
Electronic Journal of Qualitative Theory of Differential Equations
2019, No. 92, 1–19; https://doi.org/10.14232/ejqtde.2019.1.92 www.math.u-szeged.hu/ejqtde/

The wellposedness and energy estimate for wave
equations in domains with a space-like boundary

Lingyang Liu and Hang GaoB

School of Mathematics and Statistics, Northeast Normal University,
Changchun, Jilin 130024, P.R. China

Received 15 July 2019, appeared 13 December 2019

Communicated by Bo Zhang

Abstract. This paper is concerned with wave equations defined in domains of R2 with
an invariable left boundary and a space-like right boundary which means the right
endpoint is moving faster than the characteristic. Different from the case where the
endpoint moves slower than the characteristic, this problem with ordinary boundary
formulations may cause ill-posedness. In this paper, we propose a new kind of bound-
ary condition to make systems well-posed, based on an idea of transposition. The
key is to prove wellposedness and a hidden regularity for the corresponding backward
system. Moreover, we establish an exponential decay estimate for the energy of homo-
geneous systems.
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1 Introduction

Let T > 0. Given t ∈ [0, T], put αk(t) = 1+ kt and Ω(t) = {(x, t) ∈ R2 | 0 < x < αk(t)}. Denote
by Qk

T the non-cylindrical domain in R2 : Qk
T = {(x, t) ∈ R2 | 0 < x < αk(t) and 0 < t < T}.

Set ΓL = {(0, t) ∈ R2 | t ∈ [0, T]}, ΓR = {(αk(t), t) ∈ R2|t ∈ [0, T]} and Σ = ΓL
⋃

ΓR. Let ∂Qk
T

represent the boundary of Qk
T and n(p) = (nx(p), nt(p))> denote the unit outward normal at

p on ∂Qk
T, where nx(p) and nt(p) are components of n(p) corresponding to space and time,

respectively. Qk
T is named time like, if the inequality |nt(p)| < |nx(p)| holds for every point

p ∈ Σ. If |nt(p)| > |nx(p)| holds for every point p ∈ Σ, then Qk
T is named space like. In this

article, we assume that k > 1. It is easy to see that wave equations are defined in the domain
Qk

T with a space-like boundary ΓR.
There are many literatures on wave equations in non-cylindrical domains with time-like

boundary (see e.g. [2, 3, 5–8, 11–15] and the references cited therein). The systems studied
there are well-posed under two boundary conditions. Next we list some works related to
wellposedness. To the best of our knowledge, [2] was the first paper, which gave the explicit
solutions expressed by series for the one-dimensional wave equation with moving boundary.
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For the N-dimensional case (N ≥ 1), an idea to convert non-cylindrical domains into cylindri-
cal domains by some invertible transformations was introduced in [12,13]. More precisely, if a
function u satisfies the wave equation utt− uxx = 0 in Qk

T, then by defining the transformation
w(y, t) = u(αk(t)y, t), we can verify that w satisfies

wtt −
[
a(y, t)wy

]
y + 2b(y, t)wty = 0 in Q, (1.1)

where a(y, t) = 1−k2y2

(1+kt)2 , b(y, t) = − ky
1+kt and Q = (0, 1)× (0, T). Therefore, the wellposedness

problem of u in Qk
T was transformed to the wellposedness problem of w in (1.1). Clearly,

when 0 < k < 1, a(y, t) is positive definite in Q. Thus the Galerkin method could be applied
to deal with the wellposedness problem in this case. Nevertheless, when k > 1, a(y, t) changes
sign in Q, which brings much trouble. Eventually, we mention that in [5], the authors used
the D’Alembert formula to get the wellposedness of the wave equation under two Dirichlet
boundary conditions in the case of k = 1. Since waves travel at a finite speed, the above
methods are not applicable to the case where the motion of the moving endpoint is faster
than the wave’s motion (i.e. k > 1 for Qk

T). For wave equations in space-like domains, [4] was
the one and only one paper we have known providing a condition that solutions and all their
first-order derivatives vanish on Σ to make systems well-posed. In the view of controllability,
on the one hand, the condition mentioned in [4] is so harsh that we have no chance to impose
a boundary control. On the other hand, the solution in [4] has a higher regularity. Relatively,
the space in which solutions exist has a poor dual space, which is not good for us to consider
a controllability problem.

The aim of this paper is to find a general class of boundary conditions to make systems
well-posed in some suitable spaces. From reference [4], we guess that the boundary conditions
we are looking for may be different from ordinary formulations. Finally, we consider a system
with the following boundary conditions:

utt − uxx + αut + βu = 0 in Qk
T,

u|ΓL = f1, u|ΓR = f2, ∂u
∂l |ΓR = f3,

u(x, 0) = u0, ut(x, 0) = u1 in Ω(0),

(1.2)

where u is the state variable, (u0, u1) is an initial couple, l denotes the direction
( 1√

1+k2 , k√
1+k2

)>,
∂u
∂l |ΓR is a restriction of the derivative to u along the direction l on ΓR (u|ΓL and u|ΓR are also
restrictions of u on ΓL and ΓR, respectively) and α, β are non-negative constants. (u0, u1) and
fi(i = 1, 2, 3) will be given later.

The results we offer will be of significant importance to many related fields such as bound-
ary controllability and qualitative theory of wave equations. We shall give some interpreta-
tions.

(1) Our work is a preparation for the study of boundary controllability problems, because
in the case of k > 1, if we simply exert f1 or f2 on the bondary, the system is not controllable
(This conclusion follows immediately from the fact that its dual system is not observable).

(2) From (1.2), we claim that such a problem with ordinary Dirichlet boundary conditions
may be ill-posed (Since f3 is given freely in an appropriate function space, we can choose
different f3, but keep f1 and f2 the same, and then the system has multiple solutions).

In order to define the transposition solution of (1.2), we introduce the following backward
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Figure 1.1: The graph of (1.2)

system with zero terminal value.
wtt − wxx − αwt + βw = f in Qk

T,

w|ΓL = 0,

w(x, T) = 0, wt(x, T) = 0 in Ω(T).

(1.3)

Set H1
L(Ω(t)) = {w ∈ H1(Ω(t)) | the trace of w vanish at x=0}, ∀t ≥ 0. Assume that F is a

functional space and F′ is its dual space. Let 〈·, ·〉F,F′ denote the dual product between them.

Proposition 1.1. For any f ∈ L2(Qk
T), (1.3) admits a unique weak solution

w ∈ L2(0, T; H1
L(Ω(t)))

⋂
H1(0, T; L2(Ω(t))).

