On S-shaped and reversed S-shaped bifurcation curves for singular problems

Eunkyung Ko*, Eun Kyoung Lee ${ }^{\dagger}$, R. Shivaji ${ }^{\ddagger}$

Abstract

We analyze the positive solutions to the singular boundary value problem $$
\left\{\begin{array}{l} -\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda \frac{g(u)}{u^{\beta}} ;(0,1), \\ u(0)=0=u(1), \end{array}\right.
$$ where $p>1, \beta \in(0,1), \lambda>0$ and $g:[0, \infty) \rightarrow \mathbb{R}$ is a C^{1} function. In particular, we discuss examples when $g(0)>0$ and when $g(0)<0$ that lead to S-shaped and reversed S-shaped bifurcation curves, respectively.

1 Introduction

We consider the singular boundary value problem involving the p-Laplacian operator of the form:

$$
\left\{\begin{array}{c}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda \frac{g(u)}{u^{\beta}} ;(0,1), \tag{1.1}\\
u(0)=0=u(1),
\end{array}\right.
$$

where $p>1, \beta \in(0,1), \lambda>0$ is a parameter and $g:[0,1] \rightarrow \mathbb{R}$ is a C^{1} function. Problem (1.1) arises in the study of non-Newtonian fluids ([6]) and nonlinear diffusion problems. The quantity p is a characteristic of the medium, and for $p>2$ the fluids medium are called dilatant fluids, while those with $p<2$ are called pseudoplastics. When $p=2$ they are Newtonian fluids ([5]).

[^0]In this paper, we study the following two examples:

$$
\begin{gathered}
\text { (A) } g(u)=e^{\frac{\alpha u}{\alpha+u}} ; \alpha>0, \\
\text { (B) } g(u)=u^{3}-a u^{2}+b u-c ; a>0, b>0 \text { and } c>0 .
\end{gathered}
$$

Note that in Case $(A) \lim _{u \rightarrow+0} \frac{g(u)}{u^{\beta}}=+\infty$ (Infinite Positone Case) and in Case (B) $\lim _{u \rightarrow+0} \frac{g(u)}{u^{\beta}}=-\infty$ (Infinite Semipositone Case). When $p=2$ and $\beta=0$, Case (A) is generally referred as the one-dimensional perturbed Gelfand problem ([1]).

In Case (A) we will prove that for α large, the bifurcation curve of positive solution is at least S-shaped, while in Case (B) for certain ranges of a, b and c, we will prove that the bifurcation curve of positive solution is at least reversed S-shaped. For $p=2$ and $\beta=0$, results on S-shaped bifurcation curves have been studied by many authors ([3], [7], [8], [11] and [12]) and results on a reversed S shaped bifurcation curve have been studied by Castro and Shivaji in ([4]). We will establish the results via the quadrature method which we will describe in Section 2. In Section 3, we will discuss Case (A), and in Section 4 we will discuss Case (B). In Section 5 , we provide computational results describing the exact shapes of the two bifurcation curves.

2 Preliminaries

In this section we give some preliminaries. Let $f(u)=\frac{g(u)}{u^{\beta}}$ and we rewrite (1.1) as:

$$
\left\{\begin{array}{c}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda f(u) ;(0,1) \tag{2.1}\\
u(0)=0=u(1)
\end{array}\right.
$$

It follows easily that if u is a strictly positive solution of (2.1), then necessarily u must be symmetric about $x=\frac{1}{2}, u^{\prime}>0 ;\left(0, \frac{1}{2}\right)$ and $u^{\prime}<0 ;\left(\frac{1}{2}, 1\right)$. To prove our main results, we will first state some lemmas that follow from the quadrature method described in [2] and [10] for the one dimensional p-Laplacian problem for $p>1$. See also [3], [4] and [9] for the description of the quadrature method in the case $p=2$. Define $F: R_{+} \rightarrow R$ by $F(u):=\int_{0}^{u} f(s) d s$ and $G: D \subseteq R_{+} \rightarrow$ R_{+}be defined by

$$
\begin{equation*}
G(\rho):=2\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{0}^{\rho} \frac{d s}{(F(\rho)-F(s))^{\frac{1}{p}}}, \tag{2.2}
\end{equation*}
$$

where $D=\{\rho>0 \mid f(\rho)>0$ and $F(\rho)>F(s), \forall 0 \leq s<\rho\}$.
Lemma 2.1. (See [10]) (u, λ) is a positive solution of (2.1) with $\lambda>0$ if and only if $\lambda(\rho)^{\frac{1}{p}}=G(\rho)$, where $\rho=\|u\|=\sup _{s \in(0,1)} u(s)=u\left(\frac{1}{2}\right)$.

