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Abstract. The objective of this paper is to clarify the relationship between the C1-smooth
dependence of solutions to delay differential equations (DDEs) on initial histories (i.e.,
initial conditions) and delay parameters. For this purpose, we consider a class of DDEs
which include a constant discrete delay. The problem of C1-smooth dependence is fun-
damental from the viewpoint of the theory of differential equations. However, the above
mentioned relationship is not obvious because the corresponding functional differential
equations have the less regularity with respect to the delay parameter. In this paper, we
prove that the C1-smooth dependence on initial histories and delay holds by adopting
spaces of initial histories of Sobolev type, where the differentiability of translation in
Lp plays an important role.
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1 Introduction

Differential equations with constant discrete delays are used for mathematical models of vari-
ous dynamic phenomena (e.g., see [8, Section 21], [18, Chapter 2], and [9]). In many cases, the
precise values of delays are unknown. Therefore, it is important to study how the solutions
behave as functions of delay parameters in order to investigate the validity of such mathemat-
ical models. This is known as the delay parameter identification problem (e.g., see [13] and
[2]), where it is necessary to differentiate solutions to delay differential equations (DDEs) with
respect to delay parameters. Indeed, the above mentioned differentiability problem is funda-
mental from the viewpoint of the theory of differential equations. However, the smoothness
of the corresponding retarded functional differential equations (RFDEs) is closely related to
the regularity of initial histories. Therefore, it is not obvious which spaces of initial histories
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(called history spaces in this paper) should be chosen in order to obtain such differentiability
or, in other words, the C1-smooth dependence on delay.

The objective of this paper is to clarify the connection between the C1-smooth dependence
on initial histories and delay and the regularity of initial histories. For this purpose, we
consider a DDE

ẋ(t) = f (x(t), x(t− r)) (1.1)

and its initial value problem (IVP){
ẋ(t) = f (x(t), x(t− r)), t ≥ 0,

x(t) = φ(t), t ∈ [−R, 0]
(1.2)

for each (φ, r) ∈ C([−R, 0], RN)× [0, R]. Here R > 0 is the maximal delay which is constant,
r ∈ [0, R] is the delay parameter, N ≥ 1 is an integer, and f : RN ×RN → RN is a function.
C([−R, 0], RN) denotes the Banach space of continuous functions from [−R, 0] to RN with the
supremum norm

‖φ‖C[−R,0] := sup
θ∈[−R,0]

|φ(θ)|,

where | · | is a norm on RN . Under the local Lipschitz continuity of f , (1.2) has the unique
maximal solution

x(·; φ, r) : [−R, Tφ,r)→ RN

for 0 < Tφ,r ≤ ∞. We refer the reader to [12] as a general reference of the theory of RFDEs.
Then the problem of the C1-smooth dependence on initial histories and delay which will be
studied in this paper is the continuous differentiability of

(φ, r) 7→ x(·; φ, r)

in an appropriate sense.
The difficulty about the C1-smooth dependence on delay is the less smoothness of the

corresponding functional F (called history functional in this paper) given by

F(φ, r) := f (φ(0), φ(−r)) (1.3)

with respect to the delay parameter r. In fact, the function r 7→ F(φ, r) is not differentiable
for general φ ∈ C([−R, 0], RN) even if the function f : RN × RN → RN is smooth. This
phenomenon is similar to the lack of smoothness for history functionals corresponding to
state-dependent DDEs (see [25]). We refer the reader to [16] as a reference of the theory of
state-dependent DDEs.

It is natural to consider initial histories with better regularity in order to obtain the smooth
dependence on initial histories and delay. The method of consideration in [25] is to adopt
the Banach space C1([−R, 0], RN) of continuously differentiable functions from [−R, 0] to RN

with the C1-norm
‖φ‖C1[−R,0] := ‖φ‖C[−R,0] + ‖φ′‖C[−R,0]

as a history space. Then the compatibility condition given by

φ′(0) = f (φ(0), φ(−r))

for every initial history φ is necessary to keep the histories of solution of class C1, and there-
fore, the solution manifold defined by

X f ,r = {φ ∈ C1([−R, 0], RN) : φ′(0) = f (φ(0), φ(−r))}
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arises as the set of initial histories. However, the framework of the solution manifold is not
suitable for the C1-smooth dependence on delay because X f ,r depends on r.

The first study of the C1-smooth dependence on initial histories and delay seems to be done
by Hale & Ladeira [11]. Their idea is to use the history space C0,1([−R, 0], RN) endowed with
theW1,1-norm. Here C0,1([−R, 0], RN) denotes the set of Lipschitz continuous functions from
[−R, 0] to RN , and W1,p-norm for 1 ≤ p < ∞ is defined as follows for absolutely continuous
functions:

‖φ‖W1,p[−R,0] :=
(
|φ(−R)|p +

∫ 0

−R
|φ′(θ)|p dθ

) 1
p

with the almost everywhere derivative φ′ of φ. The contribution in [11] is the adoption of
the Lipschitz continuous regularity for the C1-smooth dependence on delay. In this case, the
C1-smooth dependence on delay is not trivial because the history functional given in (1.3) is
not differentiable with respect to r for general φ ∈ C0,1([−R, 0], RN). It should be noticed
that the differentiability of r 7→ x(·; φ, r) at r = 0 is not discussed in [11]. The continuous
differentiability of

r 7→ x(t; φ, r) ∈ RN

for the time-dependent delay function r = r(·) is studied by Hartung [15] by assuming φ ∈
C0,1([−R, 0], RN), where the positivity r(t) > 0 is also assumed.

The method of the proof of the C1-smooth dependence on initial histories and delay given
in [11] is the fixed point argument, which is standard in the literature (ref. [12]). That is,
IVP (1.2) is converted to the fixed point problem through the integral equation. Then the C1-
smooth dependence on initial histories and delay is obtained from the C1-uniform contraction
theorem (e.g., see [6, Theorem 2.2 in Chapter 2]), where history and delay are parameters.
However, the history space (

C0,1([−R, 0], RN), ‖ · ‖W1,1[−R,0]

)
is not a Banach space but a quasi-Banach space in their terminology. Therefore, the usual C1-
uniform contraction theorem cannot be applicable, and it is necessary to invent the C1-uniform
contraction theorem for such quasi-Banach spaces ([11, Theorem 2.7]). It should be noticed
that the Banach space C0,1([−R, 0], RN) endowed with the C0,1-norm

‖φ‖C0,1[−R,0] := max{‖φ‖C[−R,0], lip(φ)},

where lip(φ) is the Lipschitz constant of φ, is not suitable for a history space (see [20]).
Hale & Ladeira [11] gives an insight into the C1-smooth dependence problem as mentioned

above. However, the following questions which are related each other should arise:

• What is the essentiality of the Lipschitz continuous regularity for the C1-smooth depen-
dence on initial histories and delay?

• What happens ifW1,p([−R, 0], RN) (1 ≤ p < ∞) is chosen as a history space?

Here W1,p([−R, 0], RN), which will be called a history space of Sobolev type in this paper, is the
linear space of absolutely continuous functions from [−R, 0] to RN whose almost everywhere
derivatives belong to Lp([−R, 0], RN) endowed with the W1,p-norm. When p = 2 and the
norm | · | on RN is the Euclidean norm,W1,2([−R, 0], RN) becomes a Hilbert space. This is an
advantageous fact for numerical analysis.
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In this paper, we show that W1,p([−R, 0], RN) can be chosen as a history space for the
C1-smooth dependence on initial histories and delay. It becomes clear that the differentiability
of translation in Lp plays an important role in the proof. The method of the proof is standard
but does not require the Lipschitz continuity of initial histories, which in fact make the proof
simple. This is the reason why W1,p([−R, 0], RN) is appropriate and gives answer to the
above questions. We also prove that the solution semiflow with a delay parameter, which is
the solution semiflow generated by the IVPs of the extended system{

ẋ(t) = f (x(t), x(t− r(t))),

ṙ(t) = 0,
(1.4)

is a C1-maximal semiflow. We note that the extended system (1.4) is a special case of the
following coupled system of DDE and ODE (see [1] and [4]){

ẋ(t) = f (x(t), x(t− r(t))),

ṙ(t) = g(x(t), r(t)),

where g : RN ×R → R is a function. The extended system (1.4) also appears in bifurcation
problems (ref. [19]).

Finally, we give another several comments about previous studies. (i) In [11], the function
f is required to be of class C2 for the C1-smooth dependence on initial histories and delay.
The results which will be given in this paper require that f is of class C1 for such C1-smooth
dependence, which is same as [15]. (ii) It is mentioned in [11, Section 4] that similar results
hold with the same proofs when the delay is time-dependent. However, this is incorrect
because a simple counter example can be given as follows: We consider the function f (x, y) =
y. Let 0 < T < R. For each c ∈ [0, R− T], we define rc ∈ C(R, [0, R]) by

rc(t) =


c (t ≤ 0),

t + c (0 ≤ t ≤ T),

T + c (t ≥ T).