Definition 1.2. Let T > 0. u ∈ L2(0, T; L2(Ω(t)))
⋂

H1(0, T; H−1(Ω(t))) is called a trans-
position solution of (1.2), if for any (u0, u1) ∈ L2(Ω(0)) × H−1(Ω(0)), f1 ∈ L2(ΓL) and
f2, f3 ∈ L2(ΓR), u satisfies the following equality∫

Qk
T

f udxdt = 〈w(0), u1〉H1
L(Ω(0)),H−1(Ω(0)) −

∫
Ω(0)

[u0wt(0)− αu0w(0)]dx

+
∫

ΓL

f1wxds +
∫

ΓR

[
w f3 + f2

(−kwt − wx + kαw)√
1 + k2

]
ds, ∀ f ∈ L2(Qk

T),
(1.4)

where w is the solution of (1.3).

The main result of this paper is stated as follows.

Theorem 1.3. For any given (u0, u1) ∈ L2(Ω(0))× H−1(Ω(0)), f1 ∈ L2(ΓL) and f2, f3 ∈ L2(ΓR),
(1.2) admits a unique solution

u ∈ L2(0, T; L2(Ω(t)))
⋂

H1(0, T; H−1(Ω(t)))

in the sense of transposition.

In addition, we study the energy for the homogeneous system of (1.2):
utt − uxx + αut + βu = 0 in Qk

T,

u|ΓL = 0, u|ΓR = 0, ∂u
∂l |ΓR = 0,

u(x, 0) = u0, ut(x, 0) = u1 in Ω(0),

(1.5)
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where (u0, u1) is given in (1.2).
Concerning wave equations in domains with variable boundaries, the work on stability

and stabilization has been addressed much less in the literature. For the case of time-like
domains, we mention [3,11], which provided some first-order polynomial decay results using
the multiplier method. As we know, the multiplier method is an efficient way to get a poly-
nomial decay estimate (see e.g. [10]), but it requires that the coefficients of wave equations
satisfy certain constraints (e.g. for (1.5), α2 = 4β needed) and depending on the multiplier
method, it is hard for us to obtain a better decay estimate. For the sake of getting the desired
exponential decay of the energy for (1.5), we borrow an idea introduced in [9]. The difference
is the use of an auxiliary functional ρ which will be provided in Section 4. We focus on the
case of α, β > 0 below. On the one hand, when α = 0 and β = 0, it is easy to check the
energy E(t) = 1

2

∫
Ω(t)[u

2
t (x, t) + u2

x(x, t)]dx for (1.5) is conserved. On the other hand, if either
of α, β > 0 is not true, we have not been able to get the energy estimate for such a problem
(we shall provide a further interpretation in Remark 4.1, Section 4).

Define an energy functional:

E(u; t) =
1
2

∫
Ω(t)

[
u2

t (x, t) + u2
x(x, t) + βu2(x, t)

]
dx.

The energy estimate for (1.5) is as follows.

Theorem 1.4. There exist constants ε1 > 0 and c1 > 0 (only depend on α or β), such that the energy
functional of (1.5) satisfies

E(u; t) ≤ 2
1− c1ε

exp
{
− εt

1 + c1ε

}
E(u; 0), ∀0 < ε ≤ ε1, ∀t ≥ 0. (1.6)

Throughout this paper, we let C represent a positive constant which may be different from
one line to another. For simplicity of presentation, in what follows we omit the variables of
functions sometimes when they are clear in the text.

Remark 1.5. We wish to present an interpretation for the form of (1.4). Without loss of gen-
erality, we may assume that functions are sufficiently smooth. Otherwise, we can use the
smoothing technique. If u is a solution of (1.2), multiplying the first equation of (1.2) by w and
integrating the both sides of the equation on Qk

T, we have∫
Qk

T

(utt − uxx + αut + βu)wdxdt = 0,

that is, ∫
Qk

T

[(utw− uwt + αuw)t − (uxw− uwx)x + u(wtt − wxx − αwt + βw)]dxdt = 0.

Using Green’s formula, we obtain∫
∂Qk

T

[(utw− uwt + αuw)nt − (uxw− uwx)nx]ds +
∫

Qk
T

u(wtt − wxx − αwt + βw)dxdt = 0,

where ds is the length of an infinitesimal on boundary ∂Qk
T. Notice that the unit exterior

normal n(p) = (nx(p), nt(p))>= (0, 1)>, (0,−1)>, (−1, 0)> and
( 1√

1+k2 , −k√
1+k2

)> when p lies in
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Ω(T), Ω(0), ΓL and ΓR, respectively. Substituting them into the above equation, we get∫
Ω(T)

(utw− uwt + αuw)(x, T)dx−
∫

Ω(0)
(utw− uwt + αuw)(x, 0)dx

+
∫

ΓL

(uxw− uwx)ds +
∫

ΓR

[
−w

(kut + ux)√
1 + k2

+ u
(kwt + wx − kαw)√

1 + k2

]
ds

+
∫

Qk
T

u(wtt − wxx − αwt + βw)dxdt = 0,

where we follow the expression (u + w)(x, T) = u(x, T) + w(x, T).
Further, if w is a solution of (1.3), due to the approximation theory of smooth functions,

we arrive at

〈w(0), u1〉H1
L(Ω(0)),H−1(Ω(0)) −

∫
Ω(0)

[u0wt(0)− αu0w(0)]dx

+
∫

ΓL

uwxds +
∫

ΓR

[
w
(kut + ux)√

1 + k2
+ u

(−kwt − wx + kαw)√
1 + k2

]
ds =

∫
Qk

T

u f dxdt.

Remark 1.6. We would like to show some connections between our results and the existing
results. As we know, the definite conditions of the string equation defined in R+ are the initial
displacement and the initial velocity. If we let k→ +∞, then in (1.2), the moving boundary ΓR

goes to the x+ axis and the direction l =
( 1√

1+k2 , k√
1+k2

)
→ (0, 1). At that time, u|ΓR becomes a

displacement and ∂u
∂l |ΓR becomes a velocity. On the other hand, if we let k → 1, then ΓR turns

into a characteristic line of the string equation and l →
( 1√

2
, 1√

2

)
, which is the characteristic

direction. According to the compatibility principle, we infer that the boundary conditions in
(1.2) become the boundary conditions of the case k = 1.

The rest of this paper is organized as follows. In Section 2, we prove Proposition 1.1. In
Section 3, we prove Theorem 1.3. In Section 4, we deduce the energy estimate. Section 5 offers
an appendix which is a supplement to the proof of Proposition 2.1 in Section 2.

2 The wellposedness of (1.3)

In this section, we start to prove Proposition 1.1. More generally, we consider systems with
any given terminal value.

