)

( ∫ t1

0
pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds
) 1

ν
( ∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2)µds

) 1
µ

+
1

Γ(α− 1)

( ∫ t1

0
qν

(
mΓ(3− α)s,

mΓ(3− α)

Γ(3− β)
s2−β

)
ds
) 1

ν

·
( ∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2)µds

) 1
µ

+
‖ρ‖νg(L + 1, L + 1, L

Γ(2−β)
+ 1)

Γ(α− 1)

( ∫ t2

t1

(t2 − s)(α−2)µds
) 1

µ

+
1

Γ(α− 1)

( ∫ t2

t1

pν

(
mΓ(3− α)

2
|s2 − ξ2

n|
)

ds
) 1

ν
( ∫ t2

t1

(t2 − s)(α−2)µds
) 1

µ

+
1

Γ(α− 1)

( ∫ t2

t1

qν

(
mΓ(3− α)s,

mΓ(3− α)

Γ(3− β)
s2−β

)
ds
) 1

ν
( ∫ t2

t1

(t2 − s)(α−2)µds
) 1

µ

.

According to (3.9), (3.10), (3.11) and the condition (H3) we know
∫ t1

0 pν(mΓ(3−α)
2 |s2 − ξ2

n|)ds,∫ t1
0 qν(mΓ(3− α)s, mΓ(3−α)

Γ(3−β)
s2−β)ds,

∫ t2
t1

pν(mΓ(3−α)
2 |s2 − ξ2

n|)ds,
∫ t2

t1
qν(mΓ(3− α)s, mΓ(3−α)

Γ(3−β)
s2−β)ds

are bounded. Furthermore, the relation (x− y)η ≤ xη − yη for x ≥ y ≥ 0, η > 1 ensures that∫ t1

0

(
(t1 − s)α−2 − (t2 − s)α−2)µds ≤

∫ t1

0

(
(t1 − s)(α−2)µ − (t2 − s)(α−2)µ)ds

=
t(α−2)µ+1
1 − t(α−2)µ+1

2 + (t2 − t1)
(α−2)µ+1

(α− 2)µ + 1
.
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In addition, ∫ t2

t1

(t2 − s)(α−2)µds =
(t2 − t1)

(α−2)µ+1

(α− 2)µ + 1
.

Hence we can obtain that {u′n(t)} is equicontinuous. Consequently, the Arzelà–Ascoli theo-
rem implies that {un(t)} is a compact subset of C1[0, 1].
Proof of (4). Suppose that there exists a subsequence {ξnk} of {ξn} such that limk→+∞ ξnk =

0. Since |unk(0)| = |unk(0) − unk(ξnk)| ≤ ‖u′nk
‖ξnk , we have limk→+∞ unk(0) = 0. Thus,

limk→+∞ unk(1) = 0 because unk(0) + unk(1) = 0, which contradicts unk(1) − unk(0) =∫ 1
0 u′nk

(s)ds ≥ mΓ(3−α)
2 . Hence, inf{ξn : n ∈ N} > 0. As a result, we arrive at ξn ∈ [l, 1)

for n ∈N with some l > 0.
We complete the proof of Lemma 3.3.

In order to apply the Vitali convergence theorem in the proof of our main theorem, we
need the following result.

Lemma 3.4. Let the conditions (H1), (H2) and (H3) be satisfied and un be solution of (3.1). Then
{ fn(t, un(t), u′n(t), CDβun(t)), n ∈ N} ⊂ C[0, 1] has uniformly absolutely continuous integrals on
[0, 1].

Proof. Let E ⊂ [0, 1] be measurable and L = sup{‖un‖∗, n ∈N}. Then

∫
E

fn(t, un(t), u′n(t),
CDβun(t))dt ≤ g

(
L + 1, L + 1,

L
Γ(2− β)

+ 1
) ∫

E
ρ(t)dt

+
∫

E
p
(

mΓ(3− α)

2
|t2 − ξ2

n|
)

dt

+
∫

E
q
(

mΓ(3− α)t,
mΓ(3− α)

Γ(3− β)
t2−β

)
dt.

Applying the Hölder inequality, we have

∫
E

ρ(t)dt ≤ (meas(E))
1
µ

( ∫
E
(ρ(t))νdt

) 1
ν

,

∫
E

p
(

mΓ(3− α)

2
|t2 − ξ2

n|
)

dt ≤ (meas(E))
1
µ

( ∫
E

pν

(
mΓ(3− α)

2
|t2 − ξ2

n|
)

dt
) 1

ν

,

∫
E

q
(

mΓ(3− α)t,
mΓ(3− α)

Γ(3− β)
t2−β

)
dt ≤ (meas(E))

1
µ

( ∫
E

qν

(
mΓ(3− α)t,

mΓ(3− α)

Γ(3− β)
t2−β

)
dt
) 1

ν

.

Noticing the condition (H3), (3.9), (3.10) and (3.11), we conclude that the sequence { fn(t, un(t),
u′n(t), CDβun(t))} has uniformly absolutely continuous integrals on [0, 1].