Then it can be shown that [0, R− T] 3 c 7→ rc ∈ C(R, [0, R]) is differentiable but the solution

x(t; φ, rc) = φ(0) +
∫ t

0
φ(s− rc(s))ds = φ(0) + tφ(−c) (∀t ∈ [0, T])

is not differentiable with respect to c for general φ ∈ C0,1([−R, 0], RN). This example can be
considered to be a critical case in the sense that the delayed argument function

t 7→ t− rc(t)

is constant. In [15], the C1-smooth dependence on time-dependent delay with the Lipschitz
continuous regularity of initial histories is studied under some strict monotonicity condition
of the delayed argument function. See also [17] for state-dependent DDEs. (iii) In [2], the
authors study the C1-smoothness of the function

(0, R] 3 r 7→ x(t; φ, r) ∈ RN

without citing the previous studies. It seems that the argument relies on the differentiability
of translation in L2 assuming initial histories belong to H1,∞, however, the proof of the differ-
entiability and the definition of H1,∞ are not given. The assumption given in [2] is also more
stronger, namely, the boundedness of the norm of the Fréchet derivative of f is assumed.
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This paper is organized as follows. In Section 2, we define history spaces of Sobolev type
and investigate their fundamental properties. Section 3 are divided into two parts: a simple
case (Subsection 3.1) and a general case (Subsection 3.2). In Subsection 3.1, we concentrate
our consideration on a DDE

ẋ(t) = f (x(t− r)) (1.5)

and its IVP {
ẋ(t) = f (x(t− r)), t ≥ 0,

x(t) = φ(t), t ∈ [−R, 0]
(1.6)

for each (φ, r) ∈ C([−R, 0], RN)× (0, R]. Then the problem of the C1-smooth dependence on
delay is very simplified, and the result directly follows by the continuity and differentiability
of translation in Lp. In Subsection 3.2, we consider a general class of DDEs of the form given
in (1.1). Here we prove the main results of this paper, which consist of the C1-smooth de-
pendence on initial histories and delay (Theorem 3.15) and the C1-smoothness of the solution
semiflow with a delay parameter (Theorem 3.18). As mentioned above, the differentiability of
translation in Lp plays an important role in the proof.

We have two appendices. In Appendix A, we give a proof of this differentiability result
(Corollary A.4) together with the discussion about the estimate of the double integral for
the translation of Lp-functions (Corollary A.2). The latter is also used in the proof of the C1-
smooth dependence result. We give the proof and some fundamental properties about Fréchet
differentiability to keep this paper self-contained. In Appendix B, we give definitions about
maximal semiflows and prove the theorem (Theorem B.13) which ensures that a maximal
semiflow is of class C1.

2 Preliminary: History spaces of Sobolev type

Let R > 0 be a constant and N ≥ 1 be an integer. The linear space of all functions from [−R, 0]
to RN is denoted by Map([−R, 0], RN). Let R+ denote the set of all nonnegative real numbers.

Definition 2.1 (History). Let R > 0 be a given constant. Let a < b be real numbers so
that a + R < b and γ : [a, b] → RN be a function. For every t ∈ [a + R, b], the function
Rtγ ∈ Map([−R, 0], RN) defined by

Rtγ : [−R, 0] 3 θ 7→ γ(t + θ) ∈ RN

is called the history of γ at t.

Definition 2.2 (History space). A linear subspace H ⊂ Map([−R, 0], RN) is called a history
space with the past interval [−R, 0] if the topology of H is given so that the linear operations
on H are continuous.

Definition 2.3 (Static prolongation). For each φ ∈ Map([−R, 0], RN), the function φ̄ :
[−R,+∞)→ RN defined by

φ̄(t) =

{
φ(t) (t ∈ [−R, 0]),

φ(0) (t ∈ R+)

is called the static prolongation of φ.
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Definition 2.4 (History space of Sobolev type). Let 1 ≤ p < ∞ and a < b be real numbers. For
each absolutely continuous function x : [a, b]→ RN , let

‖x‖W1,p[a,b] :=
(
|x(a)|p + ‖x′‖p

Lp[a,b]

) 1
p ,

where x′ denotes the almost everywhere derivative of x. Let W1,p([a, b], RN) denote the
normed space {

x ∈ AC([a, b], RN) : x′ ∈ Lp([a, b], RN)
}

endowed with the norm ‖ · ‖W1,p[a,b]. The history space W1,p([−R, 0], RN) is called the history
space of Sobolev type.

Remark 2.5. History spaces of Sobolev type appear for the investigation of neutral delay
differential equations. See [7] for p = 1 and [22] for 1 ≤ p < ∞ for examples.

Lemma 2.6. Let 1 ≤ p < ∞ and a < b be real numbers. We define a norm ‖ · ‖ onW1,p([a, b], RN)

by
‖x‖ := ‖x‖C[a,b] + ‖x′‖Lp[a,b].

Then ‖ · ‖ is equivalent to ‖ · ‖W1,p[a,b].

Proof. Let x ∈ W1,p([a, b], RN).

Step 1. By the relationships between `p-norms, we have

‖x‖W1,p[a,b] =
(
|x(a)|p + ‖x′‖p

Lp[a,b]

) 1
p ≤ |x(a)|+ ‖x′‖Lp[a,b] ≤ ‖x‖.

Step 2. By the fundamental theorem of calculus for absolutely continuous functions, we have

|x(t)| ≤ |x(a)|+
∫ t

a
|x′(s)|ds ≤ |x(a)|+ ‖x′‖L1[a,b]

for all t ∈ [a, b]. This shows

‖x‖C[a,b] ≤ |x(a)|+ (b− a)
1
q ‖x′‖Lp[a,b],

where q is the Hölder conjugate of p. Therefore,

‖x‖ = ‖x‖C[a,b] + ‖x′‖Lp[a,b]

≤
[
(b− a)

1
q + 1

]
(|x(a)|+ ‖x′‖Lp[a,b])

≤ 2
1
q
[
(b− a)

1
q + 1

]
‖x‖W1,p[a,b],

where the relation between `p-norms is used.
By the above steps, the conclusion holds.

Remark 2.7. Lemma 2.6 means that a sequence (xn)∞
n=1 in W1,p([a, b], RN) converges to x if

and only if xn → x uniformly and x′n → x′ in Lp.

Lemma 2.8. Let 1 ≤ p < ∞ and a < b be real numbers. ThenW1,p([a, b], RN) is a Banach space.
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Proof. Let (xn)∞
n=1 be a Cauchy sequence in W1,p([a, b], RN). Then (xn)∞

n=1 is a Cauchy se-
quence in C([a, b], RN), and (x′n)∞

n=1 is a Cauchy sequence in Lp([a, b], RN). Since these spaces
are complete, there are x ∈ C([a, b], RN) and y ∈ Lp([a, b], RN) such that

‖x− xn‖C[a,b] → 0 and ‖y− x′n‖Lp[a,b] → 0

as n → ∞. By the fundamental theorem of calculus for absolutely continuous functions, we
have

xn(t) = xn(a) +
∫ t

a
x′n(s)ds (t ∈ [a, b]).

Then by taking the limit as n→ ∞, we obtain

x(t) = x(a) +
∫ t

a
y(s)ds (x ∈ [a, b])

because ∣∣∣∣∫ t

a
(y(s)− x′n(s))ds

∣∣∣∣ ≤ ‖y− x′n‖L1[a,b]

≤ (b− a)
1
q ‖y− x′n‖Lp[a,b].

Here q is the Hölder conjugate of p. This shows x ∈ AC([a, b], RN) and x′ = y ∈ Lp([a, b], RN).
Therefore, (xn)∞

n=1 converges to x inW1,p([a, b], RN).

Lemma 2.9. Let 1 ≤ p < ∞ and R, T > 0 be given. Then for all x ∈ W1,p([−R, T], RN), the orbit

[0, T] 3 t 7→ Rtx ∈ W1,p([−R, 0], RN)

is continuous.

Proof. Let t0 ∈ [0, T] be fixed. For all t ∈ [0, T], we have

‖Rtx− Rt0 x‖p
W1,p[−R,0] = |x(t− R)− x(t0 − R)|p +

∫ 0

−R
|x′(t + θ)− x′(t0 + θ)|p dθ,

where the right-hand side converges to 0 as t→ t0 by the continuity of x and by the continuity
of translation in Lp.

Lemma 2.10. Let 1 ≤ p < ∞ and R, T > 0 be given. Then the family of history operators given by

W1,p([−R, T], RN) 3 x 7→ Rtx ∈ W1,p([−R, 0], RN),

where t ∈ [0, T], is pointwise equicontinuous.

Proof. It is sufficient to show the equicontinuity at 0 because the maps are linear. Let t ∈ [0, T].
Then for all x ∈ W1,p([−R, T], RN),

‖Rtx‖C[−R,0] + ‖(Rtx)′‖Lp[−R,0] = sup
θ∈[−R,0]

|x(t + θ)|+
(∫ 0

−R
|x′(t + θ)|p dθ

) 1
p

≤ ‖x‖C[−R,T] + ‖x′‖Lp[−R,T].

This shows the conclusion.
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Remark 2.11. By the preceding two lemmas,

[0, T]×W1,p([−R, T], RN) 3 (t, x) 7→ Rtx ∈ W1,p([−R, 0], RN)

is continuous.

Lemma 2.12 (Continuity of the prolongation operator). Let 1 ≤ p < ∞ and R, T > 0 be given.
Then the prolongation operator given by

W1,p([−R, 0], RN) 3 φ 7→ φ̄|[−R,T] ∈ W1,p([−R, T], RN)

is a continuous linear map. In particular,∥∥φ̄|[−R,T]
∥∥
W1,p[−R,T] = ‖φ‖W1,p[−R,0]

holds for all φ ∈ W1,p([−R, 0], RN).

Proof. For every φ ∈ W1,p([−R, 0], RN), we have

∥∥φ̄|[−R,T]
∥∥
W1,p[−R,T] =

(∣∣φ̄(−R)
∣∣p + ∫ T

−R

∣∣φ̄′(t)∣∣p dt
) 1

p

=

(
|φ(−R)|p +

∫ 0

−R
|φ′(θ)|p dt

) 1
p

= ‖φ‖W1,p[−R,0].

