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EXISTENCE OF ALMOST PERIODIC SOLUTIONS TO SOME THIRD-ORDER

NONAUTONOMOUS DIFFERENTIAL EQUATIONS

TOKA DIAGANA

Abstract. In this paper using the well-known Schauder fixed point theorem we study and obtain
the existence of almost periodic mild solutions to some classes of nonautonomous third-order
differential equations on a separable infinite dimensional complex Hilbert space.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space. In the recent papers by Diagana
[10, 11], the existence of almost periodic solutions to some second-order nonautonomous differential
equations was obtained. For that, Diagana made extensive use of dichotomy tools and Schauder
fixed point theorem.

In this paper using the well-known Schauder fixed point principle, we study the problem which
consists of the existence of almost periodic solutions to the nonautonomous third-order differential
equations

d

dt

[
u′′ + g(t, Bu(t))

]
= w(t)Au(t) + f(t, Cu(t)), t ∈ R(1.1)

where the following preliminary assumptions will be made:

(i) A : D(A) ⊂ H 7→ H is a self-adjoint linear operator on H whose spectrum consists of isolated
eigenvalues 0 < λ1 < λ2 < ... < λl → ∞ as l → ∞ with each eigenvalue having a finite
multiplicity γj equals to the multiplicity of the corresponding eigenspace;

(ii) the algebraic sum of the (possibly unbounded) linear operators B and C defined by B+C :
D(B) ∩ D(C) ⊂ H 7→ H is assumed to be a nontrivial linear operator and the following
holds

Hα :=
(
H, D(A)

)
α,∞

⊂ D(B) ∩D(C),(1.2)

with Hα :=
(
H, D(A)

)
α,∞

being the real interpolation space of order (α,∞) between H and

D(A) [23];
(iii) the function w : R 7→ R given by w(t) = −ρ(t) for all t ∈ R is assumed to be almost periodic

and further there exist two constants ρ0, ρ1 > 0 satisfying the following conditions

ρ0 ≤ ρ(t) ≤ ρ1 for all t ∈ R; and(1.3)

(iv) the functions f, g : R×D(A) 7→ H are almost periodic in the first variable uniformly in the
second variable.
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As an immediate application of one of the main results of the paper (Theorem 4.1), we study
and obtain the existence of almost periodic solutions to the nonautonomous third-order differential
equations

u′′′ +B(t)u′ +A(t)u = h(t, u),(1.4)

where A(t) = q(t)A, and B(t) = p(t)B for each t ∈ R, the functions p, q : R 7→ R are almost
periodic, A,B are the same as in Eq. (1.1), and the function h : R × Hα 7→ H, (t, u) 7→ h(t, u) is
almost periodic in t ∈ R uniformly in u ∈ Hα (Theorem 5.1).

To deal with Eq. (1.1), we rewrite it as a nonautonomous first-order differential equation on
H × H × H and next study the obtained first order differential equation with the help of the well-
known Schauder fixed point principle. Indeed, assuming that u ∈ D(A) is three times differentiable
and setting

z :=




u

u′

u′′ + g(t, Bu)



,

then Eq. (1.1) can be rewritten on X := H × H × H in the following form

(1.5)
dz

dt
= A(t)z + F (t, z(t)), t ∈ R,

where A(t) is the family of 3×3-operator matrices defined by

(1.6) A(t) =




0 IH 0

0 0 IH

w(t)A 0 0



, t ∈ R,

where IH is the identity operator of H.
Clearly, domain D(A(t)) = D(A) × H × H is constant in t ∈ R.
The vector-valued function F appearing in Eq. (1.5) is defined on R×Xα for some α ∈ (0, 1) by

F (t, z(t)) =




0

−g(t, Bu)

f(t, Cu)



,

where Xα is the real interpolation space of order (α,∞) between X and D(A(t)) which is explicitly
given by

Xα =
(
X, D(A(t))

)
α,∞

=
(
H × H × H, D(A) × H × H

)
α,∞

= Hα × H × H.

