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2012, No. 7, 1-13; http://www.math.u-szeged.hu/ejqtde/Observation problems posed for the Klein-Gordon equationANDRÁS SZIJÁRTÓ1, JEN� HEGED�S(SZTE, Bolyai Institute, Szeged, Hungary)szijarto�math.u-szeged.hu, hegedusj�math.u-szeged.huAbstrat. Transversal vibrations u = u(x, t) of a string of length l with �xed endsare onsidered, where u is governed by the Klein-Gordon equation
utt(x, t) = a2uxx(x, t) + cu(x, t), (x, t) ∈ [0, l] × R, a > 0, c < 0.Su�ient onditions are obtained that guarantee the solvability of eah of fourobservation problems with given state funtions f, g at two distint time instants

−∞ < t1 < t2 < ∞. The essential onditions are the following: smoothness of f, gas elements of a orresponding subspae Ds+i(0, l) (introdued in [2℄) of a Sobolevspae Hs+i(0, l), where i = 1, 2 depending on the type of the observation problem, andthe representability of t2 − t1 as a rational multiple of 2l

a
. The reonstrution of theunknown initial data (u(x, 0), ut(x, 0)) as the elements of Ds+1(0, l)×Ds(0, l) are givenby means of the method of Fourier expansions.2010 AMS Subjet Classi�ations: Primary 35Q93, 81Q05; Seondary 35L05,35R30, 42A20Key words: Observation problems, Klein-Gordon equation, generalized solutions,method of Fourier expansions.1. BACKGROUND AND KNOWN RESULTSIn ontrol theory - whih is losely related to the subjet of this paper - numer-ous monographies and artiles dealt with the aessability of a �nal state (positionand speed) of osillations (in partiular string osillations) in the time interval

0 ≤ t ≤ T < ∞; see for example, [1℄ - [10℄. Although, only the short ommunia-tion [11℄ dealt with observability of the string osillations on the interval 0 ≤ x ≤ l,and it treated just the ase when the observation instants t1 and t2 are small, namely
0 ≤ t1 ≤ t2 ≤

2l

a
, where a is the speed of the wave propagation. Furthermore, it isassumed in [11℄ that the initial data are known on some subinterval [h1, h2] ⊂ [0, l].We reonstruate the initial data in eah of the four observation problems related tothe Klein-Gordon equation for arbitrary large t1 and t2. Our preassumptions are onlythat (t2 − t1)

a

2l
is rational and the given state funtions are smooth enough. The ases

f, g ∈ Ds with arbitrary s ∈ R are also admitted.1Corresponding author EJQTDE, 2012 No. 7, p. 1



Let Ω = {(x, t) : 0 < x < l, t ∈ R}. Consider the problem (at �rst in the lassialsense) of the vibrating [0, l] string with �xed ends when there is an elasti withdrawingfore proportional to the transversal de�etion u(x, t) of the point x of the string atthe instant denoted by t. This phenomenon is desribed by the Klein-Gordon equationas follows:
(1) utt(x, t) = a2uxx(x, t) + cu(x, t), (x, t) ∈ Ω, a, c ∈ R, 0 < a, 0 > c,with the initial onditions
(2) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l,and the homogeneous boundary onditions of the �rst kind
(3) u(0, t) = 0, u(l, t) = 0, t ∈ R.We reall, that the funtion u is said to be a lassial solution of this problem, if
u ∈ C2(Ω) and onditions (1) − (3) are satis�ed.It is well known that if
(4) ϕ ∈ C2[0, l], ψ ∈ C1[0, l] and ϕ(0) = ϕ(l) = ϕ′′(0) = ϕ′′(l) = ψ(0) = ψ(l) = 0,then the Fourier method gives the lassial solution u of the problem (1) − (3) posedfor the Klein-Gordon equation, whih is of the following form:
(5) u(x, t) =