Therefore, the conclusion holds.

3 Main results

In the proofs, the function space W1,p([−R, 0], RN) is abbreviated as W1,p[−R, 0]. This is
similar to other function spaces.

3.1 A special case

Let N ≥ 1 be an integer, f : RN → RN be a continuous function, and R > 0 be a constant. We
consider a DDE (1.5)

ẋ(t) = f (x(t− r))

and its IVP (1.6) {
ẋ(t) = f (x(t− r)), t ≥ 0,

x(t) = φ(t), t ∈ [−R, 0]

for each (φ, r) ∈ C([−R, 0], RN)× (0, R]. The solution x(·; φ, r) of (1.6) is expressed by

x(t; φ, r) = φ(0) +
∫ t

0
f (φ(s− r))ds

on the interval [0, r], which is continued to [−R,+∞) by the method of steps. Let | · | be a
norm on RN . The operator norm of a linear map L : RN → RN with respect to the above norm
| · | will be denoted by ‖L‖.



C1-smooth dependence on initial conditions and delay 9

Proposition 3.1. Let 1 ≤ p < ∞ and 0 < T < R be given. Let φ ∈ W1,p([−R, 0], RN). If f is of
class C1, then

[T, R] 3 r 7→ x(·; φ, r) ∈ W1,p([−R, T], RN)

is a continuously differentiable function whose derivative is given by(
∂

∂r
x(·; φ, r)

)
(t) = Bφ,r(t) :=

{
0 (t ∈ [−R, 0]),

−
∫ t

0 ( f ◦ φ)′(s− r)ds (t ∈ [0, T])

inW1,p([−R, T], RN).

Proof. Since f is locally Lipschitz continuous, f ◦ φ : [−R, 0] → RN is also absolutely continu-
ous. Then f ◦ φ is differentiable almost everywhere, and

( f ◦ φ)′(θ) = D f (φ(θ))φ′(θ)

holds for almost all θ ∈ [−R, 0]. Therefore,∫ 0

−R
|( f ◦ φ)′(θ)|p dθ ≤

∫ 0

−R
‖D f (φ(θ))‖p|φ′(θ)|p dθ

≤ sup
θ∈[−R,0]

‖D f (φ(θ))‖p · ‖φ′‖p
Lp[−R,0],

which shows f ◦ φ ∈ W1,p([−R, 0], RN).
Let r0 ∈ [T, R] be fixed. Then for all r ∈ [R, T] and all t ∈ [−R, T],

1
r− r0

(x(t; φ, r)− x(t; φ, r0))− Bφ,r0(t)

=

{
0 (t ∈ [−R, 0]),

1
r−r0

∫ t
0

(
f (φ(s− r))− f (φ(s− r0)) + (r− r0)( f ◦ φ)′(s− r0)

)
ds (t ∈ [0, T]).

Therefore,∥∥∥∥ 1
r− r0

(x(·; φ, r)− x(·; φ, r0))− Bφ,r0

∥∥∥∥
W1,p[−R,T]

=
1

|r− r0|

(∫ T

0
|( f ◦ φ)(t− r)− ( f ◦ φ)(t− r0) + (r− r0)( f ◦ φ)′(t− r0)|dt

) 1
p

→ 0

as r → r0 by the differentiability of translation in Lp (Corollary A.4). The continuity of the
derivative also holds because

‖Bφ,r − Bφ,r0‖W1,p[−R,T] =

(∫ T

0
|( f ◦ φ)′(t− r)− ( f ◦ φ)′(t− r0)|p dt

) 1
p

→ 0

as r → r0 by the continuity of translation in Lp.

Proposition 3.2. Let 1 ≤ p < ∞ and 0 < T < R be given. Suppose that f is of class C1. Then the
family of functions

W1,p([−R, 0], RN) 3 φ 7→ Bφ,r ∈ W1,p([−R, T], RN),

where r ∈ [T, R], is pointwise equicontinuous.



10 J. Nishiguchi

Proof. Let φ0 ∈ W1,p([−R, 0], RN) be fixed and r ∈ [T, R] be a parameter. Then we have

|( f ◦ φ)′(t− r)− ( f ◦ φ0)
′(t− r)|

≤ ‖D f (φ(t− r))− D f (φ0(t− r))‖|φ′(t− r)|
+ ‖D f (φ0(t− r))‖|φ′(t− r)− φ′0(t− r)|

for all φ ∈ W1,p([−R, 0], RN) and all t ∈ [0, T]. Therefore, by the Minkowski inequality,

‖Bφ,r − Bφ0,r‖W1,p[−R,T]

=

(∫ T

0
|( f ◦ φ)′(t− r)− ( f ◦ φ0)

′(t− r)|p dt
) 1

p

≤
(∫ T

0
‖D f (φ(t− r))− D f (φ0(t− r))‖p|φ′(t− r)|p dt

) 1
p

+

(∫ T

0
‖D f (φ0(t− r))‖p|φ′(t− r)− φ′0(t− r)|p dt

) 1
p

≤ sup
θ∈[−R,0]

‖D f (φ(θ))− D f (φ0(θ))‖ · ‖φ‖W1,p[−R,0]

+ sup
θ∈[−R,0]

‖D f (φ0(θ))‖ · ‖φ− φ0‖W1,p[−R,0].

The right-hand side converges to 0 as ‖φ − φ0‖W1,p[−R,0] → 0 uniformly in r because D f is
uniformly continuous on any closed and bounded set.

Corollary 3.3. Let 1 ≤ p < ∞ and 0 < T < R be given. Suppose that f is of class C1. Then

W1,p([−R, 0], RN)× [T, R] 3 (φ, r) 7→ Bφ,r ∈ W1,p([−R, T], RN)

is continuous.

Proof. Let (φ0, r0) ∈ W1,p[−R, 0]× [T, R] be fixed. Then for all (φ, r) ∈ W1,p[−R, 0]× [T, R],
we have

‖Bφ,r − Bφ0,r0‖W1,p[−R,T] ≤ ‖Bφ,r − Bφ0,r‖W1,p[−R,T] + ‖Bφ0,r − Bφ0,r0‖W1,p[−R,T],

where the right-hand side converges to 0 as (φ, r)→ (φ0, r0) from the above propositions.

3.2 A general case

Let N ≥ 1 be an integer, f : RN × RN → RN be a continuous function, and R > 0 be a
constant. We consider a DDE (1.1)

ẋ(t) = f (x(t), x(t− r))

and its IVP (1.2) {
ẋ(t) = f (x(t), x(t− r)), t ≥ 0,

x(t) = φ(t), t ∈ [−R, 0]

for each (φ, r) ∈ C([−R, 0], RN)× [0, R]. We note that the case r = 0 is permitted. Let | · | be a
norm on RN . The following product norm on RN ×RN

‖(x1, x2)‖ := |x1|+ |x2|



C1-smooth dependence on initial conditions and delay 11

will be used. The operator norms of linear maps L1 : RN ×RN → RN and L2 : RN → RN with
respect to the corresponding norms are denoted by ‖L1‖ and ‖L2‖, respectively.

Let
y(t) := x(t)− φ̄(t) (t ∈ [0, T])

for some T > 0. Then x is a solution of (1.2) on [0, T] if and only if y satisfies

y(t) = T (y, φ, r)(t)

:=

{
0 (t ∈ [−R, 0]),∫ t

0 f
(
(y + φ̄)(s), (y + φ̄)(s− r)

)
ds (t ∈ [0, T]).

The above argument means that y is a fixed point of T (·, φ, r) if and only if x := y + φ̄ is a
solution of (1.2).

For any continuous y, T (y, φ, r) is absolutely continuous and

‖T (y, φ, r)‖W1,p[−R,T] =

(∫ T

0

∣∣ f ((y + φ̄)(t), (y + φ̄)(t− r)
)∣∣p dt

) 1
p

< ∞

because the integrand is continuous.

3.2.1 Uniform contraction

Notation 1. Let T > 0 be given. For each δ > 0, let

Γ(δ) :=
{

γ ∈ C([−R, T], RN) : R0γ = 0, ‖γ‖C[−R,T] < δ
}

,

Γ̄(δ) :=
{

γ ∈ C([−R, T], RN) : R0γ = 0, ‖γ‖C[−R,T] ≤ δ
}

,

which are considered to be metric spaces with the metric induced by supremum norm.

Notation 2. Let T > 0 be given. For each 1 ≤ p < ∞ and δ > 0, let

Γ1,p(δ) :=
{

γ ∈ W1,p([−R, T], RN) : R0γ = 0, ‖γ‖W1,p[−R,T] < δ
}

,

Γ̄1,p(δ) :=
{

γ ∈ W1,p([−R, T], RN) : R0γ = 0, ‖γ‖W1,p[−R,T] ≤ δ
}

,

which are considered to be metric spaces with the metric induced byW1,p-norm.

Lemma 3.4. Let 1 ≤ p < ∞, B ⊂ C([−R, 0], RN) be a bounded set, and δ > 0. Then for all
sufficiently small T > 0, the family of maps

T (·, φ, r) : Γ̄(δ)→ Γ1,p(δ),

where (φ, r) ∈ B× [0, R], is well-defined.