First, we consider the following pure wave system:
wtt − wxx = f in Qk

T,

w|ΓL = 0,

w(x, T) = w0
T, wt(x, T) = w1

T in Ω(T).

(2.1)

Proposition 2.1. For any given (w0
T, w1

T) ∈ H1
L(Ω(T))× L2(Ω(T)) and f ∈ L2(Qk

T), (2.1) admits
a unique solution w ∈ L2(0, T; H1

L(Ω(t)))
⋂

H1(0, T; L2(Ω(t))).

We postpone the proof of Proposition 2.1 until the appendix for standing out the main part of
this paper.

Next consider the system as follows.
wtt − wxx − αwt + βw = f in Qk

T,

w|ΓL = 0,

w(x, T) = w0
T, wt(x, T) = w1

T in Ω(T).

(2.2)
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Proposition 2.2. For any given (w0
T, w1

T) ∈ H1
L(Ω(T))× L2(Ω(T)) and f ∈ L2(Qk

T), (2.2) admits
a unique solution w ∈ L2(0, T; H1

L(Ω(t)))
⋂

H1(0, T; L2(Ω(t))).

Our idea for the proof of Proposition 2.2 is to transform the backward system into an equiva-
lent forward system. Then we use the contraction mapping principle and an energy method to
finish the proof. As a preliminary, some notations are given ahead. Write α̃k(τ) = 1+ k(T− τ)

for 0 ≤ τ ≤ T. We let Q̃k
T stand for a non-cylindrical domain in R2 : Q̃k

T = {(x, τ) ∈ R2 | 0 <

x < α̃k(τ), 0 < τ < T}. Put ΓL = {(0, τ) ∈ R2 | τ ∈ [0, T]} and Γ̃R = {(α̃k(τ), τ) ∈ R2 | τ ∈
[0, T]} (see Figure 2.1).

Proof. Step 1. If we take a time transformation τ = T− t and let z(x, τ) = w(x, T− τ), then we
see that the wellposedness of (2.2) is equivalent to the wellposedness of the following system:

zττ − zxx + αzτ + βz = f in Q̃k
T,

z|ΓL = 0,

z(x, 0) = w0
T, zτ(x, 0) = w1

T in Ω(T).

(2.3)

Figure 2.1: The graph of (2.3)

Let 0 < T1 < T and put Q̃T1
0 = {(x, τ) ∈ R2 | 0 < x < 1 + k(T − τ), 0 < τ < T1}. Consider the

following system with respect to (2.3) in Q̃T1
0 :

zττ − zxx + αξτ + βξ = f in Q̃T1
0 ,

z(0, τ) = 0 on (0, T1),

z(x, 0) = w0
T, zτ(x, 0) = w1

T in Ω(T).

(2.4)

Set X = L2(0, T1; H1
L(Ω(T − τ)))

⋂
H1(0, T1; L2(Ω(T − τ))), where Ω(T − τ) = {(x, τ) ∈

R2|0 < x < 1 + k(T − τ)} and put ‖z‖2
X =

∫
Q̃T1

0
[z2

τ(x, τ) + z2
x(x, τ)]dxdτ, ∀z ∈ X . X is a

Banach space with the norm ‖ · ‖X which can be found in [1]. Define a mapping F : ξ 7→ z,
∀ξ ∈ X , where z is the solution of (2.4). By Proposition 2.1, F is well defined. Next we prove
F is a contraction mapping on X . Let z1 = F(ξ1) and z2 = F(ξ2), ∀ξ1, ξ2 ∈ X . Put ξ = ξ1 − ξ2

and z = z1 − z2. From the linearity of (2.4), we know that z and ξ satisfy
zττ − zxx + αξτ + βξ = 0 in Q̃T1

0 ,

z(0, τ) = 0 on (0, T1),

z(x, 0) = 0, zτ(x, 0) = 0 in Ω(T).

(2.5)
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Multiplying both sides of the first equation of (2.5) by zτ, we get

(zττ − zxx)zτ = (−αξτ − βξ)zτ.

Furthermore,
1
2
(z2

τ + z2
x)τ − (zτzx)x = (−αξτ − βξ)zτ.

For any τ1 ∈ (0, T1], integrating the above equality on (0, τ1)×Ω(T − τ) and observing that
n(p) = (nx(p), nτ(p))> =

( 1√
1+k2 , k√

1+k2

)>, ∀p ∈ Γ̃R, we have

∫
Ω(T−τ1)

1
2
[
z2

τ(x, τ1) + z2
x(x, τ1)

]
dx +

∫
Γ̃R

[
1
2
(z2

τ + z2
x)

k√
1 + k2

− 1√
1 + k2

zτzx

]
ds

=
∫ τ1

0

∫
Ω(T−τ)

(−αξτ − βξ)zτdxdτ.

Due to k > 1, we get∫
Ω(T−τ1)

1
2
[
z2

τ(x, τ1) + z2
x(x, τ1)

]
dx

≤
∫ τ1

0

∫
Ω(T−τ)

(−αξτ − βξ)zτdxdτ

≤
∫

Q̃T1
0

(α2ξ
2
τ + β2ξ

2
)dxdτ +

∫ τ1

0

∫
Ω(T−τ)

1
2
[
z2

τ(x, τ) + z2
x(x, τ)

]
dxdτ.

Using Gronwall’s inequality, we arrive at∫
Ω(T−τ1)

1
2
[
z2

τ(x, τ1) + z2
x(x, τ1)

]
dx ≤ eτ1

∫
Q̃T1

0

(α2ξ
2
τ + β2ξ

2
)dxdτ. (2.6)

We start to estimate
∫

Q̃T1
0

ξ
2
dxdτ. Since ξ ∈ X , ξ(0, τ) = 0, a.e. τ ∈ (0, T1) and ξ(x, τ) =∫ x

0 ξy(y, τ)dy. Using Hölder’s inequality, we have

ξ
2
(x, τ) =

[∫ x

0
ξy(y, τ)dy

]2

≤ x
∫ x

0
ξ

2
y(y, τ)dy.

Moreover, 0 ≤ x ≤ 1 + k(T − τ), ∀τ ∈ [0, T1], so∫ 1+k(T−τ)

0
ξ

2
(x, τ)dx ≤

∫ 1+k(T−τ)

0
x
∫ x

0
ξ

2
y(y, τ)dydx

≤
∫ 1+k(T−τ)

0
[1 + k(T − τ)]

∫ 1+k(T−τ)

0
ξ

2
y(y, τ)dydx

≤ [1 + k(T − τ)]2
∫ 1+k(T−τ)

0
ξ

2
y(y, τ)dy.