∞
∑

n=1

[αn cos (tωn) + βn sin (tωn)] sin(
nπ

l
x), (x, t) ∈ Ω,where

(6) ωn =

√

(
nπ

l
a)2 − c, n ∈ N,

(7) ϕ(x) = u(x, 0) =
∞
∑

n=1

αn sin(
nπ

l
x) ⇒ αn =

2

l

∫ l

0

ϕ(x) sin(
nπ

l
x)dx, n ∈ N,

(8) ψ(x) = ut(x, 0) =

∞
∑

n=1

ωn βn sin(
nπ

l
x) ⇒ βn =

1

ωn

2

l

∫ l

0

ψ(x) sin(
nπ

l
x)dx, n ∈ N.The uniqueness of the solution is a onsequene of the law of onservation of energy.To have a wider lass of funtions for ϕ, ψ and f, g, we shall onsider ertain gener-alized solutions of the problem (1)−(3). Namely, by using the suggestions of the referee,EJQTDE, 2012 No. 7, p. 2



we introdue the spaes Ds(0, l), s ∈ R mentioned in the abstrat (see [2℄). Given anarbitrary real number s, on the linear span D of the funtions sin nπ

l
x, n = 1, 2, ...,onsider the following Eulidean norm:

∥

∥

∥

∥

∥

∞
∑

n=1

cn sin(
nπ

l
x)

∥

∥

∥

∥

∥

s

:=

(

∞
∑

n=1

n2s|cn|
2

)
1

2

.CompletingD with respet to this norm, we obtain a Hilbert spae Ds. One an readilyverify that for s ≥ 0, Ds is a losed subspae of the Sobolev spae Hs(0, l), namely
Ds = {u ∈ Hs(0, l) : u(2i)(0) = u(2i)(l) = 0, i = 0, 1, ..., [(s− 1)/2]}.If we identify D0 = L2(0, l) with its dual, then D−s is the dual spae of Ds. Someof the results of [2℄ (see Setion 1.1-1.3) and [10℄ say that for arbitrary s ∈ R with

(ϕ, ψ) ∈ Ds+1 × Ds the generalized mixed problem (1) − (3) has a unique solution usatisfying
u ∈ C(R, Ds+1) ∩ C1(R, Ds) ∩ C2(R, Ds−1)given by the Fourier series (5) with oe�ients αn, βn de�ned by (7) and (8). Here andbelow all Fourier expansions for ϕ, ψ, f , g and u are understood in the spaes Ds(0, l).2. NEW RESULTSDe�nition 1. The observation problem posed for the Klein-Gordon equation is thefollowing. The initial funtions ϕ, ψ are unknown, but suh funtions f(x) and g(x)are given for whih one of the following four onditions holds:

(9) u(x, t1) = f(x), u(x, t2) = g(x), 0 ≤ x ≤ l;

(10) ut(x, t1) = f(x), u(x, t2) = g(x), 0 ≤ x ≤ l;

(11) u(x, t1) = f(x), ut(x, t2) = g(x), 0 ≤ x ≤ l;

(12) ut(x, t1) = f(x), ut(x, t2) = g(x), 0 ≤ x ≤ l.Here u is the solution of the generalized problem (1) − (3), and the given funtions
f, g are said to be the partial state of the string at distint time instants t1 and t2,
−∞ < t1 < t2 < ∞. Now the problem is to �nd the initial funtions ϕ, ψ in terms of
f(x), g(x).

EJQTDE, 2012 No. 7, p. 3



Theorem 1. Suppose that
(13) f ∈ Ds+2, g ∈ Ds+2, where s ∈ R,

(14) t2 − t1 =
p

q

2l

a
,where p, q are positive integers and they are relative primes. In addition, suppose that

(15) sin

(

(t2 − t1)

√

(
nπ

l
a)2 − c

)

6= 0, ∀n ∈ N.Then the observation problem (1) − (3) under ondition (9) has a unique solution for
(ϕ, ψ) ∈ Ds+1 × Ds. They are represented by their Fourier expansions in the proofbelow.Theorem 2. Suppose that
(16) f ∈ Ds+1, g ∈ Ds+2, where s ∈ R,ondition (14) holds and
(17) cos

(

(t2 − t1)

√

(
nπ

l
a)2 − c

)

6= 0, ∀n ∈ N.Then the observation problem (1)− (3) under ondition (10) has a unique solution for
(ϕ, ψ) ∈ Ds+1 × Ds. They are represented by their Fourier expansions in the proofbelow.Theorem 3. Suppose that
(18) f ∈ Ds+2, g ∈ Ds+1, where s ∈ R,and onditions (14) and (17) hold. Then the observation problem (1) − (3) under on-dition (11) has a unique solution for (ϕ, ψ) ∈ Ds+1×Ds. They are represented by theirFourier expansions in the proof below.Theorem 4. Suppose that
(19) f ∈ Ds+1, g ∈ Ds+1, where s ∈ R,and onditions (14) and (15) hold. Then the observation problem (1) − (3) under on-dition (12) has a unique solution for (ϕ, ψ) ∈ Ds+1×Ds. They are represented by theirFourier expansions in the proof below. EJQTDE, 2012 No. 7, p. 4