Now we also state an important lemma that can be easily deduced from the results in [3] for the p-Laplacian problem.

Lemma 2.2. $G(\rho)$ is differentiable on D and

$$
\begin{equation*}
\frac{d G(\rho)}{d \rho}=2\left(\frac{p-1}{p}\right)^{\frac{1}{p}} \int_{0}^{1} \frac{H(\rho)-H(\rho v)}{[F(\rho)-F(\rho v)]^{\frac{p+1}{p}}} d v \tag{2.3}
\end{equation*}
$$

where $H(s)=F(s)-\frac{1}{p} s f(s)$.
We will deduce information on the nature of the bifurcation curve by analyzing the sign of $\frac{d G(\rho)}{d \rho}$. It is clear that $\frac{d G(\rho)}{d \rho}$ has the same sign as $\frac{d}{d \rho}\left(\lambda(\rho)^{\frac{1}{p}}\right)$. From (2.3), a sufficient condition for $\frac{d G(\rho)}{d \rho}$ to be positive is:

$$
\begin{equation*}
H(\rho)>H(s) \forall s \in[0, \rho) \tag{2.4}
\end{equation*}
$$

and a sufficient condition for $\frac{d G(\rho)}{d \rho}$ to be negative is:

$$
\begin{equation*}
H(\rho)<H(s) \forall s \in[0, \rho) \tag{2.5}
\end{equation*}
$$

Hence, if $H^{\prime}(s)>0$ for all $s>0$, then $G(\rho)=(\lambda(\rho))^{\frac{1}{p}}$ is a strictly increasing function, i.e. the bifurcation curve is neither S-shaped nor reversed S-shaped.

In Section 3, for the Case A, we will show that if $\alpha \gg 1$, then there exist $\rho_{0}>0$ and $\rho_{1}>\rho_{0}$ such that $H^{\prime}(s)>0 ; 0<s<\rho_{0}$ and $H\left(\rho_{1}\right)<0$ (see Figure 1).

Figure 1: Function H for the Case A

Here, $D=(0, \infty), \lim _{\rho \rightarrow 0^{+}} G(\rho)=0$ and since $\lim _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}}=0$ we obtain $\lim _{\rho \rightarrow \infty} G(\rho)=\infty$. (See [2], Theorem 7). Now, using (2.4)-(2.5), $G^{\prime}(\rho)>0$ for $0<\rho \leq \rho_{0}$ and $G^{\prime}\left(\rho_{1}\right)<0$. Hence this will establish that the bifurcation curve is at least S-shaped (see Figure 2).

Figure 2: S-shaped bifurcaiton curve

In Section 4, for the Case B, for certain ranges of a, b, c and p we will show that f and F take the following shapes (see Figure 3) and $f^{\prime}(s)>0 ; s \geq 0$.

Figure 3: Functions $f(u)$ and $F(u)$

Here β and θ are the unique positive zeros of f and F, respectively. Further, we will show that $H^{\prime}(s)<0 ; 0<s \leq \theta$ and there exists $\rho_{2}>\theta$ such that $H\left(\rho_{2}\right)>0$ (see Figure 4).

Figure 4: Function H for the Case B

Here $D=(\theta, \infty), \lim _{\rho \rightarrow \theta^{+}} G(\rho)>0$ and since $\lim _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}}=\infty$, we obtain that $\lim _{\rho \rightarrow \infty} G(\rho)=0$. (See [2], Theorem 7). Now using (2.4) - (2.5), $G^{\prime}(\rho)<0$ for $\rho \in(\theta, \theta+\epsilon)$ for $\epsilon \approx 0$ and $G^{\prime}\left(\rho_{2}\right)>0$. Hence this will establish that the bifurcation curve is at least reversed S-shaped (see Figure 5).