EJQTDE, 2011 No. 65, p. 2



Clearly, if p : R 7→ R is differentiable, one can easily check that Eq. (1.4) is a special case of Eq.
(1.1). Indeed, Eq. (1.4) can be rewritten as

d

dt

[
du

dt
+ g̃(t, Bu(t))

]
= w̃(t)Au(t) + f̃(t, Bu(t)), t ∈ R(1.7)

where C = B, w̃(t) = −q(t), g̃(t, Bu) = p(t)Bu, and f̃(t, Bu) = h(t, u) + p′(t)Bu for all t ∈ R.
Once we rewrite Eq. (1.7) in the form Eq. (1.5), its corresponding vector-valued function F

which we denote by F̃ is defined on R × Xα for some α ∈ (0, 1) by

F̃ (t, z(t)) =




0

−p(t)Bu

h(t, u) + p′(t)Bu



.

The stability, asymptotic behavior, boundedness and the existence of solutions to third-order
differential equations have been widely studied in the literature [18, 19, 20, 27, 28, 30, 31]. However,
to the best of our knowledge, the original problem which consists of the existence of almost periodic
mild solutions to both Eq. (1.1) and then to Eq. (1.4), remains an untreated question which
constitutes the main impetus of this paper. In order to study the above-mentioned issues, we will
make extensive use of ideas and techniques utilized in [4, 10, 11, 17, 21], the exponential stability
of the associated evolution family, and the Schauder fixed point theorem. For more on abstract
second- and higher-order differential and related issues, see, e.g., [6, 7, 13, 16, 25, 32, 33, 34].

2. Preliminaries

Let (X,
∥∥ ·
∥∥) be a Banach space. If L is a linear operator on the Banach space X, then, D(L),

ρ(L), σ(L), N(L), and R(L) stand respectively for its domain, resolvent, spectrum, null-space or
kernel; and range. If L : D = D(L) ⊂ X 7→ X is a linear operator, one sets R(λ, L) := (λI − L)−1

for all λ ∈ ρ(A).
If Y,Z are Banach spaces, then the space B(Y,Z) denotes the collection of all bounded linear

operators from Y into Z equipped with its natural topology. This is simply denoted by B(Y) when
Y = Z. If P is a projectin, we set Q = I − P.

Let B(R,X) stand for the Banach space of all bounded continuous functions ϕ : R 7→ X when
equipped with the sup norm defined by

∥∥ϕ
∥∥
∞

:= sup
t∈R

∥∥ϕ(t)
∥∥

for ϕ ∈ BC(R,X). Similarly, B(R,Xα) for α ∈ (0, 1), stands for the Banach space of all bounded
continuous functions ϕ : R 7→ Xα when equipped with the α-sup norm

∥∥ϕ
∥∥

α,∞
:= sup

t∈R

∥∥ϕ(t)
∥∥

α

for ϕ ∈ BC(R,Xα).
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2.1. Almost Periodic Functions.

Definition 2.1. A continuous function f : R 7→ X is called (Bohr) almost periodic if for each ε > 0
there exists l(ε) > 0 such that every interval of length l(ε) contains a number τ with the property
that ∥∥f(t+ τ) − f(t)

∥∥ < ε for each t ∈ R.

The number τ above is called an ε-translation number of f , and the collection of all such functions
will be denoted AP (X).

Definition 2.2. A continuous function F : R × X 7→ X is called (Bohr) almost periodic in t ∈ R

uniformly in x ∈ K where K ⊂ X is any compact subset if for each ε > 0 there exists l(ε) such that
every interval of length l(ε) contains a number τ with the property that

∥∥F (t+ τ, y) − F (t, y)
∥∥ < ε for each t ∈ R, y ∈ K.

The proof of our main result requires the following composition theorems.

Theorem 2.3. Let F : R×X 7→ X be an almost periodic function. Suppose that there exists L ≥ 0
such that ∥∥F (t, u) − F (t, v)

∥∥ ≤ L
∥∥u− v

∥∥
for all u, v ∈ X for all t ∈ R. If g ∈ AP (X), then Γ : R → X defined by Γ(·) := F (·, g(·)) belongs to
AP (X).