Integrating the above inequality on (0, T1), one has∫
Q̃T1

0

ξ
2
(x, τ)dxdτ ≤ (1 + kT)2

∫
Q̃T1

0

ξ
2
x(x, τ)dxdτ. (2.7)

Using (2.7) in (2.6), one gets∫
Ω(T−τ1)

1
2
[
z2

τ(x, τ1) + z2
x(x, τ1)

]
dx ≤ eτ1

∫
Q̃T1

0

[
α2ξ

2
τ + β2(1 + kT)2ξ

2
x

]
dxdτ.
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Since the above inequality holds for any τ1 ∈ (0, T1], integrating it on (0, T1), we obtain∫
Q̃T1

0

1
2
[
z2

τ(x, τ) + z2
x(x, τ)

]
dxdτ ≤ T1eT1

∫
Q̃T1

0

[
α2ξ

2
τ + β2(1 + kT)2ξ

2
x

]
dxdτ

≤ T1eT1 max{α2, β2(1 + kT)2}
∫

Q̃T1
0

(ξ
2
τ + ξ

2
x)dxdτ.

This implies that

‖z‖X ≤
[
2T1eT1 max{α2, β2(1 + kT)2}

] 1
2 ‖ξ‖X .

We can choose T1 to be small such that ‖z‖X ≤ 1
2‖ξ‖X holds, i.e., ‖F(ξ1)− F(ξ2)‖X ≤ 1

2‖ξ1 −
ξ2‖X . For this T1, F is a contraction mapping on X . According to the contraction mapping
principle, we know that F has a fixed point in X which is a solution of (2.3) in Q̃T1

0 . Let
T0 = 0 and T1 = T1. For any Ti(i ≥ 0, i ∈ Z), we put Q̃Ti+1

Ti
= {(x, τ) ∈ R2 | 0 < x <

1+ k(T− τ), Ti < τ < Ti+1} and Xi = L2(Ti, Ti+1; H1
L(Ω(T− τ)))

⋂
H1(Ti, Ti+1; L2(Ω(T− τ))).

Going through the same process we used in Q̃T1
0 for Q̃Ti+1

Ti
, we can get ‖z‖Xi ≤

[
2(Ti+1 −

Ti)e(Ti+1−Ti) max{α2, β2(1 + k(T − Ti))
2}
] 1

2 ‖ξ‖Xi . Let Ti+1 − Ti ≤ T1, then we have
[
2(Ti+1 −

Ti)e(Ti+1−Ti) max{α2, β2(1 + k(T − Ti))
2}
] 1

2 ≤
[
2T1eT1 max{α2, β2(1 + kT)2}

] 1
2 , which implies

that F is a contraction mapping on every Xi. Continuing this process until Ti+1 ≥ T for some
i, we deduce that (2.3) admits a solution in Q̃k

T.

Step 2. We shall use an energy method for proving the uniqueness of the solution. Multiplying
both sides of the first equation of (2.3) by zτ, we have

(zττ − zxx + αzτ + βz)zτ = f zτ.

Further,
1
2
(z2

τ + z2
x + βz2)τ − (zxzτ)x + αz2

τ = f zτ.

For any T1 in (0, T], integrating the above equality on Q̃T1
0 and using the boundary condition

again, we get∫
Ω(T−T1)

1
2
[
z2

τ(x, T1) + z2
x(x, T1) + βz2(x, T1)

]
dx

≤
∫ T1

0

∫
Ω(T−τ)

( f zτ − αz2
τ)dxdτ +

∫
Ω(T)

1
2

[
(w1

T)
2 +

(
∂w0

T
∂x

)2

+ β(w0
T)

2

]
dx

≤
∫ T1

0

∫
Ω(T−τ)

[
1
2δ

f 2 +

(
δ

2
− α

)
z2

τ

]
dxdτ +

∫
Ω(T)

1
2

[
(w1

T)
2 +

(
∂w0

T
∂x

)2

+ β(w0
T)

2

]
dx.

If α > 0, we can choose δ
2 < α; if α = 0, we use Gronwall’s inequality again. Hence∫

Ω(T−T1)

1
2
[
z2

τ(x, T1) + z2
x(x, T1) + βz2(x, T1)

]
dx

≤ C(T)

[∫
Q̃k

T

f 2dxdτ +
∫

Ω(T)

1
2

[
(w1

T)
2 +

(
∂w0

T
∂x

)2

+ β(w0
T)

2

]
dx

]
.

(2.8)

Because (2.8) holds for every T1 ∈ [0, T], it is shown that the solution of (2.3) is unique. The
conclusion of Proposition 2.2 follows from the equivalence of wellposedness between (2.2) and
(2.3).

In Proposition 2.2, letting (w0
T, w1

T) = (0, 0), we have Proposition 1.1.
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3 The proof of Theorem 1.3

This section is devoted to establishing a hidden regularity result for (1.3) by the multiplier
technique and confirming the conclusion of Theorem 1.3. We divide our proof in three steps.

Proof. Step 1. Define a functional F : ∀ f ∈ L2(Qk
T),

F( f ) = 〈w(0), u1〉H1
L(Ω(0)),H−1(Ω(0)) −

∫
Ω(0)

(u0wt(0)− αu0w(0))dx∫
ΓL

f1wxds +
∫

ΓR

[
w f3 + f2

(−kwt − wx + kαw)√
1 + k2

]
ds,

(3.1)

where w is the solution of (1.3) with f . In (3.1), u0, u1, f1, f2 and f3 are known. It is clear that
F is a linear functional. Next, we are going to prove it is bounded.

Step 2. We multiply both sides of the first equation of (1.3) by wt and integrate it on Qk
T.

Observing that n(p) = (nx(p), nt(p))> = ( 1√
1+k2 , −k√

1+k2 )
>, ∀p ∈ ΓR, we have∫

Qk
T

f wtdxdt =
∫

Qk
T

(wtt − wxx − αwt + βw)wtdx

=
∫

Qk
T

[
1
2
(w2

t + w2
x + βw2)t − (wtwx)x − αw2

t

]
dxdt

= − E(0) +
∫

ΓR

[
1
2
(w2

t + w2
x + βw2)

−k√
1 + k2

− (wtwx)
1√

1 + k2

]
ds

− α
∫

Qk
T

w2
t dxdt,

(3.2)

where E(t) =
∫

Ω(t)
1
2

[
w2

t (x, t) + w2
x(x, t) + βw2(x, t)

]
dx.