Figure 5: Reversed S-shaped bifurcation curves

Finally, in Section 5, we will use Mathematica computations to provide the exact shape of the bifurcation curves for certain values of the parameters involved.

3 Infinite Positone Case A

Here we study the Case A, namely the boundary value problem :

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda \frac{e^{\frac{\alpha u}{\alpha+u}}}{u^{\beta}} ;(0,1), \tag{3.1}\\
u(0)=0=u(1)
\end{array}\right.
$$

where $p>1, \alpha>0$ and $0<\beta<1$. We prove:
Theorem 3.1. $\forall \lambda>0$, the problem (3.1) has a solution. Further, there exist $\lambda_{1}>0$ and $\lambda_{2}>0$ such that (3.1) has at least three solutions for $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ for $\alpha \gg 1$.

Proof . To prove Theorem 3.1, from our discussion in Section 2 it is enough to show that when $\alpha \gg 1 H$ has the shape in Figure 1 : namely

- $\lim _{s \rightarrow 0^{+}} H^{\prime}(s)>0$.
- there exists $\rho_{1}>0$ such that $H\left(\rho_{1}\right)<0$.

Here $f(s)=\frac{e^{\frac{\alpha s}{\alpha+s}}}{s^{\beta}}$. Recall that $F(u)=\int_{0}^{u} f(s) d s$ and $H(s)=F(s)-\frac{1}{p} s f(s)$. Clearly $H(0)=0$. Since $f^{\prime}(s)=e^{\frac{\alpha s}{\alpha+s}}\left\{\frac{\alpha^{2}}{s^{\beta}(\alpha+s)^{2}}-\frac{\beta}{s^{\beta+1}}\right\}$, we have

$$
\begin{aligned}
H^{\prime}(s) & =\frac{1}{p}\left[(p-1) f(s)-s f^{\prime}(s)\right] \\
& =\frac{1}{p}\left[(p-1) \frac{e^{\frac{\alpha s}{\alpha+s}}}{s^{\beta}}-s e^{\frac{\alpha s}{\alpha+s}}\left(\frac{\alpha^{2}}{s^{\beta}(\alpha+s)^{2}}-\frac{\beta}{s^{\beta+1}}\right)\right] \\
& =\frac{e^{\frac{\alpha s}{\alpha+s}}}{p s^{\beta}}\left[\frac{(\beta+p-1)(\alpha+s)^{2}-\alpha^{2} s}{(\alpha+s)^{2}}\right] .
\end{aligned}
$$

and hence $\lim _{s \rightarrow 0^{+}} H^{\prime}(s)=+\infty$. Next, we show that there exists $\rho_{1}>0$ such that $H\left(\rho_{1}\right)<0$. Take $\rho_{1}=\alpha$. Then we have that $H(\alpha)=\int_{0}^{\alpha} f(s) d s-\frac{\alpha}{p} f(\alpha)$. Since

$$
\begin{aligned}
\frac{d H(\alpha)}{d \alpha} & =\left(1-\frac{1}{p}\right) f(\alpha)-\frac{\alpha}{p} f^{\prime}(\alpha) \\
& =\left(1-\frac{1}{p}\right) \frac{e^{\frac{\alpha}{2}}}{\alpha^{\beta}}-\frac{\alpha}{p} \frac{e^{\frac{\alpha}{2}}}{\alpha^{\beta}}\left(\frac{1}{4}-\frac{\beta}{\alpha}\right) \\
& =\frac{e^{\frac{\alpha}{2}}}{\alpha^{\beta}}\left[\left(1-\frac{1}{p}\right)-\frac{\alpha}{4 p}+\frac{\beta}{p}\right] \\
& =\frac{1}{p} e^{\frac{\alpha}{2}} \alpha^{1-\beta}\left[\frac{\beta+p-1}{\alpha}-\frac{1}{4}\right],
\end{aligned}
$$

we obtain that $\frac{d H(\alpha)}{d \alpha} \rightarrow-\infty$ as $\alpha \rightarrow \infty$. Hence $H(\alpha)<0$ for $\alpha \gg 1$. Hence, $H(s)$ has the shape in Figure 3 for $\alpha \gg 1$, and Theorem 3.1 is proven.