Proof. Let y ∈ Γ̄(δ). Then for all (φ, r) ∈ B× [0, R],

sup
t∈[0,T]

∥∥((y + φ̄)(t), (y + φ̄)(t− r)
)∥∥ = sup

t∈[0,T]
(|(y + φ̄)(t)|+ |(y + φ̄)(t− r)|)

≤ 2(‖y‖C[−R,T] + ‖φ‖C[−R,0]).
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Since f is bounded on any bounded set of RN ×RN , there is M > 0 such that

sup
t∈[0,T]

∣∣ f ((y + φ̄)(t), (y + φ̄)(t− r)
)∣∣ ≤ M

for all (φ, r) ∈ B× [0, R]. By choosing 0 < T < (δ/M)p,

‖T (y, φ, r)‖W1,p[−R,T] ≤
(∫ T

0
Mp dt

) 1
p

= MT
1
p < δ

holds for all such (φ, r). This shows the conclusion.

Lemma 3.5. Let 1 ≤ p < ∞, B ⊂ C([−R, 0], RN) be a bounded set, and δ > 0. If f is locally
Lipschitz continuous, then for all sufficiently small T > 0, the family of maps

T (·, φ, r) : Γ̄(δ)→ Γ1,p(δ),

where (φ, r) ∈ B× [0, R], is a well-defined uniform contraction.

Proof. The well-definedness follows by the preceding lemma. Since f is Lipschitz continuous
on any bounded set of RN ×RN , there is L > 0 such that∣∣ f ((y1 + φ̄)(t), (y1 + φ̄)(t− r)

)
− f

(
(y2 + φ̄)(t), (y2 + φ̄)(t− r)

)∣∣
≤ L(|(y1 − y2)(t)|+ |(y1 − y2)(t− r)|)
≤ 2L‖y1 − y2‖C[−R,T]

for all y1, y2 ∈ Γ̄(δ), φ ∈ B, and r ∈ [0, R]. This implies that we have

‖T (y1, φ, r)− T (y2, φ, r)‖W1,p[−R,T] ≤
(∫ T

0
(2L‖y1 − y2‖C[−R,T])

p dt
) 1

p

≤ 2LT
1
p · ‖y1 − y2‖C[−R,T]

for all such (y1, φ, r) and (y2, φ, r). Therefore, the family of maps becomes a well-defined
uniform contraction by choosing sufficiently small 0 < T < 1/(2L)p.

Remark 3.6. The uniform contraction means that there is 0 < c < 1 such that for all (φ, r) ∈
B× [0, R] and y1, y2 ∈ Γ̄(δ),

‖T (y1, φ, r)− T (y2, φ, r)‖W1,p[−R,T] ≤ c · ‖y1 − y2‖C[−R,T]

holds. Therefore, the families of maps

T (·, φ, r) : Γ̄(δ)→ Γ(δ),

T (·, φ, r) : Γ̄1,p(δ)→ Γ1,p(δ),

where (φ, r) ∈ B× [0, R], are also uniform contractions. We note that the domains of the two
operators correspond to different T.

Proposition 3.7. Let B ⊂ C([−R, 0], RN) be a bounded set. If f is locally Lipschitz continuous,
then there exists T > 0 such that for every (φ, r) ∈ B × [0, R], IVP (1.2) has the unique solution
x : [−R, T]→ RN .
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Proof. Let δ > 0 be given.

Step 1. We choose M, T > 0 so that MT ≤ δ and for all (y, φ) ∈ Γ̄(δ)× B and r ∈ [0, R],

sup
t∈[0,T]

∣∣ f ((y + φ̄)(t), (y + φ̄)(t− r)
)∣∣ ≤ M.

Let (φ, r) ∈ B × [0, R] be given. Then for every solution x : [−R, T] → RN of IVP (1.2), the
function y : [−R, T]→ RN defined by y = x− φ̄ necessarily belongs to Γ̄(δ).

Step 2. From the preceding lemma, there is sufficiently small T > 0 such that the family of
maps

T (·, φ, r) : Γ̄(δ)→ Γ̄(δ),

where (φ, r) ∈ B × [0, R], is a uniform contraction. Then the Banach fixed point theorem
implies that for each (φ, r) ∈ B× [0, R], T (·, φ, r) has the unique fixed point y(·, φ, r) ∈ Γ̄(δ)

because Γ̄(δ) is a complete metric space. Then x : [−R, T]→ RN defined by

x := y(·, φ, r) + φ̄

is a solution of IVP (1.2). The uniqueness follows by Step 1.

Remark 3.8. Under the assumption of the local Lipschitz continuity of f , IVP (1.2) has the
unique maximal solution

x(·; φ, r) : [−R, Tφ,r)→ RN , where 0 < Tφ,r ≤ ∞,

for every (φ, r) ∈ C([−R, 0], RN)× [0, R].

3.2.2 C1-smoothness with respect to delay

Let 1 ≤ p < ∞ and T > 0 be given. The following notation will be used.

Notation 3. For each (y, φ) ∈ C[−R, T]× C[−R, 0], r ∈ [0, R], and t ∈ [0, T], let

ρ(y, φ, r, t) :=
(
(y + φ̄)(t), (y + φ̄)(t− r)

)
.

Then
ρ(y1, φ1, r, t)− ρ(y2, φ2, r, t) = ρ(y1 − y2, φ1 − φ2, r, t)

holds.

Lemma 3.9. Let (y, φ) ∈ C([−R, T], RN)× C([−R, 0], RN) and r0 ∈ [0, R] be fixed. If f is of class
C1, then for r ∈ [0, R],

sup
t∈[0,T]

‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖ → 0

as r → r0.

Proof. Since
‖ρ(y, φ, r, t)‖ ≤ 2(‖y‖C[−R,T] + ‖φ‖C[−R,0])

holds for all r ∈ [0, R] and t ∈ [0, T], ρ(y, φ, r, t) is contained in some bounded set B for all
such r, t.
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Let ε > 0. The uniform continuity of D f on B implies that there is δ1 > 0 such that for all
(x1, y1), (x2, y2) ∈ B,

|x1 − x2|+ |y1 − y2| < δ1 =⇒ ‖D f (x1, y1)− D f (x2, y2)‖ < ε.

By the uniform continuity of y + φ̄ : [−R, T] → RN , there is δ2 > 0 such that |r − r0| < δ2

implies
sup

t∈[0,T]
|(y + φ̄)(t− r)− (y + φ̄)(t− r0)| < δ1.

In view of
‖ρ(y, φ, r, t)− ρ(y, φ, r0, t)‖ = |(y + φ̄)(t− r)− (y + φ̄)(t− r0)|,

the above argument shows that |r− r0| < δ2 implies

‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖ < ε

for all t ∈ [0, T].

Theorem 3.10. Let y ∈ W1,p([−R, T], RN) and φ ∈ W1,p([−R, 0], RN) be fixed. If f is of class C1,
then

T (y, φ, ·) : [0, R]→W1,p([−R, T], RN)

is a continuously differentiable function whose derivative is given by(
∂

∂r
T (y, φ, r)

)
(t) = By,φ,r(t)

:=

{
0 (t ∈ [−R, 0]),

−
∫ t

0 D2 f
(
(y + φ̄)(s), (y + φ̄)(s− r)

)
(y + φ̄)′(s− r)ds (t ∈ [0, T])

inW1,p([−R, T], RN).

Proof.

Step 1. Let r0 ∈ [0, R] be fixed. For y ∈ W1,p[−R, T] and φ ∈ W1,p[−R, 0], let

L(u, t, r) := D2 f
(
(y + φ̄)(t), (y + φ̄)(t− r0) + u

(
(y + φ̄)(t− r)− (y + φ̄)(t− r0)

))
for each (u, t, r) ∈ [0, 1]× [0, T]× [0, R]. We note

L(0, t, r) := D2 f
(
(y + φ̄)(t), (y + φ̄)(t− r0)

)
= D2 f (ρ(y, φ, r0, t)),

L(1, t, r) := D2 f
(
(y + φ̄)(t), (y + φ̄)(t− r)

)
= D2 f (ρ(y, φ, r, t)).

Then

f
(
(y + φ̄)(t), (y + φ̄)(t− r)

)
− f

(
(y + φ̄)(t), (y + φ̄)(t− r0)

)
=
∫ 1

0
L(u, t, r)du ·

(
(y + φ̄)(t− r)− (y + φ̄)(t− r0)

)



C1-smooth dependence on initial conditions and delay 15

holds for all (t, r) ∈ [0, T]× [0, R]. Therefore, we have∥∥∥∥ 1
r− r0

(T (y, φ, r)− T (y, φ, r0))− By,φ,r0

∥∥∥∥
W1,p[−R,T]

=
1

|r− r0|

(∫ T

0

∣∣∣∣∫ 1

0
L(u, t, r)du ·

(
(y + φ̄)(t− r)− (y + φ̄)(t− r0)

)
+ (r− r0)L(0, t, r)(y + φ̄)′(t− r0)

∣∣∣∣p dt
) 1

p

=:
1

|r− r0|

(∫ T

0
g(t, r)p dt

) 1
p

for all r ∈ [0, R].

Step 2. For all (t, r) ∈ [0, T]× [0, R],

g(t, r) ≤
∫ 1

0
‖L(u, t, r)− L(0, t, r)‖du · |(y + φ̄)(t− r)− (y + φ̄)(t− r0)|

+ ‖L(0, t, r)‖ · |(y + φ̄)(t− r)− (y + φ̄)(t− r0) + (r− r0)(y + φ̄)′(t− r0)|
≤ sup

(u,t)∈[0,1]×[0,T]
‖L(u, t, r)− L(0, t, r)‖ · |(y + φ̄)(t− r)− (y + φ̄)(t− r0)|

+ sup
t∈[0,T]

‖L(0, t, r)‖ · |(y + φ̄)(t− r)− (y + φ̄)(t− r0) + (r− r0)(y + φ̄)′(t− r0)|

=: g1(t, r) + g2(t, r).