Corollary 3.5. Let the conditions (H1), (H2) and (H3) hold and un be solution of (3.1). Then
{(t0 − t)α−1 fn(t, un(t), u′n(t), CDβun(t)), n ∈ N} ⊂ C[0, t0] has uniformly absolutely continuous
integrals on [0, t0] for any t0 ∈ [0, 1].

The assertion in Corollary 3.5 follows from Lemma 3.4 and the fact

(t0 − t)α−1 fn(t, un(t), u′n(t),
CDβun(t)) ≤ fn(t, un(t), u′n(t),

CDβun(t)), t ∈ [0, t0].
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4 Main result

Now we can give the existence result for the singular BVP (1.1).

Theorem 4.1. Assume that the conditions (H1), (H2) and (H3) are valid. Then there exists at least
one increasing function u(t) ∈ C1[0, 1] solving the BVP (1.1).

Proof. For clarity, we divide the proof into several steps.
Step 1: Firstly, Lemma 3.3 and the Bolzano–Weierstrass theorem guarantee that there exist
subsequences {unk} ⊂ {un}, {ξnk} ⊂ {ξn} and u ∈ C1[0, 1], ξ ∈ [l, 1] such that limk→+∞ ξnk = ξ

and limk→+∞ ‖unk − u‖∗ = 0. Then again by Lemma 3.3, u(ξ) = 0, u(0) + u(1) = 0, u′(0) = 0,
u′(t) > 0 for t ∈ (0, 1] and |u(t)| ≥ mΓ(3−α)

2 |t2 − ξ2|. The last inequality together with u(0) +
u(1) = 0 implies u(1) 6= 0, that is, ξ ∈ [l, 1).

Furthermore, since CDβunk(t) ≥
mΓ(3−α)
Γ(3−β)

t2−β and limk→+∞ ‖CDβunk − CDβu‖ = 0, we get
CDβu(t) ≥ mΓ(3−α)

Γ(3−β)
t2−β and thus CDβu(t) > 0 on (0, 1]. Hence, f (t, u(t), u′(t), CDβu(t)) ∈

C((0, 1] \ {ξ}) and

lim
k→+∞

fnk(t, unk(t), u′nk
(t), CDβunk(t)) = f (t, u(t), u′(t), CDβu(t)), t ∈ (0, 1] \ {ξ}.

Also, we can know f (t, u(t), u′(t), CDβu(t)) ∈ L1[0, 1] by Lemma 2.3 and Lemma 3.4. More-
over, according to Lemma 2.3 and Corollary 3.5, passing to the limit as k→ +∞ on both sides
of the equality

unk(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fnk(s, unk(s), u′nk

(s), CDβunk(s))ds

− 1
2Γ(α)

∫ 1

0
(1− s)α−1 fnk(s, unk(s), u′nk

(s), CDβunk(s))ds,

we obtain

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, u(s), u′(s), CDβu(s))ds

− 1
2Γ(α)

∫ 1

0
(1− s)α−1 f (s, u(s), u′(s), CDβu(s))ds, t ∈ [0, 1].

(4.1)

Therefore, u(t) is a solution of integral equation (4.1). Next we prove u(t) is a solution of (1.1).
Step 2: In this step we prove that the right side integral in (4.1) belongs to C1[0, 1] and satisfies
the boundary value conditions in (1.1).

Let L = ‖u‖∗. In view of for any t ∈ (0, 1] \ {ξ},

f (t, u(t), u′(t), CDβu(t)) ≤ g
(

L + 1, L + 1,
L

Γ(2− β)
+ 1
)

ρ(t) + p
(

mΓ(3− α)

2
|t2 − ξ2|

)
+ q
(

mΓ(3− α)t,
mΓ(3− α)

Γ(3− β)
t2−β

)
,

this together with (3.9), (3.10), (3.11) and (H3) guarantees that f (t, u(t), u′(t), CDβu(t)) ∈
Lν[0, 1]. Hence Iα f ∈ C[0, 1] and Iα−1 f ∈ C[0, 1] by Remark 2.6. Furthermore, by Re-
mark 2.2 (ii) one has for any t ∈ [0, 1],

D1 Iα f (t, u(t), u′(t), CDβu(t)) = D1 I1 Iα−1 f (t, u(t), u′(t), CDβu(t))

= Iα−1 f (t, u(t), u′(t), CDβu(t)).
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Thus we obtain that the right side integral in (4.1) belongs to C1[0, 1]. Since by Remark 2.6

lim
t→0+

Iα f (t, u(t), u′(t), CDβu(t)) = lim
t→0+

Iα−1 f (t, u(t), u′(t), CDβu(t)) = 0,

we can know easily the right side integral in (4.1) satisfies the boundary value conditions in
BVP (1.1).
Step 3: Now it remains to prove that the Caputo derivative of order α of the right side integral
in (4.1) exists and is continuous on (0, 1] \ {ξ} and satisfies the differential equation in (1.1)
for t ∈ (0, 1] \ {ξ}.