Theorem 2.4. Let F : R × X 7→ X be an almost periodic function. Suppose F (t, u) is uniformly
continuous on every bounded subset K ′ ⊂ X uniformly for t ∈ R. If g ∈ AP (X), then Γ : R → X

defined by Γ(·) := F (·, g(·)) belongs to AP (X).

For more on almost periodic functions and related issues, we refer the reader to Corduneanu [8]
and Diagana [14].

2.2. Evolution Families. Note that this subsection is similar to that of Diagana [9]. For the sake
of clarity, we reproduce it here.

Definition 2.5. A family of closed linear operators A(t) for t ∈ R on X with domain D(A(t))
(possibly not densely defined) satisfy the so-called Acquistapace–Terreni conditions, that is, there
exist constants ω ∈ R, θ ∈

(
π
2 , π

)
, K,L ≥ 0 and µ, ν ∈ (0, 1] with µ+ ν > 1 such that

(2.1) Sθ ∪ {0} ⊂ ρ (A(t) − ω) ∋ λ, ‖R (λ,A(t) − ω)‖ ≤ K

1 + |λ|
and

(2.2) ‖(A(t) − ω)R (λ,A(t) − ω) [R (ω,A(t)) −R (ω,A(s))]‖ ≤ L |t− s|µ |λ|−ν

for t, s ∈ R, λ ∈ Sθ := {λ ∈ C \ {0} : |argλ| ≤ θ}.
Note that in the particular case when A(t) has a constant domain D = D(A(t)), it is well-known

[3, 26] that Eq. (2.2) can be replaced with the following: there exist constants L and 0 < µ ≤ 1
such that

(2.3) ‖(A(t) −A(s))R (ω,A(r))‖ ≤ L |t− s|µ , s, t, r ∈ R.
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Among other things, it ensures that there exists a unique evolution family

U = {U(t, s) : t, s ∈ R such that t ≥ s}
on X associated with A(t) such that U(t, s)X ⊆ D(A(t)) for all t, s ∈ R with t ≥ s, and

(a) U(t, s)U(s, r) = U(t, r) for t, s ∈ R such that t ≥ s ≥ s;
(b) U(t, t) = I for t ∈ R where I is the identity operator of X;
(c) (t, s) 7→ U(t, s) ∈ B(X) is continuous for t > s;

(d) U(·, s) ∈ C1((s,∞), B(X)),
∂U

∂t
(t, s) = A(t)U(t, s) and

∥∥A(t)kU(t, s)
∥∥ ≤ K (t− s)−k

for 0 < t− s ≤ 1, k = 0, 1; and
(e) ∂+

s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)).

It should also be mentioned that the above-mentioned proprieties were mainly established in [1,
Theorem 2.3] and [36, Theorem 2.1], see also [2, 35]. In that case we say that A(·) generates the
evolution family U(·, ·).

Definition 2.6. An evolution family U = {U(t, s) : t, s ∈ R such that t ≥ s} is said to have
an exponential dichotomy if there are projections P (t) (t ∈ R) that are uniformly bounded and
strongly continuous in t and constants δ > 0 and N ≥ 1 such that

(f) U(t, s)P (s) = P (t)U(t, s);
(g) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (we then set UQ(s, t) :=

UQ(t, s)−1); and

(h) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for t ≥ s and t, s ∈ R.

According to [29], the following sufficient conditions are required for A(t) to have exponential
dichotomy.

(i) Let (A(t), D(t))t∈R be generators of analytic semigroups on X of the same type. Suppose
that D(A(t)) ≡ D(A(0)), A(t) is invertible,

sup
t,s∈R

∥∥A(t)A(s)−1
∥∥ <∞,

and ∥∥A(t)A(s)−1 − I
∥∥ ≤ L0 |t− s|µ

for t, s ∈ R and constants L0 ≥ 0 and 0 < µ ≤ 1.
(j) The semigroups (eτA(t))τ≥0, t ∈ R, are hyperbolic with projection Pt and constants N, δ >