3. AUXILIARY RESULTSLemma 1. If ondition (14) holds, then there exist N ∈ N and m ∈ R suh that
1

|sin(ωn(t2 − t1))|
<

n

m
, ∀n > N.Proof. First, we deal with the denominator of the left-hand side of the inequality

(20) sin(ωn(t2 − t1)) = sin
(

(t2 − t1)
nπ

l
a + (t2 − t1)

[

ωn −
nπ

l
a
])

=

= sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

ω2
n − (nπ

l
a)2

ωn + nπ

l
a

)

= sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

).It follows from the ondition (14) that
(t2 − t1)

nπ

l
a =

p

q
2nπ,and that it takes on at most q di�erent values (mod 2π) as n varies. Let

zn := (t2 − t1)
nπ

l
a and d1 := min

n, sin zn 6=0
{|sin (zn)|}.Due to the absolute value bars, there is a real number d2 suh that

sin(d2) = d1, 0 < d2 ≤
π

2
.It is easy to see, that

(t2 − t1)
−c

ωn + nπ
l
a

= O(
1

n
) as n→ ∞.Therefore, there exist onstants N ∈ N, m ∈ R

+ suh that
(21)

πm

2n
<

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ
l
a

∣

∣

∣

∣

<
d2

2
and m

n
< sin

(

d2

2

)

, ∀n > N.So, if sin
(

(t2 − t1)
nπ

l
a
)

6= 0, then
∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)∣

∣

∣

∣

>

∣

∣

∣

∣

sin

(

d2 −
d2

2

)∣

∣

∣

∣

= sin

(

d2

2

)

>
m

n
,whenever n > N , by virtue of (21).On the other hand, if sin

(

(t2 − t1)
nπ

l
a
)

= 0, then
∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

(t2 − t1)
−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>

>
2

π

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ

l
a

∣

∣

∣

∣

>
m

n
, ∀n > N, EJQTDE, 2012 No. 7, p. 5



due to (21) and the inequality
(22) |sin t| >

2

π
|t| , if 0 < |t| <

π

2
.Combining the two ases just above, we get that

∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>
m

n
, ∀n > N.

Lemma 2. If ondition (14) holds, then there exist N ∈ N and m ∈ R suh that
1

|cos(ωn(t2 − t1))|
<

n

m
, ∀n > N.Proof. Similarly to (20) in the proof of Lemma 1, now we obtain that

cos(ωn(t2 − t1)) = cos

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ
l
a

)

.Let
zn := (t2 − t1)

nπ

l
a and d1 := min

n, cos zn 6=0
{|cos zn|}.Due to the absolute value bars, there is a real number d2 suh that

cos(d2) = d1, 0 ≤ d2 <
π

2
.Similarly to (21) in the proof of Lemma 1, there exist onstants N ∈ N and m ∈ R

+suh that
(23)

πm

2n
<

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ
l
a

∣

∣

∣

∣

<
π

2
− d2

2
and m

n
< cos

( π

2
+ d2

2

)

, ∀n > N.In this manner, if cos
(

(t2 − t1)
nπ

l
a
)

6= 0, we obtain again that
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>

∣

∣

∣

∣

cos

(

d2 +
π

2
− d2

2

)
∣

∣

∣

∣

= cos

( π

2
+ d2

2

)

>
m

n
,whenever n > N , by virtue of (23).On the other hand, in the ase when cos

(

(t2 − t1)
nπ

l
a
)

= 0, we get
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a + (t2 − t1)

−c

ωn + nπ
l
a

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

t2 − t1)
−c

ωn + nπ
l
a

)
∣

∣

∣

∣

>

>
2

π

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ

l
a

∣

∣

∣

∣

>
m

n
, ∀n > N,due to (22) and (23). EJQTDE, 2012 No. 7, p. 6



Combining the two ases just above, we get that
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a + (t2 − t1)

−c

ωn + nπ
l
a

)
∣

∣

∣

∣

>
m

n
, ∀n > N.