In fact, using the definitions of Caputo fractional derivative and Riemann–Liouville frac-
tional derivative, we have

CDαu(t) = Dα[u(t)− u(0)− u′(0)t]

= Dα

(
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, u(s), u′(s), CDβu(s))ds

)
= Dα Iα f (t, u(t), u′(t), CDβu(t)) =

(
d
dt

)2

I2−α Iα f (t, u(t), u′(t), CDβu(t)).

Thus we need to prove that
( d

dt

)2 I2−α Iα f (t, u(t), u′(t), CDβu(t)) exists and is continuous on
(0, 1] \ {ξ} and is equal to f (t, u(t), u′(t), CDβu(t)) for t ∈ (0, 1] \ {ξ}.

Firstly, by f ∈ L1[0, 1] and Remark 2.2 (ii), for any t ∈ [0, 1], we have

I2−α Iα f (t, u(t), u′(t), CDβu(t)) = I2 f (t, u(t), u′(t), CDβu(t))

=
∫ t

0
(t− s) f (s, u(s), u′(s), CDβu(s))ds.

Secondly, by f ∈ C((0, 1] \ {ξ}), for any t ∈ (0, 1] \ {ξ}, let ∆t be small enough so that f is
continuous on [t− |∆t|, t+ |∆t|] (for t = 1, f is continuous on [t− |∆t|, t]), then applying mean
value theorem for integrals, we obtain

d
dt

( ∫ t

0
f (s, u(s), u′(s), CDβu(s))ds

)
= lim

∆t→0

∫ t+∆t
0 f (s, u(s), u′(s), CDβu(s))ds−

∫ t
0 f (s, u(s), u′(s), CDβu(s))ds

∆t

= lim
∆t→0

∫ t+∆t
t f (s, u(s), u′(s), CDβu(s))ds

∆t
= f (t, u(t), u′(t), CDβu(t)).

Similarly, d
dt

( ∫ t
0 s f (s, u(s), u′(s), CDβu(s))ds

)
= t f (t, u(t), u′(t), CDβu(t)). As a result we have

d
dt

( ∫ t

0
(t− s) f (s, u(s), u′(s), CDβu(s))ds

)
=

d
dt

(
t
∫ t

0
f (s, u(s), u′(s), CDβu(s))ds

)
− d

dt

( ∫ t

0
s f (s, u(s), u′(s), CDβu(s))ds

)
=
∫ t

0
f (s, u(s), u′(s), CDβu(s))ds,

and hence,
( d

dt

)2( ∫ t
0 (t− s) f (s, u(s), u′(s), CDβu(s))ds

)
= f (t, u(t), u′(t), CDβu(t)) for any t ∈

(0, 1] \ {ξ}.
We complete the proof of our main result.
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Remark 4.2. In Theorem 4.1, by f ∈ L1[0, 1] and Remark 2.2 (v) we can know I2 f (t, u(t), u′(t),
CDβu(t)) ∈ AC1[0, 1]. Thus the function u(t) defined by (4.1) has summable fractional deriva-
tive and CDαu(t) = f (t, u(t), u′(t), CDβu(t)) for a.e. t ∈ [0, 1]. Furthermore, f ∈ C((0, 1] \ {ξ})
and this ensures CDαu(t) = f (t, u(t), u′(t), CDβu(t)) for any t ∈ (0, 1] \ {ξ}.

5 An example

In this section we give an example to illustrate our result.

Example 5.1. Consider the boundary value problem
CD

3
2 x(t) = (t + 1)2 + | cos t|

[
ln(1 + |x(t)|) + arctan x′(t) + (CD

1
2 x(t))

1
2

]
+ et

|x(t)|
1
8
+ 1(

x′(t)C D
1
2 x(t)

) 1
10

,

x(0) + x(1) = 0, x′(0) = 0.

(5.1)

Clearly α = 3
2 , β = 1

2 and the nonlinear term is

f (t, x, y, z) = (t + 1)2 + | cos t|
[
ln(1 + |x|) + arctan y + z

1
2

]
+

et

|x| 18
+

1

(yz)
1
10

, (t, x, y, z) ∈ [0, 1]×R0 ×R+
0 ×R+

0 .

The conditions (H1), (H2) and (H3) are satisfied with m = mint∈[0,1](t + 1)2 = 1, σ ∈ [ 1
8 , 1

4 ),

ν ∈ (2, 1
2σ ), ρ(t) = (t + 1)2 + | cos t|, g(x, y, z) = 1 + ln(1 + x) + arctan y + z

1
2 , p(x) = e

x1/8 and
q(y, z) = 1

(yz)1/10 . We only verify that p(x) and q(y, z) satisfy the conditions in (H3). Other
conditions are easy to verify and we omit here. First of all, we have p(λx) = λ−

1
8 e

x1/8 ≤
λ−σ e

x1/8 = λ−σ p(x) for λ ∈ (0, 1] and x ∈ R+
0 . Moreover, ν

4 < 1 and this ensures p(x2) ∈
Lν[0, 1] and q(mΓ(3− α)x, mΓ(3−α)

Γ(3−β)
x2−β) = (

√
π

3 )−
1
10 1

x1/4 ∈ Lν[0, 1]. As a result, Theorem 4.1
guarantees that the problem (5.1) has an increasing solution.
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