From (2.8), when (w0
T, w1

T) = (0, 0), we know

E(t) ≤ C(T)
∫

Qk
T

f 2dxdt, ∀t ∈ [0, T]. (3.3)

Step 3. Multiplying both sides of the first equation of (1.3) by wx and integrating it on Qk
T,

we get∫
Qk

T

f wxdxdt =
∫

Qk
T

(wtt − wxx − αwt + βw)wxdx

=
∫

Qk
T

[
(wtwx)t −

1
2
(w2

t + w2
x − βw2)x − αwtwx

]
dxdt

= −
∫

Ω(0)
wt(x, 0)wx(x, 0)dx +

∫
ΓL

1
2

w2
xds

+
∫

ΓR

[
wtwx

−k√
1 + k2

− 1
2
(w2

t + w2
x − βw2)

1√
1 + k2

]
ds−α

∫
Qk

T

wtwxdxdt.

(3.4)

(3.4)− k× (3.2), yields∫
Qk

T

( f wx − k f wt)dxdt =−
∫

Ω(0)
wt(x, 0)wx(x, 0)dx +

∫
ΓL

1
2

w2
xds

+
∫

ΓR

[
−1

2
(w2

t + w2
x − βw2)

1√
1 + k2

+
1
2
(w2

t + w2
x + βw2)

k2
√

1 + k2

]
ds

+
∫

Qk
T

(−αwtwx + kαw2
t )dxdt + kE(0).
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Rearranging the above equality, we obtain

∫
ΓL

1
2

w2
xds +

∫
ΓR

[
(k2 − 1)

2
√

1 + k2
(w2

t + w2
x) +

(k2 + 1)β

2
√

1 + k2
w2
]

ds

=
∫

Qk
T

[
f (wx − kwt) + α(wtwx − kw2

t )
]

dxdt +
∫

Ω(0)
wt(x, 0)wx(x, 0)dx− kE(0)

≤ C(α, β, k, T)
∫

Qk
T

f 2dxdt,

(3.5)

where the last inequality in (3.5) is derived using (3.3). From (3.5), it follows that wx|ΓL ∈
L2(ΓL), w|ΓR , wt|ΓR and wx|ΓR ∈ L2(ΓR). We shall make the assumptions:(u0, u1) ∈ L2(Ω(0))×
H−1(Ω(0)), f1 ∈ L2(ΓL), f2 ∈ L2(ΓR) and f3 ∈ L2(ΓR). The definition for F( f ) in (3.1), together
with (3.5), indicates that there exists a positive constant C (only depending on α, β, k, T) such
that

|F( f )| ≤C(α, β, k, T)
[
‖(u0, u1)‖L2(Ω(0))×H−1(Ω(0))+‖ f1‖L2(ΓL)+‖ f2‖L2(ΓR)+‖ f3‖L2(ΓR)

]
‖ f ‖L2(Qk

T)
.

According to the Riesz’s theorem, one can find a unique u ∈ L2(0, T; L2(Ω(t))) such that (1.4)
holds. We claim that (1.2) has a unique solution u ∈ L2(0, T; L2(Ω(t))) in the sense of transpo-
sition. Without loss of generality, let g ∈ C∞

0 (0, T; H1
0(Ω(t))) and replace f with gt at the right

end of the first equation in (1.3). In the same manner we can get ∂u
∂t ∈ L2(0, T; H−1(Ω(t))).

4 The proof of Theorem 1.4

In this section, we prove Theorem 1.4 for the system (1.5) in Section 1.
Noticing that u|ΓR = 0 and ∂u

∂l |ΓR = 0 in (1.5), we can deduce that

ux|ΓR = ut|ΓR = 0.

Thus the boundary conditions in (1.5) are equivalent to

u|ΓL = 0, u|ΓR = ux|ΓR = ut|ΓR = 0. (4.1)

Inspired by [9], we introduce an auxiliary functional. For any ε > 0, let

Eε(u; t) = E(u; t) + ερ(u; t), ∀t ≥ 0,

where

ρ(u; t) =
∫ αk(t)

0
ut(x, t)u(x, t)dx.

Proof. First, suppose that the initial value (u0, u1) and the solution u are sufficiently smooth.
On account of

|ρ(u; t)| ≤
∫ αk(t)

0
|utu|dx ≤ 1

2

∫ αk(t)

0
(

1
β

u2
t + βu2 + u2

x)dx,

when β ≥ 1, put c1 = 1; when β < 1, put c1 = 1
β . Hence,

ε−1|Eε(u; t)− E(u; t)| = |ρ(u; t)| ≤ c1E(u; t). (4.2)
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Using the first equation in (1.5), we have

E
′
ε(u; t) = E

′
(u; t) + ερ

′
(u; t)

=
∫ αk(t)

0
(ututt + uxuxt + βuut)dx + ε

∫ αk(t)

0
(uttu + u2

t )dx

=
∫ αk(t)

0

[
ut(uxx − αut − βu) + uxuxt + βuut

]
dx

+ ε
∫ αk(t)

0

[
(uxx − αut − βu)u + u2

t
]
dx

=
∫ αk(t)

0

[
(utux)x − αu2

t
]
dx

+ ε
∫ αk(t)

0

[
(uxu)x − u2

x − αutu− βu2 + u2
t
]
dx,

where E
′
ε(u; t) represents the derivative of Eε(u; t) with respect to time.

Using (4.1), we arrive at

E
′
ε(u; t) = −α

∫ αk(t)

0
u2

t dx + ε
∫ αk(t)

0
(−u2

x − αutu− βu2 + u2
t )dx.

Furthermore,

ε
∫ αk(t)

0
(−u2

x − αutu− βu2 + u2
t )dx

≤ ε
∫ αk(t)

0

[
−1

2
u2

x +

(
β

2
u2 +

α2

2β
u2

t

)
− βu2 + u2

t

]
dx

= ε
∫ αk(t)

0

[
−1

2
(
u2

x + βu2 + u2
t
)
+

(
3
2
+

α2

2β

)
u2

t

]
dx

= −εE(u; t) + ε

(
3
2
+

α2

2β

) ∫ αk(t)

0
u2

t dx.

Letting ε ≤ α
3
2 +

α2

2β

= ε0, we have

E
′
ε(u; t) ≤ −εE(u; t).

On the other hand, when ε < 1
c1

, (4.2) implies that

(1− c1ε)E(u; t) ≤ Eε(u; t) ≤ (1 + c1ε)E(u; t), ∀t ≥ 0.

So
E
′
ε(u; t) ≤ −εE(u; t) ≤ − ε

1 + c1ε
Eε(u; t). (4.3)

Set ε1 = min
{ 1

c1
, ε0
}

. Using (4.2) combined with (4.3), we get

(1− c1ε)E(u; t) ≤ Eε(u; t) ≤ exp
{
− εt

1 + c1ε

}
Eε(u; 0)

≤ exp
{
− εt

1 + c1ε

}
(1 + c1ε)E(u; 0),
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∀0 < ε ≤ ε1, ∀t ≥ 0.
It means that

E(u; t) ≤ exp
{
− εt

1 + c1ε

}
1 + c1ε

1− c1ε
E(u; 0)

≤ 2
1− c1ε

exp
{
− εt

1 + c1ε

}
E(u; 0), ∀t ≥ 0.