0. Moreover, let ∥∥∥A(t)eτA(t)Pt

∥∥∥ ≤ ψ(τ)

and ∥∥∥A(t)eτAQ(t)Qt

∥∥∥ ≤ ψ(−τ)

for τ > 0 and a function ψ such that R ∋ s 7→ ϕ(s) := |s|µ ψ(s) is integrable with
L0 ‖ϕ‖L1(R) < 1.
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2.3. Estimates for U(t, s). It should be mentioned that this subsection is similar to that of Di-
agana [9]. For the sake of clarity, we reproduce all these notions here, too. This setting requires
some estimates related to U(t, s). For that, we make extensive use of the real interpolation spaces
of order (α,∞) between X and D(A(t)), where α ∈ (0, 1). We refer the reader to the excellent book
of Lunardi [23] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on X (for that, in Definition 2.5, replace A(t) with A) and let
α ∈ (0, 1). Define the real interpolation space

X
A
α :=

{
x ∈ X : ‖x‖A

α := supr>0 ‖rα(A− ω)R(r, A− ω)x‖ <∞
}
,

which, by the way, is a Banach space when endowed with the norm ‖·‖A
α . For convenience we

further write

X
A
0 := X, ‖x‖A

0 := ‖x‖ , X
A
1 := D(A)

and

‖x‖A
1 := ‖(ω −A)x‖ .

Moreover, let X̂A := D(A) of X. In particular, we have the following continuous embedding

D(A) →֒ X
A
β →֒ D((ω −A)α) →֒ X

A
α →֒ X̂

A →֒ X,(2.4)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
In general, D(A) is not dense in the spaces XA

α and X. However, we have the following continuous
injection

X
A
β →֒ D(A)

‖·‖A
α

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R, satisfying (H.1), we set

X
t
α := X

A(t)
α , X̂

t := X̂
A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in Eq. (2.4) holds
with constants independent of t ∈ R. These interpolation spaces are of class Jα ([23, Definition
1.1.1 ]) and hence there is a constant c(α) such that

‖y‖t
α ≤ c(α) ‖y‖1−α ‖A(t)y‖α

, y ∈ D(A(t)).

We have the following fundamental estimates for the evolution family U(t, s).

Proposition 2.7. [4] Suppose the evolution family U has exponential dichotomy. For x ∈ X,
0 ≤ α ≤ 1 and t > s, the following hold:

(i) There is a constant c(α), such that

(2.5) ‖U(t, s)P (s)x‖t
α ≤ c(α)e−

δ
2
(t−s)(t− s)−α ‖x‖ .

(ii) There is a constant m(α), such that

(2.6)
∥∥∥ŨQ(s, t)Q(t)x

∥∥∥
s

α
≤ m(α)e−δ(t−s) ‖x‖ .
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Remark 2.8. Note that if an evolution family U is exponential stable, that is, there exists constants
N, δ > 0 such that ‖U(t, s)‖ ≤ Ne−δ(t−s) for t ≥ s, then its dichotomy projection P (t) = I

(Q(t) = I − P (t) = 0). In that case, Eq. (2.5) still holds and can be rewritten as follows: for all
x ∈ X,

(2.7) ‖U(t, s)x‖t
α ≤ c(α)e−

δ
2
(t−s)(t− s)−α ‖x‖ .

We will need the following assumptions:

(H.1) The linear operators {A(t)}t∈R whose domains are constant in t satisfy the Acquistapace–
Terreni conditions.

Let U =
{
U(t, s) : t, s ∈ R such that t ≥ s

}
denote the evolution family associated

with the family of linear operators A(t).
(H.2) The evolution family U(t, s) is compact for t > s and is exponential stable, that is, there

exists constants N, δ > 0 such that ‖U(t, s)‖ ≤ Ne−δ(t−s) for t ≥ s.

Remark 2.9. Under assumption (H.2), it can be shown that for each given t ∈ R and τ > 0, the
family {U(·, s) : s ∈ (−∞, t− τ)} is equicontinuous in t for the uniform operator topology.

3. Existence of Almost Periodic Mild Solutions

Let α, β are real numbers such that 0 < α < β < 1. The bound of the injection Xβ →֒ Xα will
be denoted by c, i.e., ∥∥u(t)

∥∥
α
≤ c
∥∥u(t)

∥∥
β

for all u ∈ Xβ .
Consider the nonautonomous differential

u′(t) = A(t)u(t) + F (t, u(t)), t ∈ R,(3.1)

where F : R × Xα 7→ X is jointly continuous.
The rest of Section is slightly is similar to the one given Diagana [9]. However, for the sake of

clarity, we reproduce it here.