Therefore,

1
|r− r0|

(∫ T

0
g(t, r)p dt

) 1
p

≤ 1
|r− r0|

(∫ T

0
g1(t, r)p dt

) 1
p

+
1

|r− r0|

(∫ T

0
g2(t, r)p dt

) 1
p

by the Minkowski inequality.

Step 3. Let ε > 0. In the same way as the preceding lemma, there is δ > 0 such that for all
r ∈ [0, R], |r− r0| < δ implies

sup
(u,t)∈[0,1]×[0,T]

‖L(u, t, r)− L(0, t, r)‖ ≤ ε

because∥∥∥(0, u
(
(y + φ̄)(t− r)− (y + φ̄)(t− r0)

))∥∥∥ ≤ |(y + φ̄)(t− r)− (y + φ̄)(t− r0)|.

Therefore, for such r,

g1(t, r) ≤ ε|(y + φ̄)(t− r)− (y + φ̄)(t− r0)| = ε ·
∣∣∣∣∫ −r

−r0

(y + φ̄)′(t + θ)dθ

∣∣∣∣,
and we have

1
|r− r0|

(∫ T

0
g1(t, r)p dt

) 1
p

≤ ε

|r− r0|

(∫ T

0

∣∣∣∣∫ −r

−r0

|(y + φ̄)′(t + θ)|dθ

∣∣∣∣p dt
) 1

p

≤ ε · ‖y + φ̄‖W1,p[−R,T],
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where the last inequality follows from Corollary A.2.

Step 4. For all r ∈ [0, R], we have

1
|r− r0|

(∫ T

0
g2(t, r)p dt

) 1
p

≤ sup
t∈[0,T]

‖L(0, t, r)‖

· 1
|r− r0|

(∫ T

0
|(y + φ̄)(t− r)− (y + φ̄)(t− r0) + (r− r0)(y + φ̄)′(t− r0)|p dt

) 1
p

,

where the last term converges to 0 by the differentiability of translation in Lp (Corollary A.4).

Step 5. By the above steps, we have∥∥∥∥ 1
r− r0

(T (y, φ, r)− T (y, φ, r0))− By,φ,r0

∥∥∥∥
W1,p[−R,T]

→ 0

as r → r0, which shows the Fréchet differentiability. The continuity of the derivative also
holds because

‖By,φ,r − By,φ,r0‖W1,p[−R,T]

=

(∫ T

0
|L(1, t, r)(y + φ̄)′(t− r)− L(0, t, r)(y + φ̄)′(t− r0)|p dt

) 1
p

≤
(∫ T

0
‖L(1, t, r)− L(0, t, r)‖p|(y + φ̄)′(t− r)|p dt

) 1
p

+

(∫ T

0
‖L(0, t, r)‖p|(y + φ̄)′(t− r)− (y + φ̄)′(t− r0)|p dt

) 1
p

≤ sup
t∈[0,T]

‖L(1, t, r)− L(0, t, r)‖ · ‖y + φ̄‖W1,p[−R,T]

+ sup
t∈[0,T]

‖L(0, t, r)‖
(∫ T

0
|(y + φ̄)′(t− r)− (y + φ̄)′(t− r0)|p dt

) 1
p

.

This shows that ‖By,φ,r − By,φ,r0‖W1,p[−R,T] converges to 0 as r → r0 by the preceding lemma
and by the continuity of translation in Lp.

3.2.3 C1-smoothness with respect to prolongation and history

Let 1 ≤ p < ∞ and T > 0 be given.

Lemma 3.11. Let (y0, φ0) ∈ C([−R, T], RN)× C([−R, 0], RN) be fixed. If f is of class C1, then for
(y, φ) ∈ C([−R, T], RN)× C([−R, 0], RN),

sup
t∈[0,T]

‖D f (ρ(y, φ, r, t))− D f (ρ(y0, φ0, r, t))‖ → 0

as (y, φ)→ (y0, φ0) uniformly in r ∈ [0, R].
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Proof. We may assume that there is a bounded set B ⊂ RN ×RN such that

ρ(y, φ, r, t) ∈ B

holds for all (y, φ) ∈ C[−R, T]× C[−R, 0], r ∈ [0, R], and t ∈ [0, T] because

‖ρ(y, φ, r, t)‖ ≤ ‖ρ(y, φ, r, t)− ρ(y0, φ0, r, t)‖+ ‖ρ(y0, φ0, r, t)‖
= ‖ρ(y− y0, φ− φ0, r, t)‖+ ‖ρ(y0, φ0, r, t)‖
≤ 2(‖y− y0‖C[−R,T] + ‖φ− φ0‖C[−R,0] + ‖y0‖C[−R,T] + ‖φ0‖C[−R,0]).

Let ε > 0. The uniform continuity of D f on B implies that there is δ > 0 such that for all
(x1, y1), (x2, y2) ∈ B,

|x1 − x2|+ |y1 − y2| < δ =⇒ ‖D f (x1, y1)− D f (x2, y2)‖ < ε.

Therefore,

‖y− y0‖C[−R,T] + ‖φ− φ0‖C[−R,0] <
δ

2

implies
‖D f (ρ(y, φ, r, t))− D f (ρ(y0, φ0, r, t))‖ < ε

for all t ∈ [0, T] uniformly in r.

Theorem 3.12. Let r ∈ [0, R] be fixed. If f is of class C1, then

T (·, ·, r) : C([−R, T], RN)× C([−R, 0], RN)→W1,p([−R, T], RN)

is continuously Fréchet differentiable. The Fréchet derivative is given by

Dy,φT (y, φ, r) = Ay,φ,r,

where

[Ay,φ,r(η, χ)](t)

=

{
0 (t ∈ [−R, 0]),∫ t

0 D f
(
(y + φ̄)(s), (y + φ̄)(s− r)

)(
(η + χ̄)(s), (η + χ̄)(s− r)

)
ds (t ∈ [0, T])

for all (η, χ) ∈ C([−R, T], RN)× C([−R, 0], RN). In particular,

‖Ay,φ,r − Ay0,φ0,r‖

≤ 2T
1
p sup

t∈[0,T]

∥∥D f
(
(y + φ̄)(t), (y + φ̄)(y− r)

)
− D f

(
(y0 + φ̄0)(t), (y0 + φ̄0)(t− r)

)∥∥
holds, where ‖ · ‖ denotes the corresponding operator norm.

Proof. Let
‖(η, χ)‖ := ‖η‖C[−R,T] + ‖χ‖C[−R,0]

for each (η, χ) ∈ C[−R, T]× C[−R, 0].
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Step 1. Let (y, φ) ∈ C[−R, T]× C[−R, 0] be fixed. Then for all (η, χ) ∈ C[−R, T]× C[−R, 0],

‖Ay,φ,r(η, χ)‖W1,p[−R,T] =

(∫ T

0
|D f (ρ(y, φ, r, t))ρ(η, χ, r, t)|p dt

) 1
p

≤
(

2T
1
p sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))‖

)
‖(η, χ)‖.

This shows that
Ay,φ,r : C[−R, T]× C[−R, 0]→W1,p[−R, T]

is a bounded linear operator.

Step 2. Let (y0, φ0) ∈ C[−R, T]× C[−R, 0] be fixed. For (η, χ) ∈ C[−R, T]× C[−R, 0], let

y := y0 + η and φ := φ0 + χ.

Then

f (ρ(y, φ, r, t))− f (ρ(y0, φ0, r, t)) =
∫ 1

0
D f
(
ρ(y0, φ0, r, t) + uρ(η, χ, r, t)

)
du · ρ(η, χ, r, t)

holds for all r ∈ [0, R] and t ∈ [0, T].
Let ε > 0. In the same way as the preceding lemma, there is δ > 0 such that ‖(η, χ)‖ ≤ δ

implies
sup

t∈[0,T]

∥∥D f
(
ρ(y0, φ0, r, t) + uρ(η, χ, r, t)

)
− D f (ρ(y0, φ0, r, t))

∥∥ ≤ ε

because
‖uρ(η, χ, r, t)‖ ≤ 2‖(η, χ)‖.

Therefore, for such (η, χ), we have

‖T (y, φ, r)− T (y0, φ0, r)− Ay0,φ0,r(η, χ)‖W1,p[−R,T]

=

(∫ T

0
| f (ρ(y, φ, r, t))− f (ρ(y0, φ0, r, t))− D f (ρ(y0, φ0, r, t))ρ(η, χ, r, t)|p dt

) 1
p

≤
(∫ T

0

(∫ 1

0

∥∥D f
(
ρ(y0, φ0, r, t) + uρ(η, χ, r, t)

)
− D f (ρ(y0, φ0, r, t))

∥∥du
)p

· ‖ρ(η, χ, r, t)‖p dt
) 1

p

≤ 2εT
1
p ‖(η, χ)‖.

This shows the Fréchet differentiability of T (·, ·, r) at (y0, φ0).