4 Infinite Semipositone Case B

Here we study the Case B, namely the boundary value problem :

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda \frac{u^{3}-a u^{2}+b u-c}{u^{3}} ;(0,1) \tag{4.1}\\
u(0)=0=u(1)
\end{array}\right.
$$

where $p>1, a, b$ and c are positive real numbers and $0<\beta<1$. We establish:

Theorem 4.1. Let $a>0$ be fixed and let $p \in[2-\beta, 3-2 \beta)$. Then there exist positive quantites $b^{*}(a), c^{*}(a), \lambda_{1}, \lambda^{*}$ and λ_{2} such that for $b>b^{*}(a)$ and $c<c^{*}(a)$ the followings are true:
(1) for $\lambda \leq \lambda_{2}$, (4.1) has at least one solution.
(2) for $\lambda>\lambda_{2}$, (4.1) has no solution.
(3) for $\lambda_{1}<\lambda<\lambda^{*}$, (4.1) has at least three solutions.

Proof. To prove Theorem 4.1 from our discussion in Section 2, it is enough to show that for certain parameter values H has the shape in Figure 4 : namely

- $f^{\prime}(s)>0$ for all $s \geq 0$.
- $H^{\prime}(s)<0 ; 0<s \leq \theta$.
- there exists $\rho_{2}>\theta$ such that $H\left(\rho_{2}\right)>0$.

Here $f(u)=\frac{u^{3}-a u^{2}+b u-c}{u^{\beta}}$. First, we show that $f^{\prime}(s)>0$ for all $s \geq 0$. Indeed, if $b>\frac{(2-\beta)^{2} a^{2}}{4(3-\beta)(1-\beta)}:=b_{1}$,

$$
\begin{aligned}
f^{\prime}(s) & =(3-\beta) s^{2-\beta}-a(2-\beta) s^{1-\beta}+b(1-\beta) s^{-\beta}+\beta c s^{-\beta-1} \\
& >s^{-\beta}\left[(3-\beta) s^{2}-a(2-\beta) s+b(1-\beta)\right] \\
& =s^{-\beta}(3-\beta)\left[\left(s-\frac{(2-\beta) a}{2(3-\beta)}\right)^{2}-\frac{(2-\beta)^{2} a^{2}}{4(3-\beta)^{2}}+\frac{(1-\beta) b}{3-\beta}\right] \\
& >s^{-\beta}(3-\beta)\left[-\frac{(2-\beta)^{2} a^{2}}{4(3-\beta)^{2}}+\frac{(1-\beta) b}{3-\beta}\right] \\
& =s^{-\beta}(1-\beta)\left[-\frac{(2-\beta)^{2} a^{2}}{4(3-\beta)(1-\beta)}+b\right] \\
& >0 .
\end{aligned}
$$

Next, since f is increasing on $(0, \infty), \lim _{s \rightarrow 0^{+}} f(s)=-\infty$ and $\lim _{s \rightarrow \infty} f(s)=$ $+\infty$, there exists a unique $\beta>0$ such that $f(\beta)=0$ and a unique $\theta>\beta$ such that $F(\theta)=0$. Now recall that $H(s)=F(s)-\frac{1}{p} s f(s)$. Clearly $H(0)=0$. We will now show that $H^{\prime}(s)<0 ; 0<s \leq \theta$. First note that

$$
F(s)=\frac{1}{4-\beta} s^{4-\beta}-\frac{a}{3-\beta} s^{3-\beta}+\frac{b}{2-\beta} s^{2-\beta}-\frac{c}{1-\beta} s^{1-\beta}<0 ; 0<s \leq \theta
$$

Hence

$$
\begin{equation*}
c s^{-\beta}>\frac{1-\beta}{4-\beta} s^{3-\beta}-\frac{a(1-\beta)}{3-\beta} s^{2-\beta}+\frac{b(1-\beta)}{2-\beta} s^{1-\beta} ; 0<s \leq \theta \tag{4.2}
\end{equation*}
$$