Definition 3.1. Under assumption (H.1), a continuous function u : R 7→ Xα is said to be a mild
solution to Eq. (3.1) provided that

u(t) = U(t, s)u(s) +

∫ t

s

U(t, τ)F (τ, u(τ))dτ(3.2)

for each ∀t ≥ s, t, s ∈ R.

Let us indicate that if F : R×Xα 7→ X is a jointly continuous bounded function, then u satisfying

u(t) =

∫ t

−∞

U(t, s)F (s, u(s))ds.(3.3)

for all t ∈ R, is a mild solution to Eq. (3.1).
This setting requires the following additional assumptions:

(H.3) R(ω,A(·)) ∈ AP (B(Xα,X)) where ω is the constant appearing in Definition 2.5.
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(H.4) The function F : R × Xα 7→ X is almost periodic in the first variable uniformly in the
second one. For each bounded subset K ⊂ Xα, F (R,K) is bounded. Moreover, the function
u 7→ F (t, u) is uniformly continuous on any bounded subsetK of Xα for each t ∈ R. Finally,
we suppose that there exists L > 0 such that

sup
t∈R, ‖u‖α≤L

‖F (t, u)‖ ≤ L

e(β)
,

where e(β) := cc(β)δβΓ(1 − β).
(H.5) Let (un)n∈N ⊂ AP (Xα) be uniformly bounded and uniformly convergent in every compact

subset of R. Then F (·, un(·)) is relatively compact in BC(R,Xα).

Set

(Su)(t) =

∫ t

−∞

U(t, s)P (s)F (s, u(s))ds.

We need the following Lemma.

Lemma 3.2. [9, Diagana] Under assumptions (H.1)–(H.3), the mapping S : BC(R,Xα) 7→ BC(R,Xα)
is well-defined and continuous.

Proof. First of all, S(BC(R,Xα)) ⊂ BC(R,Xα). Indeed, setting g(t) := F (t, u(t)) and using
Proposition 2.7, we obtain

∥∥Su(t)
∥∥

α
≤ c

∥∥Su(t)
∥∥

β

≤ c

∫ t

−∞

∥∥U(t, s)g(s)
∥∥

β
ds

≤ cc(β)

∫ t

−∞

e−
δ
2
(t−s)(t− s)−β

∥∥g(s)
∥∥ds

≤ cc(β)
∥∥g
∥∥
∞

∫ +∞

0

e−σ

(
2σ

δ

)−β
2dσ

δ

≤ cc(β)δβΓ(1 − β)
∥∥g
∥∥
∞
,

and hence
∥∥Su(t)

∥∥
α
≤ e(β)

∥∥g
∥∥
∞

for all t ∈ R.
To complete the proof, we need to show that that S is continuous. For that consider an arbitrary

sequence of functions un ∈ BC(R,Xα) which converges uniformly to some u ∈ BC(R,Xα), that is,∥∥un − u
∥∥

α,∞
→ 0 as n→ ∞.

Now

∥∥
∫ t

−∞

U(t, s)P (s)[F (s, un(s)) − F (s, u(s))] ds
∥∥

α

≤ c(α)

∫ t

−∞

(t− s)−αe−
δ
2

(t−s)
∥∥F (s, un(s)) − F (s, u(s))

∥∥ ds.
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Now, using the continuity of F and the Lebesgue Dominated Convergence Theorem we conclude
that

∥∥
∫ t

−∞

U(t, s)P (s)[F (s, un(s)) − F (s, u(s))] ds
∥∥

α
→ 0 as n→ ∞ ,

and hence
∥∥Sun − Su

∥∥
α,∞

→ 0 as n→ ∞.

�

Lemma 3.3. [9, Diagana] Let Bα = {u ∈ AP (Xα) : ‖u‖α ≤ L}. Under assumptions (H.1)-(H.2)-
(H.4), then the functions in S(Bα) are equicontinuous on R.