(4.4)

Finally, using the approximation theory of smooth functions in (4.4), we obtain Theorem 1.4.

Remark 4.1. From the process of the proof of Theorem 1.4, we can see that if α ≤ 0, the energy
of (1.5) does not decrease; if β = 0, we are not able to get the desired decay estimate in the
same manner (because the Poincaré inequality does not hold for some uniform constant in
such an increasing domain).

Remark 4.2. In the case of 0 < k ≤ 1, by [5], we have that the wave equation is well-posed
with two Dirichlet boundary conditions. We can also put a damping αut (α > 0) and a
compensation βu (β > 0) into the homogeneous system to consider the energy estimate.
Although there will be some extra terms coming from boundary, we can deal with them as
well depending on the method mentioned above, and then get the exponential decay results.
Nevertheless, if the moving boundaries are general, things may be complicated and it may be
not easy for us to deal with those boundary terms and get the desired energy estimate based
on the method above.

5 Appendix. The proof of Proposition 2.1

We follow the notations in Section 2.

Proof. Taking a time transformation τ = T − t and letting z(x, τ) = w(x, T − τ), we change
(2.1) to the following system of z :

zττ − zxx = f in Q̃k
T,

z|ΓL = 0,

z(x, 0) = w0
T, zτ(x, 0) = w1

T in Ω(T).

(5.1)

We will denote by Q̃k
T the closure of Q̃k

T and by D(Q̃k
T) the space of infinitely differentiable

functions defined on Q̃k
T. Let (D(Q̃k

T))
2 be the quadratic space of D(Q̃k

T) and H = (L2(Q̃k
T))

2.
∀Y, W ∈ H, with Y = (y1, y2)> and W = (w1, w2)>, an inner product in H is defined to be

(Y, W)H =
∫

Q̃k
T

[
y1(x, t)w1(x, t) + y2(x, t)w2(x, t)

]
dxdt.

We use the symbol 〈·, ·〉R2 to denote the scalar product in R2. The notation | · |R2 means the
canonical norm induced by 〈·, ·〉R2 . Define an operator A :

D(A) = {W ∈ H | AW ∈ H},

AW =

(
∂w1
∂t −

∂w2
∂x

∂w2
∂t −

∂w1
∂x

)
, ∀W = (w1, w2)

> ∈ D(A).
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Figure 5.1: The graph of (5.1)

Let ‖W‖2
D(A) = ‖W‖

2
H + ‖AW‖2

H, ∀W ∈ D(A). It is easy to check that D(A) is a Hilbert space
with the norm ‖ · ‖D(A).

Using an argument similar to that in [4], we shall prove three lemmas. Notice that Qk
T is

different from the domain described in [4] and the distinction is ΓL. Consequently, the focus
of our proofs is on estimating the value of functions discussed below on ΓL.

Lemma 5.1. The following two propositions are equivalent.

(i) For every triplet (w0
T, w1

T, f )∈H1
L(Ω(T))×L2(Ω(T))×L2(Q̃k

T), find z∈L2(0, T; H1
L(Ω(T−τ)))

such that ∂z
∂τ ∈ L2(0, T; L2(Ω(T − τ))), and z satisfies:

zττ − zxx = f ,

z(·, 0) = w0
T, zτ(·, 0) = w1

T,
(5.2)

with the additional boundary conditions z
∣∣
ΓL

= ∂z
∂τ

∣∣
ΓL

= 0.

(ii) For every triplet (w0
T, w1

T, f ) ∈ H1
L(Ω(T))× L2(Ω(T))× L2(Q̃k

T), find Z = (z1, z2)> ∈ D(A),
such that

AZ = F, Z(·, 0) = Z0 and z2|ΓL = 0, (5.3)

where F and Z0 are given as follows

F =

(
0
f

)
, Z0 =

(
∂w0

T
∂x
w1

T

)
.

Proof. (i)⇒ (ii) If z satisfies (i), then let

Z :=

(
∂z
∂x
∂z
∂τ

)
.

According to the definition of a distributional derivative, we have(
∂

∂x

)(
∂z
∂τ

)
=

(
∂

∂τ

)(
∂z
∂x

)
. (5.4)

Using (5.2) combined with (5.4), we obtain AZ = F and Z ∈ D(A). From the initial condition
and boundary condition, we get

Z0 = Z(·, 0) =

(
∂z
∂x (·, 0)
∂z
∂τ (·, 0)

)
=

(
∂w0

T
∂x

w1
T

)
and z2|ΓL =

∂z
∂τ

∣∣∣∣
ΓL

= 0.
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(ii)⇒ (i) For any Z = (z1, z2)> ∈ D(A), let

z(x, τ) :=
∫ τ

0
z2(x, s)ds + w0

T(x). (5.5)

Since D(A)
⋂
(D(Q̃k

T))
2 is dense in D(A), one can choose a Zε = (zε

1, zε
2)
> ∈ D(A)

⋂
(D(Q̃k

T))
2

such that
Zε → Z(ε→ 0+) in D(A),

that is, Zε → Z in H, AZε → AZ in H.
Put

hε :=
∂zε

1
∂τ
− ∂zε

2
∂x

.

Since ∂z1
∂τ −

∂z2
∂x = 0, hε → 0(ε→ 0+) in L2(Q̃k

T). Thus

∂

∂x

∫ τ

0
zε

2(x, s)ds =
∫ τ

0

∂

∂x
zε

2(x, s)ds

=
∫ τ

0
[
∂zε

1
∂s

(x, s)− hε(x, s)]ds

= zε
1(x, τ)− zε

1(x, 0)−
∫ τ

0
hε(x, s)ds.

It follows that

lim
ε→0+

∂

∂x

∫ τ

0
zε

2(x, s)ds = z1(x, τ)− ∂w0
T

∂x
(x). (5.6)

Using (5.5) and (5.6), we have

∂z(x, τ)

∂x
=

∂

∂x

∫ τ

0
z2(x, s)ds +

∂w0
T

∂x
(x)

= lim
ε→0+

∂

∂x

∫ τ

0
zε

2(x, s)ds +
∂w0

T
∂x

(x)

= z1(x, τ)− ∂w0
T

∂x
(x) +

∂w0
T

∂x
(x)

= z1(x, τ).