Step 3. Let (y0, φ0) ∈ C[−R, T]×C[−R, 0] be fixed. For all (y, φ), (η, χ) ∈ C[−R, T]×C[−R, 0],

‖(Ay,φ,r − Ay0,φ0,r)(η, χ)‖W1,p[−R,T]

=

(∫ T

0
|[D f (ρ(y, φ, r, t))− D f (ρ(y0, φ0, r, t))]ρ(η, χ, r, t)|p dt

) 1
p

≤
(

2T
1
p sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))− D f (ρ(y0, φ0, r, t))‖

)
‖(η, χ)‖.
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This shows

‖Ay,φ,r − Ay0,φ0,r‖ ≤ 2T
1
p sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))− D f (ρ(y0, φ0, r, t))‖,

which converges to 0 uniformly in r as (y, φ) → (y0, φ0) by the preceding lemma. Therefore,
(y, φ) 7→ Ay,φ,r is continuous at (y0, φ0).

This completes the proof.

Remark 3.13. The function

T (·, ·, r) : W1,p([−R, T], RN)×W1,p([−R, 0], RN)→W1,p([−R, T], RN)

is also continuously Fréchet differentiable because the inclusion

W1,p([a, b], RN) ⊂ C([a, b], RN), where a < b,

is continuous (see Lemma 2.6).

3.2.4 C1-smoothness with respect to prolongation, history, and delay

Let 1 ≤ p < ∞ and T > 0 be given. We continue to use the following notations used in
Theorems 3.10 and 3.12.

Notation 4. Let (y, φ) ∈ W1,p[−R, T]×W1,p[−R, 0] and r ∈ [0, R].

Ay,φ,r : W1,p[−R, T]×W1,p[−R, 0]→W1,p[−R, T]

is the bounded linear operator defined by

[Ay,φ,r(η, χ)](t) =

{
0 (t ∈ [−R, 0]),∫ t

0 D f (ρ(y, φ, r, s))ρ(η, χ, r, s)ds (t ∈ [0, T]).

Notation 5. Let (y, φ) ∈ W1,p[−R, T] ×W1,p[−R, 0] and r ∈ [0, R]. By,φ,r ∈ W1,p[−R, T] is
defined by

By,φ,r(t) =

{
0 (t ∈ [−R, 0]),

−
∫ t

0 D2 f (ρ(y, φ, r, s))(y + φ̄)′(s− r)ds (t ∈ [0, T]).

Theorem 3.14. Suppose that f is of class C1. Then

T : W1,p([−R, T], RN)×W1,p([−R, 0], RN)× [0, R]→W1,p([−R, T], RN)

is continuously Fréchet differentiable whose Fréchet derivative at (y, φ, r) is given by

[DT (y, φ, r)](η, χ, ξ) = Ay,φ,r(η, χ) + ξBy,φ,r

for all (η, χ, ξ) ∈ W1,p([−R, T], RN)×W1,p([−R, 0], RN)×R.
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Proof. It is sufficient to show the continuity of

(y, φ, r) 7→ Ay,φ,r and (y, φ, r) 7→ By,φ,r

with respect to the corresponding operator norms. Let

‖(η, χ)‖ := ‖η‖W1,p[−R,T] + ‖χ‖W1,p[−R,0]

for each (η, χ) ∈ W1,p[−R, T]×W1,p[−R, 0].

Step 1. The family of functions
(y, φ) 7→ Ay,φ,r,

where r ∈ [0, R], is pointwise equicontinuous from Theorem 3.12. Therefore, we only have to
show the continuity of

r 7→ Ay,φ,r

for each fixed (y, φ) ∈ W1,p[−R, T]×W1,p[−R, 0].
Let r0 ∈ [0, R] be fixed. Since

|D f (ρ(y, φ, r, t))ρ(η, χ, r, t)− D f (ρ(y, φ, r0, t))ρ(η, χ, r0, t)|
≤ ‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖‖ρ(η, χ, r, t)‖

+ ‖D f (ρ(y, φ, r0, t))‖‖ρ(η, χ, r, t)− ρ(η, χ, r0, t)‖
≤ 2 sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖ · ‖(η, χ)‖

+ sup
t∈[0,T]

‖D f (ρ(y, φ, r0, t))‖ · |(η + χ̄)(t− r)− (η + χ̄)(t− r0)|

for all t ∈ [0, T], r ∈ [0, R], and (η, χ) ∈ W1,p[−R, T]×W1,p[−R, 0], we have

‖(Ay,φ,r − Ay,φ,r0)(η, χ)‖W1,p[−R,T]

=

(∫ T

0
|D f (ρ(y, φ, r, t))ρ(η, χ, r, t)− D f (ρ(y, φ, r0, t))ρ(η, χ, r0, t)|p dt

) 1
p

≤
(

2T
1
p sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖

)
‖(η, χ)‖

+ sup
t∈[0,T]

‖D f (ρ(y, φ, r0, t))‖
(∫ T

0
|(η + χ̄)(t− r)− (η + χ̄)(t− r0)|p dt

) 1
p

by the Minkowski inequality. Here the estimate(∫ T

0
|(η + χ̄)(t− r)− (η + χ̄)(t− r0)|p dt

) 1
p

=

(∫ T

0

∣∣∣∣∫ −r

−r0

(η + χ̄)′(t + θ)dθ

∣∣∣∣p dt
) 1

p

≤ ‖η + χ̄‖W1,p[−R,T]|r− r0|
≤ |r− r0| · ‖(η, χ)‖

follows from from Corollary A.2. As the conclusion, we obtain

‖Ay,φ,r − Ay,φ,r0‖ ≤ 2T
1
p sup

t∈[0,T]
‖D f (ρ(y, φ, r, t))− D f (ρ(y, φ, r0, t))‖

+ sup
t∈[0,T]

‖D f (ρ(y, φ, r0, t))‖|r− r0|,
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which shows limr→r0 ‖Ay,φ,r − Ay,φ,r0‖ = 0.

Step 2. From Theorem 3.10, the function

r 7→ By,φ,r

is continuous for each fixed (y, φ) ∈ W1,p[−R, T]×W1,p[−R, 0]. Therefore, we only have to
show the pointwise equicontinuity of the family of functions

(y, φ) 7→ By,φ,r,

where r ∈ [0, R]. This is indeed true in view of the following calculation:

‖By,φ,r − By0,φ0,r‖W1,p[−R,T]

=

(∫ T

0
|D2 f (ρ(y, φ, r, t))(y + φ̄)′(t− r)− D2 f (ρ(y0, φ0, r, t))(y0 + φ̄0)

′(t− r)|p dt
) 1

p

≤
(

sup
t∈[0,T]

‖D2 f (ρ(y, φ, r, t))− D2 f (ρ(y0, φ0, r, t))‖
)
‖y + φ̄‖W1,p[−R,T]

+

(
sup

t∈[0,T]
‖D2 f (ρ(y0, φ0, r, t))‖

)
‖(y− y0, φ− φ0)‖.

The detail has been omitted because this is similar to the case of the special case discussed in
the previous subsection.

This completes the proof.

See Definition 3.17 for the Fréchet differentiability of functions defined on sets which are
not necessarily open.

3.2.5 C1-smooth dependence of solutions on initial histories and delay

Let 1 ≤ p < ∞ be given.

Theorem 3.15. Let B ⊂ W1,p([−R, 0], RN) be an open subset which is bounded with respect to the
supremum norm. Suppose that f is of class C1. Then there exists T > 0 such that the function

B× [0, R] 3 (φ, r) 7→ x(·; φ, r)|[−R,T] ∈ W1,p([−R, T], RN)

is well-defined and continuously Fréchet differentiable.

Proof.
Step 1. From the unique existence theorem (Proposition 3.7), there is T > 0 such that the
family of functions

x(·; φ, r)|[−R,T] : [−R, T]→ RN ,

where (φ, r) ∈ B× [0, R], is well-defined, i.e.,

Tφ,r > T (∀(φ, r) ∈ B× [0, R]).

Step 2. By choosing small T > 0, we may assume that the family of maps

T (·; φ, r) : Γ̄1,p(δ)→ Γ1,p(δ),
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where (φ, r) ∈ B × [0, R], is a uniform contraction by the uniform contraction lemma
(Lemma 3.5). Then the Banach fixed point theorem implies that T (·; φ, r) has the unique
fixed point y(·; φ, r) ∈ Γ1,p(δ) for each (φ, r) ∈ B× [0, R] because Γ̄1,p(δ) is a complete metric
space. By the uniqueness,

x(·; φ, r)|[−R,T] = y(·; φ, r) + φ̄[−R,T]

holds.

Step 3. By the C1-smoothness theorem (Theorem 3.14), the function

T : Γ1,p(δ)× B× [0, R]→ Γ1,p(δ)

is continuously Fréchet differentiable. Therefore, C1-uniform contraction theorem implies that

B× [0, R] 3 (φ, r) 7→ y(·; φ, r) ∈ Γ1,p(δ)

is continuously Fréchet differentiable. This shows that

B× [0, R] 3 (φ, r) 7→ x(·; φ, r)|[−R,T] ∈ W1,p[−R, T]

is also continuously Fréchet differentiable because

W1,p[−R, 0] 3 φ 7→ φ̄|[−R,T] ∈ W1,p[−R, T]

is a continuous linear map.

Remark 3.16. In the above theorem, the parameter set is not an open set. However, the
C1-uniform contraction theorem holds in this case by adopting the following Fréchet differen-
tiability.

Definition 3.17 (Fréchet differentiability). Let X, Y be normed spaces, U ⊂ X be a subset,
x0 ∈ U be a limit point of U, and f : U → Y be a function. f is said to be Fréchet differentiable
at x0 if there exists a unique linear approximation A ∈ L(X, Y) such that

lim
‖x− x0‖ → 0 in U

‖ f (x)− f (x0)− A(x− x0)‖
‖x− x0‖

= 0.