Theorem 3.4. [9, Diagana] Suppose assumptions (H.1)—(H.5) hold, then Eq. (3.1) has at least
one almost periodic mild solution

Proof. First of all, note that using the proof of Lemma 3.2 one can easily show that S(Bα) ⊂ Bα.
In view of Lemma 3.2 and Lemma 3.3, it remains to show that V = {Su(t) : u ∈ Bα} is a relatively
compact subset of Xα for each t ∈ R. For that, fix t ∈ R and consider an arbitrary ε > 0.

We have

(Sεu)(t) :=

∫ t−ε

−∞

U(t, s)F (s, u(s))ds, u ∈ Bα

= U(t, t− ε)

∫ t−ε

−∞

U(t− ε, s)F (s, u(s))ds, u ∈ Bα

= U(t, t− ε)(Su)(t− ε), u ∈ Bα

and hence Vε := {Sεu(t) : u ∈ Bα} is relatively compact in Xα as U(t, t − ε) is compact by
assumption.

Now

‖Su(t) − U(t, t− ε)

∫ t−ε

−∞

U(t− ε, s)F (s, u(s))ds‖α ≤ c‖Su(t) − U(t, t− ε)

∫ t−ε

−∞

U(t− ε, s)F (s, u(s))ds‖β

≤ c

∫ t

t−ε

‖U(t, s)F (s, u(s))‖βds

≤ cc(β)

∫ t

t−ε

e−
δ
2
(t−s)(t− s)−β ‖F (s, u(s))‖ ds

≤ cc(β)L

e(β)

∫ ε

0

e−
δ
2

σσ−βdσ

≤ cc(β)L

e(β)

∫ ε

0

σ−βdσ

=
cc(β)L

(1 − β)e(β)
ε1−β.
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The rest of the proof follows slightly along the same lines as in [22]. Indeed, using the facts
that Bα is a closed convex subset of AP (Xα) and that S(Bα) ⊂ Bα, one can easily see that
co S(Bα) ⊂ Bα. Consequently, the following inclusions hold

S(co S(Bα)) ⊂ S(Bα) ⊂ co S(Bα).

Moreover, one can easily check that {u(t) : u ∈ co S(Bα)} is relatively compact in Xα for each fixed
t ∈ R and that functions in co S(Bα) are equicontinuous on R. By the well-known Arzela-Ascoli
theorem, the restriction of co S(Bα) to any compact subset I of R is relatively compact in C(I,Xα).
In view of the above, it follows that S : co S(Bα) 7→ co S(Bα) is continuous and compact. Using
the Schauder fixed point it follows that S has a fixed-point, which obviously is an almost periodic
mild solution to Eq. (3.1).

�

4. Almost Periodic Solutions to Eq. (1.1)

Fix once and for all an infinite dimensional separable complex Hilbert space H equipped with a
norm and inner product denoted respectively by ‖ · ‖ and 〈·, ·〉.

Let {ek
j } be a (complete) orthonormal sequence of eigenvectors associated with the eigenvalues

{λj}j≥1. Therefore, for each

u ∈ D(A) :=
{
u ∈ H :

∞∑

j=1

λ2
j

∥∥Eju
∥∥2
<∞

}
,

Au =

∞∑

j=1

λj

γj∑

k=1

〈u, ek
j 〉ek

j =

∞∑

j=1

λjEju

where Eju =

γj∑

k=1

〈u, ek
j 〉ek

j .

In this section, we let X = H3 = H × H × H, which is a Hilbert space when equipped with its
Euclidean topology. To study the existence of almost periodic solutions to Eq. (1.1), in addition
to the previous assumptions, we suppose that the following additional assumption holds:

(H.6) The linear operator B,C : Hα 7→ H are bounded. Let K > 0 be their bound, that is,
∥∥Bu

∥∥ ≤ K
∥∥u
∥∥

α
and

∥∥Cu
∥∥ ≤ K

∥∥u
∥∥

α

for all u ∈ Hα.

Theorem 4.1. Under previous assumptions and if (H.4)—(H.6) hold, then Eq. (1.1) has at least
one almost periodic solution u ∈ Hα.