Now since $p<3-2 \beta$, if $b>\frac{(2-\beta)(4-\beta)(p-4+2 \beta)^{2} a^{2}}{3(3-\beta)^{2}(p-5+2 \beta)(p-3+2 \beta)}:=b_{2}$, by using (4.2), we obtain that

$$
\begin{aligned}
p H^{\prime}(s)= & (p-1) f(s)-s f^{\prime}(s) \\
= & (p-4+\beta) s^{3-\beta}-a(p-3+\beta) s^{2-\beta}+b(p-2+\beta) s^{1-\beta} \\
& -c(p-1+\beta) s^{-\beta} \\
< & (p-4+\beta) s^{3-\beta}-a(p-3+\beta) s^{2-\beta}+b(p-2+\beta) s^{1-\beta} \\
& -(p-1+\beta)\left[\frac{1-\beta}{4-\beta} s^{3-\beta}-\frac{a(1-\beta)}{3-\beta} s^{2-\beta}+\frac{b(1-\beta)}{2-\beta} s^{1-\beta}\right] \\
= & {\left[\frac{3(p-5+2 \beta)}{4-\beta} s^{2}-\frac{2 a(p-4+2 \beta)}{3-\beta} s+\frac{b(p-3+2 \beta)}{2-\beta}\right] s^{1-\beta} } \\
= & {\left[\frac{3(p-5+2 \beta)}{4-\beta}\left(s-\frac{a(4-\beta)(p-4+2 \beta)}{3(3-\beta)(p-5+2 \beta)}\right)^{2}\right.} \\
& \left.-\frac{a^{2}(4-\beta)(p-4+2 \beta)^{2}}{3(3-\beta)^{2}(p-5+2 \beta)}+\frac{b(p-3+2 \beta)}{2-\beta}\right] s^{1-\beta} \\
< & {\left[-\frac{a^{2}(4-\beta)(p-4+2 \beta)^{2}}{3(3-\beta)^{2}(p-5+2 \beta)}+\frac{b(p-3+2 \beta)}{2-\beta}\right] s^{1-\beta} } \\
= & \frac{p-3+2 \beta}{2-\beta}\left[-\frac{a^{2}(2-\beta)(4-\beta)(p-4+2 \beta)^{2}}{3(3-\beta)^{2}(p-5+2 \beta)(p-3+2 \beta)}+b\right] s^{1-\beta} \\
< & 0 ; 0<s \leq \theta .
\end{aligned}
$$

Next, we show that there exists $\rho_{2}>\theta$ such that $H\left(\rho_{2}\right)>0$. Let $\rho_{2}=\mu a$, where $\mu=\frac{(2-\beta)(p-3+\beta)}{(3-\beta)(p-4+\beta)}$. Since $p \geq 2-\beta$, we obtain that

$$
\begin{aligned}
H\left(\rho_{2}\right)= & F\left(\rho_{2}\right)-\frac{\rho_{2}}{p} f\left(\rho_{2}\right) \\
= & \frac{1}{4-\beta} \rho_{2}^{4-\beta}-\frac{a}{3-\beta} \rho_{2}^{3-\beta}+\frac{b}{2-\beta} \rho_{2}^{2-\beta}-\frac{c}{1-\beta} \rho_{2}^{1-\beta} \\
& \quad-\frac{\rho_{2}}{p}\left[\rho_{2}^{3-\beta}-a \rho_{2}^{2-\beta}+b \rho_{2}^{1-\beta}-c \rho_{2}^{-\beta}\right] \\
= & \frac{\rho_{2}^{1-\beta}}{p}\left[\frac{p-4+\beta}{4-\beta} \rho_{2}^{3}-\frac{a(p-3+\beta)}{3-\beta} \rho_{2}^{2}+\frac{b(p-2+\beta)}{2-\beta} \rho_{2}\right. \\
& \left.\quad-\frac{c(p-1+\beta)}{1-\beta}\right] \\
\geq & \frac{\rho_{2}^{1-\beta}}{p}\left[\frac{p-4+\beta}{4-\beta} \rho_{2}^{3}-\frac{a(p-3+\beta)}{3-\beta} \rho_{2}^{2}-\frac{c(p-1+\beta)}{1-\beta}\right] \\
= & \frac{\rho_{2}^{1-\beta}}{p}\left[\left(\frac{(p-4+\beta) \mu}{4-\beta}-\frac{p-3+\beta}{3-\beta}\right) \mu^{2} a^{3}-\frac{c(p-1+\beta)}{1-\beta}\right] \\
= & \frac{\rho_{2}^{1-\beta}(p-1+\beta)}{p(1-\beta)}\left[\frac{(1-\beta)(-2(p-3+\beta))}{(p-1+\beta)(3-\beta)(4-\beta)} \mu^{2} a^{3}-c\right] .
\end{aligned}
$$