Here L(X, Y) denotes the set of all bounded linear operators from X to Y. The above A is
called the Fréchet derivative of f at x0 and is denoted by D f (x0). f is said to be Fréchet differen-
tiable when U is contained in the set of all limit points of U and f is Fréchet differentiable at
every x0 ∈ U.

3.2.6 C1-smoothness of solution semiflow with a delay parameter

Let 1 ≤ p < ∞ be given.

Theorem 3.18. We define a map

Φ : R+ ×W1,p([−R, 0], RN)× [0, R] ⊃ dom(Φ)→W1,p([−R, 0], RN)× [0, R]

by
dom(Φ) =

⋃
(φ,r)∈W1,p[−R,0]×[0,R]

[0, Tφ,r)× {(φ, r)}, Φ(t, φ, r) = (Rtx(·; φ, r), r).

Suppose that f is of class C1. Then Φ is a C1-maximal semiflow.
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Proof.

Step 1. The unique existence theorem (Proposition 3.7) implies that Φ is a maximal semiflow
with the escape time function (φ, r) 7→ Tφ,r.

Step 2. By the continuity of orbit (Lemma 2.9),

[0, Tφ,r) 3 t 7→ Φ(t, φ, r) ∈ W1,p[−R, 0]× [0, R]

is continuous for every (φ, r) ∈ W1,p[−R, 0]× [0, R].

Step 3. Let B ⊂ W1,p[−R, 0] be an open subset which is bounded with respect to the supre-
mum norm. By the C1-smooth dependence theorem (Theorem 3.15), there is T > 0 such
that

B× [0, R] 3 (φ, r) 7→ x(·; φ, r)|[−R,T] ∈ W1,p[−R, T]

is a well-defined continuously Fréchet differentiable function, which implies

[0, T]× B× [0, R] ⊂ dom(Φ).

By combining the above Fréchet differentiability and the continuity of

[0, T]×W1,p[−R, T] 3 (t, x) 7→ Rtx ∈ W1,p[−R, 0]

(see Lemmas 2.9 and 2.10), we obtain the following properties:

• the continuity of Φ|[0,T]×B×[0,R], i.e,

[0, T]× B× [0, R] 3 (t, φ, r) 7→ (Rtx(·; φ, r), r).

• the continuous Fréchet differentiability of Φ(t, ·, ·)|B×[0,R], i.e.,

B× [0, R] 3 (φ, r) 7→ (Rtx(·; φ, r), r)

for each t ∈ [0, T].

The above steps imply that Φ is a C1-maximal semiflow from Theorems B.9 and B.13.

4 Comments and discussion

This paper reveals that the history spaces of Sobolev type W1,p([−R, 0], RN) (1 ≤ p < ∞)
arise as the history spaces for the C1-smooth dependence on initial histories and delay, whose
adoption is natural from the viewpoint of the differentiability of translation in Lp. This paper
also extends the regularity of initial histories from the Lipschitz continuity and show that
the topology induced by W1,p-norm is adapted, where the history space of the Lipschitz
continuous functions with the topology induced byW1,1-norm is used in the previous studies
(see [11] and [15]). Another feature of this paper is to prove the differentiability of solutions
with respect to r at r = 0. It seems that there is some relationship with the C1-smoothness of
special flow for the small delay studied by Chicone [5].

The extension of this work to the time- and state- dependent delay case will be a next
task. By a preparatory study, it is expected that this extension explains a meaning of the strict
monotonicity of the delayed argument function, which is called the temporal order of reactions
by Walther [26]. The study of the higher-order smoothness of solutions with respect to delay
will also be a next task. The results in Subsection 3.1 suggest that it is appropriate to choose
history spaces of higher-order Sobolev type, where other spaces based on Wk,∞ are used in
previous studies (see [4] and [14]).
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A Differentiability of translation in Lp

We refer the reader to [24] and [3] for general references of theories of Lebesgue integration
and Sobolev spaces, respectively.

Lemma A.1. Let f ∈ L1(R, R) and a < b be given real numbers. Then for all s, t ∈ R,∫ b

a

∣∣∣∣∫ t

s
| f (x + y)|dy

∣∣∣∣dx ≤ ‖ f ‖L1(R)|t− s|

holds.

Proof. It is sufficient to consider the case s < t. Let A(t, s) ⊂ R2 be the closed subset given by

A(t, s) := { (x, y) : a ≤ x ≤ b, x + s ≤ y ≤ x + t},

which is Lebesgue measurable. Then the function

R2 3 (x, y) 7→ | f (y)|1A(t,s)(x, y) ∈ R

is Lebesgue measurable. Since for each fixed x ∈ [a, b],

{y ∈ R : (x, y) ∈ A(t, s)} = [x + s, x + t],

we have ∫ b

a

(∫ t

s
| f (x + y)|dy

)
dx =

∫ b

a

(∫ x+t

x+s
| f (y)|dy

)
dx

=
∫
[a,b]

(∫
R
| f (y)|1A(t,s)(x, y)dy

)
dx.

Therefore, ∫ b

a

(∫ t

s
| f (x + y)|dy

)
dx =

∫
R

(∫
[a,b]
| f (y)|1A(t,s)(x, y)dx

)
dy

=
∫

R
| f (y)|

(∫
[a,b]

1A(t,s)(x, y)dx
)

dy

≤ (t− s)‖ f ‖L1(R)

< ∞

is valid by Tonelli’s theorem.

Corollary A.2. Let 1 ≤ p < ∞, f ∈ Lp(R, RN), and a < b be given real numbers. Then for all
s, t ∈ R, (∫ b

a

∣∣∣∣∫ t

s
| f (x + y)|dy

∣∣∣∣p dx
) 1

p

≤ ‖ f ‖Lp(R)|t− s|

holds.

Proof. It is sufficient to consider the case s < t. Let q be the Hölder conjugate of p. Then for
each fixed x, we have

∫ t

s
| f (x + y)|dy ≤

(∫ t

s
| f (x + y)|p dy

) 1
p

· (t− s)
1
q .
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Since | f |p ∈ L1(R, R), we obtain

∫ b

a

(∫ t

s
| f (x + y)|dy

)p

dx ≤ (t− s)
p
q

∫ b

a

(∫ t

s
| f (x + y)|p dy

)
dx

≤ (t− s)
p
q · ‖| f |p‖L1(R)(t− s)

≤ (t− s)
p
q +1‖ f ‖p

Lp(R)

by applying Lemma A.1. Then the inequality is obtained because (1/p) + (1/q) = 1.

Theorem A.3. Let 1 ≤ p < ∞, f ∈ Lp(R, RN), and a < b be real numbers. Then for all s, t, u ∈ R,

(∫ b

a

∣∣∣∣∫ t

s
( f (x + y)− f (x + u))dy

∣∣∣∣p dx
) 1

p

= o(|t− s|)

as |t− s| → 0 uniformly in u between s and t.

Proof. Let

F(x; s, t, u) :=
∫ t

s
( f (x + y)− f (x + u))dy.

Then for each fixed x ∈ [a, b], we have

F(x; s, t, u) =
∫ t

s
f (x + y)dy− (t− s) f (x + u)

=
∫ t+x

s+x
f (y)dy− (t− s) f (x + u),

which is Lebesgue measurable in x.
Let ε > 0 be given. We choose g ∈ Cc(R, RN) so that

‖ f − g‖Lp(R) ≤
ε

3
.

Here Cc(R, RN) denotes the set of continuous functions from R to RN with compact support.
By the Minkowski inequality,

‖F(·; s, t, u)‖Lp[a,b] ≤
(∫ b

a

∣∣∣∣∫ t

s
( f (x + y)− g(x + y))dy

∣∣∣∣p dx
) 1

p

+

(∫ b

a

∣∣∣∣∫ t

s
(g(x + y)− g(x + u))dy

∣∣∣∣p dx
) 1

p

+

(∫ b

a

∣∣∣∣∫ t

s
(g(x + u)− f (x + u))dy

∣∣∣∣p dx
) 1

p

.

First term. By applying Corollary A.2, we obtain

(∫ b

a

∣∣∣∣∫ t

s
( f (x + y)− g(x + y))dy

∣∣∣∣p dx
) 1

p

≤
(∫ b

a

∣∣∣∣∫ t

s
| f (x + y)− g(x + y)|dy

∣∣∣∣p dx
) 1

p

≤ ‖ f − g‖Lp(R)|t− s|.
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Second term. Since g is uniformly continuous, there is δ > 0 such that for all x, y, u, |y− u| ≤ δ

implies

|g(x + y)− g(x + u)| ≤ ε

3(b− a)1/p .

Therefore, |t− s| ≤ δ implies∣∣∣∣∫ t

s
|g(x + y)− g(x + u)|dy

∣∣∣∣p ≤ [ ε

3(b− a)1/p |t− s|
]p

uniformly in u between s and t. Thus,(∫ b

a

∣∣∣∣∫ t

s
(g(x + y)− g(x + u))dy

∣∣∣∣p dx
) 1

p

≤
(∫ b

a

∣∣∣∣∫ t

s
|g(x + y)− g(x + u)|dy

∣∣∣∣p dx
) 1

p

≤
{[

ε

3(b− a)1/p |t− s|
]p

(b− a)
} 1

p

≤ ε

3
|t− s|.

Third term. We have(∫ b

a

∣∣∣∣∫ t

s
(g(x + u)− f (x + u))dy

∣∣∣∣p dx
) 1

p

≤
(∫ b

a

∣∣∣∣∫ t

s
|g(x + u)− f (x + u)|dy

∣∣∣∣p dx
) 1

p

=

(
|t− s|p

∫ b

a
|g(x + u)− f (x + u)|p dx

) 1
p

≤ ‖ f − g‖Lp(R)|t− s|.