Proof. For all z :=




u

v

w


 ∈ D = D(A(t)) = D(A) × H × H, we obtain the following

A(t)z =

∞∑

n=1

An(t)Pnz,
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where IH is the identity operator of H,

Pn :=




En 0 0

0 En 0

0 0 En



, n ≥ 1,

and

An(t) :=




0 1 0

0 0 1

w(t)λn 0 0



, n ≥ 1, t ∈ R.

Clearly, the characteristic equation for An(t) is given by

(4.1) −λ3 + λnw(t) = −λ3 − λnρ(t) = 0,

from which we obtain its eigenvalues given by

λn
1 (t) = − 3

√
λnρ(t), λn

2 (t) = 3

√
λnρ(t) e

i 2π
3 , and λn

3 (t) = 3

√
λnρ(t)e

−i 2π
3

and therefore σ(An(t)) =
{
λn

1 (t), λn
2 (t), λn

3 (t)
}
.

In view of the above it follows that there exists θ ∈
(π

2
, π
)

such that

Sθ ∪ {0} ⊂ ρ (A(t)) .

More precisely, any θ of the form θ =
π

2
+ ε with ε ∈ (0,

π

6
) would be fine.

It is also clear that λn
1 , λn

2 , λn
3 are distinct and each of them is of multiplicity one, then An(t) is

diagonalizable. Further, it is not difficult to see that An(t) = K−1
n (t)Jn(t)Kn(t), where Jn(t),Kn(t)

and K−1
n (t) are respectively given by

Jn(t) =




λn
1 (t) 0 0

0 λn
2 (t) 0

0 0 λn
3 (t)



, Kn(t) =




1 1 1

λn
1 (t) λn

2 (t) λn
3 (t)

[λn
1 (t)]2 [λn

2 (t)]2 [λn
3 (t)]2



.

For λ ∈ Sθ and z ∈ X, one has

R(λ,A(t))z =

∞∑

n=1

(λ−An(t))−1Pnz

=

∞∑

n=1

Kn(t)(λ − Jn(t))−1K−1
n (t)Pnz.
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Hence,

∥∥R(λ,A(t))z
∥∥2 ≤

∞∑

n=1

∥∥Kn(t)(λ − Jn(t))−1K−1
n (t)

∥∥2∥∥Pnz
∥∥2

≤
∞∑

n=1

∥∥Kn(t)
∥∥2∥∥(λ− Jn(t))−1

∥∥2 ∥∥K−1
n (t)

∥∥2∥∥Pnz
∥∥2
.

It is not hard to see that there exists there exists K ′ > 0 such
∥∥R(λ,A(t))

∥∥ ≤ K ′

1 +
∣∣λ
∣∣

for all λ ∈ Sθ and t ∈ R.
Clearly, the domain D = D(A(t)) is constant in t. Moreover, A(t) is invertible with

A(t)−1 =




0 0 w(t)−1A−1

IH 0 0

0 IH 0



, t ∈ R.

Therefore, for t, s, r ∈ R, one has
(
A(t) −A(s)

)
A(r)−1

=




0 0 0

0 0 0

0 0 w(r)−1(w(t) − w(s))IH



,

and hence assuming that there exist M0 ≥ 0 and µ ∈ (0, 1] such that
∣∣∣w(t) − w(s)

∣∣∣ ≤M0

∣∣∣t− s
∣∣∣
µ

(4.2)

it follows that there exists M ′ > 0 such that

∥∥∥(A(t) −A(s))A(r)−1z
∥∥∥ ≤M ′

∣∣∣t− s
∣∣∣
µ∥∥∥z

∥∥∥.

Therefore, the family of linear operators
{
A(t)

}

t∈R

satisfy Acquistapace–Terreni conditions.

Now, for every t ∈ R, the family of linear operators A(t) generate an analytic semigroup
(eτA(t))τ≥0 on X given by

eτA(t)z =

∞∑

n=0

Kn(t)−1Pne
τJnPnKn(t)Pnz, z ∈ X.