From (5.5), it is easy to check that ∂z(x,τ)
∂τ = z2(x, τ). Therefore,

zττ − zxx =
∂z2

∂τ
− ∂z1

∂x
= f ,

where the last equality is obtained using the first equation in (5.3). Because of z2|ΓL = 0, by
(5.5), we deduce

z|ΓL =
∂z
∂τ

∣∣∣∣
ΓL

= 0,

and it is easy to see that
z(·, 0) = w0

T and zτ(·, 0) = w1
T.

Let us consider a special case of Lemma 5.1, that is, Z(·, 0) = 0. We put D0 = {Z ∈ D(A) |
Z(·, 0) = 0}. Furthermore, write DΓL

0 =
{

Z ∈ D0 | z2|ΓL = 0
}

.
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Lemma 5.2. For any F ∈ H, there exists one and only one Z ∈ DΓL
0 , such that

AZ = F.

Proof. We go through two steps to prove Lemma 5.2.

Step 1. Let Z = (z1, z2)> ∈ DΓL
0 . Using Green’s formula, we have

(AZ, Z)H =
∫

Q̃k
T

〈(
∂z1
∂τ −

∂z2
∂x

∂z2
∂τ −

∂z1
∂x

)
, ( z1

z2 )

〉
R2

dxdτ

=
∫

Q̃k
T

(
∂z1

∂τ
z1 −

∂z2

∂x
z1 +

∂z2

∂τ
z2 −

∂z1

∂x
z2

)
dxdτ

=
∫

Q̃k
T

[
1
2
(
z2

1 + z2
2
)

τ
−
(
z1z2

)
x

]
dxdτ

=
∫

Ω(0)

1
2

∣∣Z(x, T)
∣∣2
R2 dx +

∫
Γ̃R

[
1
2
(z2

1 + z2
2)nτ − z1z2nx

]
ds.

(5.7)

Notice that n(p) = (nx(p), nτ(p))> =
( 1√

1+k2 , k√
1+k2

)>, ∀p ∈ Γ̃R, when k ≥ 1,

∫
Γ̃R

[
1
2
(z2

1 + z2
2)

k√
1 + k2

− z1z2
1√

1 + k2

]
ds ≥ 0.

Replacing the upper limit T of the integral with τ in (5.7), we have∫
Ω(T−τ)

∣∣Z(x, τ)
∣∣2
R2 dx ≤ 2

∫ τ

0

∫
Ω(T−s)

〈AZ, Z〉R2 dxds.

According to the Cauchy–Schwartz inequality, it follows that∣∣〈AZ, Z〉R2

∣∣ ≤ ∣∣AZ
∣∣
R2

∣∣Z∣∣
R2 ≤

1
2
(
∣∣AZ

∣∣2
R2 +

∣∣Z∣∣2
R2),

and moreover,∫
Ω(T−τ)

∣∣Z(x, τ)
∣∣2
R2 dx ≤

∫ τ

0

∫
Ω(T−s)

∣∣AZ
∣∣2
R2 dxds +

∫ τ

0

∫
Ω(T−s)

∣∣Z∣∣2
R2 dxds

≤
∫ T

0

∫
Ω(T−s)

∣∣AZ
∣∣2
R2 dxds +

∫ τ

0

∫
Ω(T−s)

∣∣Z∣∣2
R2 dxds.

Using Gronwall’s inequality, we obtain∫
Ω(T−τ)

∣∣Z(x, τ)
∣∣2
R2 dx ≤ C(T)

∫
Q̃k

T

∣∣AZ
∣∣2
R2 dxdτ.

Integrating above inequality on (0, T), one get

‖Z‖2
L2(Q̃k

T)
≤ C(T)‖AZ‖2

L2(Q̃k
T)

, ∀Z ∈ DΓL
0 . (5.8)

We now see that (5.8) implies A is an injective mapping and

A : DΓL
0 → Im(A)

is an isomorphism. It is easy to check that A−1 is a bounded linear operator and continuous.
DΓL

0 is a closed subspace of D(A), thus Im(A) is closed in H from the continuity of A−1.
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Step 2. Suppose that V = (v1, v2)>∈ H. Im(A) is dense in H if

(AZ, V)H = 0, ∀Z ∈ DΓL
0 ⇒ V = 0. (5.9)

Next let us prove (5.9). Let Z ∈ (C∞
0 (Q̃k

T))
2. Then

(AV, Z)H =
∫

Q̃k
T

〈(
∂v1
∂τ −

∂v2
∂x

∂v2
∂τ −

∂v1
∂x

)
, ( z1

z2 )

〉
R2

dxdτ

=
∫

Q̃k
T

(
∂v1

∂τ
z1 −

∂v2

∂x
z1 +

∂v2

∂τ
z2 −

∂v1

∂x
z2

)
dxdτ

=
∫

Q̃k
T

−
(

v1
∂z1

∂τ
− v2

∂z1

∂x
+ v2

∂z2

∂τ
− v1

∂z2

∂x

)
dxdτ

= −
∫

Q̃k
T

〈(
∂z1
∂τ −

∂z2
∂x

∂z2
∂τ −

∂z1
∂x

)
, ( v1

v2 )

〉
R2

dxdτ

= −(AZ, V)H = 0.

Hence, AV = 0 and V ∈ D(A).
∀Z, V ∈ (D(Q̃k

T))
2,

(AZ, V)H + (Z, AV)H

=
∫

Q̃k
T

〈(
∂z1
∂τ −

∂z2
∂x

∂z2
∂τ −

∂z1
∂x

)
, ( v1

v2 )

〉
R2

dxdτ +
∫

Q̃k
T

〈
( z1

z2 ),
(

∂v1
∂τ −

∂v2
∂x

∂v2
∂τ −

∂v1
∂x

)〉
R2

dxdτ

=
∫

Q̃k
T

(
∂z1

∂τ
v1 −

∂z2

∂x
v1 +

∂z2

∂τ
v2 −

∂z1

∂x
v2 +

∂v1

∂τ
z1 −

∂v2

∂x
z1 +

∂v2

∂τ
z2 −

∂v1

∂x
z2

)
dxdτ

=
∫

Q̃k
T

[(
z1v1 + z2v2

)
τ
−
(
z2v1 + z1v2

)
x

]
dxdτ

=
∫

Ω(0)
〈Z(x, T), V(x, T)〉R2 dx−

∫
Ω(T)
〈Z(x, 0), V(x, 0)〉R2 dx

+
∫

ΓL

〈
1√

1 + k2
( z2

z1 ), (
v1
v2 )

〉
R2

ds

+
∫

Γ̃R

〈
1√

1 + k2

(
k −1
−1 k

)
( z1

z2 ), (
v1
v2 )

〉
R2

ds.