By combining the above estimates, we finally obtain(∫ b

a

∣∣∣∣∫ t

s
( f (x + y)− f (x + u))dy

∣∣∣∣p dx
) 1

p

≤ ε|t− s|

for all |t− s| ≤ δ uniformly in u between s and t.

Corollary A.4. Let 1 ≤ p < ∞. Let a < b and c, d ≥ 0 be given real numbers. If f ∈
W1,p([a− c, b + d], RN), then for all s, t, u ∈ [−c, d],(∫ b

a
| f (x + t)− f (x + s)− (t− s) f ′(x + u)|p dx

) 1
p

= o(|t− s|)

as |t− s| → 0 uniformly in u between s and t.

Proof. Let x ∈ [a, b] and s, t ∈ [−c, d]. By the fundamental theorem of calculus for absolutely
continuous functions, we have

f (x + t)− f (x + s) =
∫ t

s
f ′(x + y)dy,

which implies that for all u between s and t,

f (x + t)− f (x + s)− (t− s) f ′(x + u) =
∫ t

s
( f ′(x + y)− f ′(x + u))dy.

Therefore, the conclusion is obtained applying Theorem A.3 for the extension of f ′ ∈
Lp([a− c, b + d], RN) by 0 outside [a− c, b + d].

Remark A.5. The similar statement is given in [3, Exercise 8.13 in Chapter 8].
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B Continuity and smoothness of maximal semiflows

Definition B.1 (Maximal semiflows). Let X be a set and D ⊂ R+ × X be a subset. A map
Φ : D → X is called a maximal semiflow in X if the following conditions are satisfied:

(i) There exists a function TΦ : X → (0, ∞] such that

D =
⋃

x∈X

(
[0, TΦ(x))× {x}

)
.

(ii) For all x ∈ X, Φ(0, x) = x.

(iii) For all t, s ∈ R+ and all x ∈ X, both of the conditions (t, x) ∈ D and (s, Φ(t, x)) ∈ D
imply

(t + s, x) ∈ D and Φ(t + s, x) = Φ(s, Φ(t, x)).

The above function TΦ is called the escape time function.

Remark B.2. The condition (iii) means the maximality of domain of definition of Φ. In terms
of the escape time function TΦ, (iii) is equivalent to the following: both of t < TΦ(x) and
s < TΦ(Φ(t, x)) imply t + s < TΦ(x). The terminology of maximal semiflows comes from [21].

Definition B.3 (Time-t map). Let Φ be a maximal semiflow in a set X with the escape time
function TΦ : X → (0, ∞]. For each t ∈ R+, the map Φt : dom(Φt)→ X defined by

dom(Φt) = { x ∈ X : TΦ(x) > t} and Φt(x) = Φ(t, x)

is called the time-t map of Φ.

Definition B.4 (Lower semicontinuity). Let X be a topological space, x0 ∈ X, and f : X →
(0, ∞] be a function. f is said to be lower semicontinuous at x0 if for every M < f (x0), there
exists a neighborhood N of x0 such that for all x ∈ N, f (x) > M. f is said to be lower
semicontinuous if f is lower semicontinuous at every x0 ∈ X.

Definition B.5 (C0-maximal semiflows). Let X be a topological space and Φ : dom(Φ) → X
be a maximal semiflow in X. Φ is called a C0-maximal semiflow if Φ is a continuous map and
the escape time function TΦ : X → (0, ∞] is lower semicontinuous.

Remark B.6. In [10], a C0-maximal semiflow is called a continuous local semi-dynamical
system.

The proofs of the following two lemmas are straightforward and can be omitted.

Lemma B.7. Let Φ : dom(Φ) → X be a maximal semiflow in a topological space X with the escape
time function TΦ : X → (0, ∞]. Then the following properties are equivalent:

(a) TΦ : X → (0, ∞] is lower semicontinuous.

(b) dom(Φ) is an open set of R+ × X.

Lemma B.8. Let Φ be a C0-maximal semiflow in a topological space X with the escape time function
TΦ : X → (0, ∞]. Then for each t ∈ R+,

{ x ∈ X : TΦ(x) > t}

is an open subset of X.
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The following theorem states that the local continuity property of maximal semiflows can
induce their global continuity property. We omit the proof because a similar statement is
proved in [23, Theorem A.7].

Theorem B.9. Let Φ : dom(Φ)→ X be a maximal semiflow in a topological space X with the escape
time function TΦ : X → (0, ∞]. Suppose that for every x ∈ X, the orbit [0, TΦ(x)) 3 t 7→ Φ(t, x) ∈
X is continuous. If for every x ∈ X, there exist T > 0 and a neighborhood N of x in such that
[0, T]× N ⊂ dom(Φ) and Φ|[0,T]×N is continuous, then Φ is a C0-maximal semiflow.

Remark B.10. In [10, Theorem 15], the conclusion is obtained under the weaker assumption
that for every (t, x) ∈ dom(Φ), Φ([0, t]× {x}) is compact. The proof is based on the notion of
germs.

Definition B.11 (C1-maximal semiflows). Let X be a normed space and Ω ⊂ X be a subset
contained in the set of all limit points of Ω. A C0-maximal semiflow Φ : dom(Φ) → Ω is
called a C1-maximal semiflow if each time-t map Φt is continuously Fréchet differentiable.

Remark B.12. In the setting of Definition B.11, dom(Φt) is open in Ω from Lemma B.8. There-
fore, dom(Φt) = U ∩Ω holds for some open set U of X. This implies that dom(Φt) is also
contained in the set of all limit points of dom(Φt), and it is meaningful to consider the con-
tinuous Fréchet differentiability of each Φt.

By definition, a C1-maximal semiflow is not necessarily continuously Fréchet differentiable
(see [21, p. 260]).

The following theorem ensures that a C0-maximal semiflow is of class C1 provided that
the maximal semiflow has a local smoothness property. The proof is similar to that of [25,
Theorem 1].

Theorem B.13. Let X be a normed space, Ω ⊂ X be a subset contained in the set of all limit points of
Ω, and Φ : dom(Φ)→ Ω be a C0-maximal semiflow with the escape time function TΦ : Ω→ (0, ∞].
Suppose that for any function f : Ω→ X, a linear approximation at every x ∈ Ω is unique if it exists.
If for every x ∈ Ω, there exist T > 0 and an open neighborhood N of x such that

• [0, T]× N ∩Ω ⊂ dom(Φ) and

• Φt|N∩Ω is continuously Fréchet differentiable for every t ∈ [0, T],

then Φ is a C1-maximal semiflow.

Proof.

Step 1. For each x ∈ Ω, we define a subset Sx ⊂ (0, TΦ(x)) by the following manner: T ∈ Sx

if there exists an open neighborhood N of x such that

• [0, T]× N ∩Ω ⊂ dom(Φ) and

• Φt|N∩Ω is continuously Fréchet differentiable for every t ∈ [0, T].

By the assumptions, Sx 6= ∅, and therefore, sup(Sx) ∈ (0, TΦ(x)] exists. If sup(Sx) = TΦ(x)
for all x ∈ Ω, then every Φt is continuously Fréchet differentiable.

Let x0 ∈ Ω be fixed.

Step 2. We suppose
t∗ := sup(Sx0) < TΦ(x0)



C1-smooth dependence on initial conditions and delay 29

and derive a contradiction. We note that one cannot conclude t∗ ∈ Sx0 in general. Let

x∗ := Φ(t∗, x0) ∈ Ω.

By the assumptions, we can choose T∗ > 0 and an open neighborhood N∗ of x∗ so that

• [0, T∗]× N∗ ∩Ω ⊂ dom(Φ) and

• Φt|N∗∩Ω is continuously Fréchet differentiable for every t ∈ [0, T∗].

Step 3. Since [0, TΦ(x0)) 3 t 7→ Φ(t, x0) is continuous at t∗, we can choose t′ so that

t∗ −
T∗
2

< t′ < t∗ and Φ(t′, x0) ∈ N∗ ∩Ω.

We can also choose an open neighborhood N′ of x0 such that

• [0, t′]× N′ ∩Ω ⊂ dom(Φ),

• Φt|N′∩Ω is continuously Fréchet differentiable for every t ∈ [0, t′], and

• Φt′(N′ ∩Ω) ⊂ N∗ ∩Ω

because t′ < t∗ and Φt′ is continuous at x0. Then for all t ∈ [t′, t′ + T∗] and all x ∈ N′ ∩Ω,

(t′, x) ∈ dom(Φ) and (t− t′, Φ(t′, x)) ∈ [0, T∗]× N∗ ∩Ω ⊂ dom(Φ),

which implies
(t, x) = (t′ + (t− t′), x) ∈ dom(Φ)

by the maximality. Therefore,

[0, t′ + T∗]× N′ ∩Ω = ([0, t′]× N′ ∩Ω) ∪ ([t′, t′ + T∗]× N′ ∩Ω)

⊂ dom(Φ).

Step 4. For every t ∈ [t′, t′ + T∗], we have

Φt|N′∩Ω = Φt−t′ |N∗∩Ω ◦Φt′ |N′∩Ω.

Since the two maps in the right-hand side are continuously Fréchet differentiable, Φt|N′∩Ω is
also continuously Fréchet differentiable. Therefore,

t∗ < t∗ +
T∗
2

< t′ + T∗ ∈ Sx0 ,

which is a contradiction. Thus, t∗ = TΦ(x0) follows.
By the above steps, the conclusion is obtained.
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