4. PROOFS OF THE THEOREMS 1 − 4Proof of Theorem 1. Sine any of the solutions u of problem (1)−(3) has representation
(5) with some oe�ients αn, βn; n ∈ N, the observation problem an be redued tothe problem of the appropriate hoies of αn and βn suh that (9) is satis�ed. For thisreason, we substitute t1 and t2 into (5), and use the two onditions in (9). As a result,we get the following neessary onditions for αn, βn:
(24) f(x) = u(x, t1) =

∞
∑

n=1

[αn cos(ωnt1) + βn sin(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

(25) g(x) = u(x, t2) =

∞
∑

n=1

[αn cos(ωnt2) + βn sin(ωnt2)] sin(
nπ

l
x), x ∈ [0, l],where ωn is de�ned in (6).The assumption (13) guarantees that the oe�ients of the sine Fourier expansions ofthe funtions f(x), g(x) are unambiguously determined and omparing these Fourierseries with (24) and (25), for αn, βn we get the following onditions:

(26)
αn cos(ωnt1) + βn sin(ωnt1) =

2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

αn cos(ωnt2) + βn sin(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear system (26) an be uniquely solved for the unknown oe�ients αn and βndue to assumption (15):

(27)
αn =

sin(ωnt2)
2
l

∫ l

0
f(x) sin(nπ

l
x)dx− sin(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

sin(ωn(t2 − t1))
,

βn =
− cos(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ cos(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

sin(ωn(t2 − t1))
.So the unknown initial funtions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the lasses Ds+1, Ds,respetively, i. e. to show that the following inequality holds:

(28) max{‖ϕ‖2
s+1, ‖ψ‖

2
s} <∞. EJQTDE, 2012 No. 7, p. 7



We introdue the following notations for the sake of transpareny:
Dn :=

2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sine (f, g) ∈ Ds+2 ×Ds+2, we have the following inequality:

(29)

∞
∑

n=1

n2s+4 max{|Dn|
2, |En|

2} <∞.By using Lemma 1, for every n > N we get
|αn| =

∣

∣

∣

∣

sin(ωnt2)Dn − sin(ωnt1)En

sin(ωn(t2 − t1))

∣

∣

∣

∣

<
∣

∣

∣

n

m
Dn

∣

∣

∣
+
∣

∣

∣

n

m
En

∣

∣

∣
,

|βn| =

∣

∣

∣

∣

− cos(ωnt2)Dn + cos(ωnt1)En

sin(ωn(t2 − t1))

∣

∣

∣

∣

<
∣

∣

∣

n

m
Dn

∣

∣

∣
+
∣

∣

∣

n

m
En

∣

∣

∣
,whih means that

(30) max{|αn|, |βn|} < c1nmax{|Dn|, |En|} n ∈ N,with a suitable onstant c1.Let M ≥ 1 be a onstant suh that ωn < Mn, ∀n ∈ N. Combining (29), (30) and thede�nition of the norm ‖.‖s we get the desired inequality (28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤
∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c21M
2

∞
∑

n=1

n2s+4 max{|Dn|
2, |En|

2} <∞.

Remark 1. In the lassial ase when the given state funtions are ontinuously dif-ferentiable, aording to Theorem 1, the initial funtions are also ontinuously di�er-entiable. More preisely, if
u(x, t1) = f(x) ∈ C4[0, l], u(x, t2) = g(x) ∈ C4[0, l], f, g|0,l = f ′′, g′′|0,l = 0,then f, g ∈ D4 and the observation problem has a unique lassial solution

u(x, 0) = ϕ(x) ∈ D3 ⊂ C2, ut(x, 0) = ψ(x) ∈ D2 ⊂ C1.EJQTDE, 2012 No. 7, p. 8



Remark 2. Taking into aount (20), ondition (15) an be written into the followingform:
(31) sin ((t2 − t1)ωn) = sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c
√

(nπ

l
a)2 − c+ nπ

l
a

)

6= 0for all n ∈ N. Analysing the proof of Lemma 1, it is easy to see that the above onditionis ertainly satis�ed for all n large enough, say n > N .If we want to get an easily veri�able ondition instead of (15), whih is not neessarythen
(32) (t2 − t1)