(5.10)

Using the density of (D(Q̃k
T))

2 ⋂D(A) in D(A), one can choose a set of functions {Vε}ε>0 ⊂
(D(Q̃k

T))
2, such that Vε → V in H, AVε → AV in H. Put Z ∈ (D(Q̃k

T))
2 ⋂DΓL

0 , with the
property S : supp Z ∩ Ω(0) is contained in a compact subset of Ω(0), and supp Z ∩ Σ is
contained in a compact subset of Σ. Letting ε→ 0+ in (5.10), from AV = 0 and the hypothesis
of (5.9), we have

0 =
∫

Ω(0)
〈Z(x, T), V(x, T)〉 dx +

∫
ΓL

〈
1√

1 + k2
( z2

z1 ), (
v1
v2 )

〉
ds

+
∫

Γ̃R

〈
1√

1 + k2

(
k −1
−1 k

)
( z1

z2 ), (
v1
v2 )

〉
ds,

(5.11)

where 〈·, ·〉 stands for a dual relation in form. Since
(

k −1
−1 k

)
(k > 1) is positive definite and

(5.11) holds for every Z ∈ (D(Q̃k
T))

2 ⋂DΓL
0 with the property S, we can deduce that

V|Ω(0) = 0, v2|ΓL = 0 and V|Γ̃R
= 0.
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Set
D̃ = {V ∈ D(A) | V|Ω(0) = 0, v2|ΓL = 0 and V|Γ̃R

= 0}.

For every V ∈ (D(Q̃k
T))

2 ⋂ D̃, replacing Z with V in (5.10) and using Hölder’s inequality, we
get

‖V‖H ≤ C(T)‖AV‖H.

Using the density of (D(Q̃k
T))

2 ⋂ D̃ in D̃, we see that the above inequality remains true for
every V ∈ D̃. From AV = 0, we deduce V = 0. Since Im(A) is dense and closed in H,
Im(A) = H. Furthermore, A is an isomorphism, so the proof is complete.

The following Lemma 5.3 tells us that (ii) of Lemma 5.1 holds.

Lemma 5.3. For every couple (Z0, F) ∈ (L2(Ω(T)))2×H, there exists one and only one Z ∈ D(A),
such that

AZ = F, Z(·, 0) = Z0 and z2|ΓL = 0.

Proof. As Z0 = (z01, z02)> ∈ (L2(Ω(T)))2, there exists a sequence of functions {Zη}η>0 ⊂
(D(Q̃k

T))
2 with Zη = (zη

1 , zη
2)
> such that

(1) lim
η→+0

‖Zη(·, 0)− Z0‖(L2(Ω(T)))2 = 0,

(2) zη
2 |ΓL = 0.

For any η > 0, using Lemma 5.2, one can find a Zη = (zη1, zη2)> ∈ DΓL
0 satisfying

AZη = F− AZη .

Thus A(Zη + Zη) = F.

Let Zε
η = (D(Q̃k

T))
2 ⋂DΓL

0 such that Zε
η → Zη in D(A). Replacing Z and V with Zε

η + Zη in
(5.10) and using conditions zη

2 |ΓL = 0 and zε
η2|ΓL = 0, we have

2
(

A(Zε
η + Zη), Zε

η + Zη
)
H

=
∫

Ω(0)

∣∣(Zε
η + Zη)(x, T)

∣∣2
R2 dx−

∫
Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx

+
∫

Γ̃R

〈
1√

1 + k2

(
k −1
−1 k

)( zε
η1+zη

1

zε
η2+zη

2

)
,
(

zε
η1+zη

1

zε
η2+zη

2

)〉
R2

ds.

Since
(

k −1
−1 k

)
(k > 1) is positive definite, we have

2
(

A(Zε
η + Zη), Zε

η + Zη
)
H ≥

∫
Ω(0)

∣∣(Zε
η + Zη)(x, T)

∣∣2
R2 dx−

∫
Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx. (5.12)

Changing upper limit T of the integral to τ in (5.12), we have

2
∫ τ

0

∫
Ω(T−s)

〈
A(Zε

η + Zη), Zε
η + Zη

〉
R2

dxds

≥
∫

Ω(T−τ)

∣∣(Zε
η + Zη)(x, τ)

∣∣2
R2 dx−

∫
Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx.



18 L. Y. Liu and H. Gao

Moreover, ∫
Ω(T−τ)

∣∣(Zε
η + Zη)(x, τ)

∣∣2
R2 dx

≤
∫

Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx +

∫ T

0

∫
Ω(T−τ)

∣∣A(Zε
η + Zη)

∣∣2
R2 dxdτ

+
∫ τ

0

∫
Ω(T−s)

∣∣(Zε
η + Zη)

∣∣2
R2 dxds.

Using Gronwall’s inequality, we have∫
Ω(T−τ)

∣∣(Zε
η + Zη)(x, τ)

∣∣2
R2 dx ≤ C(T)

(∫
Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx + ‖A(Zε

η + Zη)‖H
)

.

Integrating the above inequality on (0, T), we get

‖(Zε
η + Zη)‖2

H ≤ C(T)
(∫

Ω(T)

∣∣(Zε
η + Zη)(x, 0)

∣∣2
R2 dx + ‖A(Zε

η + Zη)‖H
)

.

Let ε→ 0+, it holds that

‖Zη + Zη‖2
H ≤ C(T)

(∫
Ω(T)

∣∣Zη(x, 0)
∣∣2
R2 dx + ||F||2H

)
.

When η is small enough, {Zη +Zη}η remains bounded in D(A). Since D(A) is a Hilbert space,
there exists a subsequence of {Zη + Zη}η , still remember {Zη + Zη}η , and Z ∈ D(A), such
that

Zη + Zη ⇀ Z in D(A).

Noticing that A(Zη + Zη) = F, we deduce

AZ = F, z2|ΓL = 0 and Z(·, 0) = Z0.

The uniqueness of the solution is easily obtained from Lemma 5.2.

Combining the results of Lemma 5.1 and Lemma 5.3, we claim that for every triplet
(w0

T, w1
T, f ) ∈ H1

L(Ω(T)) × L2(Ω(T)) × L2(Q̃k
T), system (5.1) admits a unique solution z ∈

L2(0, T; H1
L(Ω(T − τ))) and ∂z

∂τ ∈ L2(0, T; L2(Ω(T − τ))). Because of w(x, t) = w(x, T − τ) =

z(x, τ), it implies that under the same assumptions, system (2.1) admits a unique solution w ∈
L2(0, T; H1

L(Ω(t))). Moreover, ∂z
∂τ (x, τ) =− ∂w

∂t (x, T− τ) =− ∂w
∂t (x, t), so ∂w

∂t ∈ L2(0, T; L2(Ω(t))).
Until now, we finish the proof of Proposition 2.1.
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