On the other hand, we have

∥∥eτA(t)z
∥∥ =

∞∑

n=0

∥∥Kn(t)−1Pn

∥∥∥∥eτJnPn

∥∥∥∥Kn(t)Pn

∥∥∥∥Pnz
∥∥,
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with for each z =

(
z1

z2

z2

)

∥∥eτJnPnz
∥∥2

=

∥∥∥∥∥∥∥∥∥∥




eλn
1
(t)τEn 0 0

0 eλn
2
(t)τEn 0

0 0 eλn
3
(t)τEn 0







z1

z2

z2




∥∥∥∥∥∥∥∥∥∥

2

≤
∥∥eλn

1
(t)τEnz1

∥∥2
+
∥∥eλn

2
(t)τEnz2

∥∥2
+
∥∥eλn

3
(t)τEnz2

∥∥2

≤ e2ℜe(λn
2
(t))τ

∥∥z
∥∥2
.

Clearly, using Eq. (1.3) it follows that

ℜe(λn
2 (t)) = 3

√
λnρ(t) cos(

2π

3
)

= −
3

√
λnρ(t)

2

≤ −
3
√
λ1ρ0

2

Setting, δ = 3

√
λ1ρ0 > 0 it follows that there exists C0 > 0 such

(4.3)
∥∥eτA(t)

∥∥ ≤ C0e
−δτ , τ ≥ 0.

Arguing as in [4] it follows that the evolution family (U(t, s))t≥s is exponentially stable and
hence (H.2) holds.

Using the fact that t 7→ w(t) and t 7→ w(t)−1 are almost periodic it follows that t 7→ A(t)−1 is
almost periodic with respect to operator topology. Using Theorem 3.4 it follows that Eq. (1.1) has
at least one almost periodic mild solution.

�

5. Existence of Almost Periodic Mild Solutions to Eq. (1.4)

Suppose F̃ satisfies (H.4)-(H.5) and that the following assumptions hold:

(h1) The function q : R 7→ C is given such that q(t) = ρ̃(t) for all t ∈ R is almost periodic and
there exist ρ̃0, ρ̃1 > 0 such that

ρ̃0 ≤ ρ̃(t) ≤ ρ̃1

for all t ∈ R.

(h2) There exist L0 > 0 and µ ∈ (0, 1] such that
∣∣q(t) − q(s)

∣∣ ≤ L0

∣∣t− s
∣∣µ

for all s, t ∈ R.
(h3) The function p : R 7→ C is uniformly continuous, almost periodic, and differentiable.

The proof of the next theorem is now clear.
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Theorem 5.1. Under previous assumptions and if (h1)-(h2)-(h3)-(H.6) hold, then Eq. (1.4) has
at least one almost periodic solution u ∈ Hα.
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[5] M. Baroun, S. Boulite, G. M. N’Guérékata, L. Maniar, Almost automorphy of semilinear parabolic evolution

equations. Electron. J. Diff. Eqns., Vol. 2008(2008), No. 60, pp. 1–9.
[6] S. Chen and R. Triggiani, Proof of two conjectures by G. Chen and D. L. Russell on structural damping for

elastic systems. Approximation and optimization (Havana, 1987), 234–256, it Lecture Notes in Math., 1354,
Springer, Berlin, 1988.

[7] S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,
Pacific J. Math. 136 (1989), no. 1, 15–55.

[8] C. Corduneanu, Almost periodic functions, AMS Chelsea Publishing, 1989.
[9] T. Diagana, Almost periodic solutions for some higher-order nonautonomous differential equations with operator

coefficients. Math. Comput. Modelling. (in press). June, 2011.
[10] T. Diagana, Almost periodic solutions to some damped second-order differential equations. (Submitted).
[11] T. Diagana, Almost periodic solutions to some second-order nonautonomous differential equations. Proc. Amer.

Math. Soc. (in press).
[12] T. Diagana, Existence of pseudo almost automorphic mild solutions to some nonautonomous partial evolution

equations. Adv. Difference Equations. Volume 2011, Article ID 895079, 23 pages. doi:10.1155/2011/895079.

[13] T. Diagana, Almost automorphic mild solutions to some classes of nonautonomous higher-order differential
equations. Semigroup Forum. 82 (2011), no. 3, 455–477.

[14] T. Diagana, Pseudo almost periodic functions in Banach spaces. Nova Science Publishers, Inc., New York, 2007.
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