Thus we have $H\left(\rho_{2}\right)>0$ if $c<\frac{(1-\beta)(-2(p-3+\beta))}{(p-1+\beta)(3-\beta)(4-\beta)} \mu^{2} a^{3}:=c^{*}(a)$. Since $H(0)=$ $0, H^{\prime}(s)<0 ; 0<s \leq \theta$ and $H\left(\rho_{2}\right)>0$, clearly $\rho_{2}>\theta$. Taking $b^{*}(a)=$ $\max \left\{b_{1}, b_{2}\right\}$, it follows that for $b>b^{*}(a)$ and $c<c^{*}(a)$, Theorem 4.1 holds.

Remark 4.1. The range restriction on p here helps us prove analytically that the bifurcation curve is reversed S-shaped. However, this is not a necessary condition as seen from our computational result. (See Example (d) in Section 5)

5 Computational Results

Here using Mathematica computations of (2.2), we derive the exact bifurcation curves for the following examples:
(a) Case A with $p=1.6, \alpha=10$ and $\beta=0.5$
(b) Case A with $p=10, \alpha=50$ and $\beta=0.5$
(c) Case B with $p=2.5, a=10, b=72, c=1$ and $\beta=0.1$
(d) Case B with $p=3, a=10, b=50, c=20$ and $\beta=0.1$

Figure 6: Example (a) $p=1.6, \alpha=10$ and $\beta=0.5$

Figure 7: Example (b) $p=10, \alpha=50$ and $\beta=0.5$

Figure 8: Example (c) $p=2.5, a=10, b=72, c=1$ and $\beta=0.1$

Figure 9: Example (d) $p=3, a=10, b=50, c=20$ and $\beta=0.1$

References

[1] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
[2] S. M. Bouguima and A. Lakmeche , Multiple solutions of a nonlinear problem involving the p-Laplacian, Comm. Appl. Nonlinear Anal., 7 (2000), 83-96.
[3] K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves, Nonlinear Analysis,Vol. 5, No.5, 475-486.
[4] A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proceedings of the Royal Society of Edinburgh, 108A, (1988), 291302.
[5] J. I. Diaz, Nonlinear partial differential equations and free boundaries, Vol.I. Elliptic equations, Research Notes in Mathematics, 106, Pitman, Boston, MA,1985.
[6] J. I. Diaz and F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25(4), (1994), 10851111.
[7] Y. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory, SIAM J. Math. Anal. 32 (2000), 707733.
[8] P. Korman and Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020.
[9] T. Laetsch, The number of solutions of a nonlinear two point boundary value problems, Indiana Univ. Math. J., 20(1) (1970), 1-13.
[10] A. Lakmeche and A. Hammoudi, Multiple positive solutions of the onedimensional p-Laplacian, Journal of mathematical analysis and applications, 317 (2006), 43-49.
[11] S. H. Wang, On S-shaped bifurcation curves, Nonlinear Anal., 22 (1994), 1475-1485.
[12] H. Wiebers, S-shaped bifurcation curves of nonlinear elliptic boundary value problems, Math. Ann., 270 (1985), 555-570.
(Received January 2, 2011)

[^0]: *Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA, e-mail: ek94@msstate.edu
 ${ }^{\dagger}$ Department of Mathematics, Pusan National University, Busan, 609-735, Korea, e-mail: lek915@pusan.ac.kr; "This author has been supported by the National Research Foundation of Korea Grant funded by the Korean Government [NRF-2009-353-C00042]"
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, Center for Computational Science, Mississippi State University, Mississippi State, MS 39762, USA, e-mail: shivaji @ra.msstate.edu

 AMS Subject Classifications: 34B16, 34B18