−c
√

(π
l
a)2 − c+ π

l
a
<
π

qis suh a su�ient ondition. We justify this laim as follows. The �rst term in theargument of the sine funtion in (31) is either 0 (mod 2π), or its distane is at least
π

q
from its zeroes, and the seond term in the argument of the sine funtion in (31) ispositive and monotone dereasing funtion of n. So, if we assume that the seond termis already smaller than π

q
for n = 1, whih is atually the ase in (32), then ondition

(31) is satis�ed for eah n ≥ 1.Nevertheless, we an see from this simpler ondition (32), that if the parameters |c|and a in equation (1) are suh that either c is small or a is great enough, then ondition
(31) is always satis�ed. Similar observations an be made in the following Theorems
2 − 4.Proof of Theorem 2. In an analogous way as in the proof of Theorem 1, now we startwith the following equalities:
f(x) = ut(x, t1) =

∞
∑

n=1

[−αnωn sin(ωnt1) + βnωn cos(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

g(x) = u(x, t2) =
∞
∑

n=1

[αn cos(ωnt2) + βn sin(ωnt2)] sin(
nπ

l
x), x ∈ [0, l].Hene we get the following neessary onditions for the oe�ients αn, βn:

−αnωn sin(ωnt1) + βnωn cos(ωnt1) =
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

αn cos(ωnt2) + βn sin(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear equations just reeived an be uniquely solved for the unknown oe�ients

αn and βn, due to assumption (17): EJQTDE, 2012 No. 7, p. 9



αn =
− sin(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ cos(ωnt1)ωn

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn cos(ωn(t2 − t1))
,

βn =
cos(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ sin(ωnt1)ωn

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn cos(ωn(t2 − t1))
.So the unknown initial funtions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the lasses Ds+1, Ds,respetively. To this e�et, it is enough to show that (28) holds.Again, let

Dn :=
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sine (f, g) ∈ Ds+1 ×Ds+2, we have that the inequality (29′) holds:

(29′)

∞
∑

n=1

n2s+4 max{|
1

n
Dn|

2, |En|
2} <∞.By using Lemma 2, for every n > N we have

|αn| =

∣

∣

∣

∣

− sin(ωnt2)Dn + cos(ωnt1)ωnEn

ωn cos(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+
∣

∣

∣

n

m
En

∣

∣

∣
,

|βn| =

∣

∣

∣

∣

cos(ωnt2)Dn + sin(ωnt1)ωnEn

ωn cos(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+
∣

∣

∣

n

m
En

∣

∣

∣
,whih means that

(30′) max{|αn|, |βn|} < c2nmax{|
1

n
Dn|, |En|} n ∈ N,with a suitable onstant c2.Combining (29′), (30′) and the de�nition of the norm ‖.‖s we get the desired inequality

(28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤

∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c22M
2

∞
∑

n=1

n2s+4 max{|
1

n
Dn|

2, |En|
2} <∞.Proof of Theorem 3. This proof goes along the same lines as that of Theorem 2, exeptthat here we have to interhange the roles of the oe�ients αn and βn.EJQTDE, 2012 No. 7, p. 10



Proof of Theorem 4. Now, we have
f(x) = ut(x, t1) =

∞
∑

n=1

[−αnωn sin(ωnt1) + βnωn cos(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

g(x) = ut(x, t2) =
∞
∑

n=1

[−αnωn sin(ωnt2) + βnωn cos(ωnt2)] sin(
nπ

l
x), x ∈ [0, l],whene the neessary onditions for the oe�ients αn, βn are the following:

−αnωn sin(ωnt1) + βnωn cos(ωnt1) =
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

−αnωn sin(ωnt2) + βnωn cos(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear equations just reeived an be uniquely solved for the unknown oe�ients

αn and βn, due to assumption (15):
αn =

cos(ωnt2)
2
l

∫ l

0
f(x) sin(nπ

l
x)dx− cos(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn sin(ωn(t2 − t1))
,

βn =
sin(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx− sin(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn sin(ωn(t2 − t1))
.So the unknown initial funtions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the lasses Ds+1, Ds,respetively. To this e�et, it is enough to show that (28) holds.Again, let

Dn :=
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sine (f, g) ∈ Ds+1 ×Ds+1, we have that the inequality (29′′) holds:

(29′′)

∞
∑

n=1

n2s+2 max{|Dn|
2, |En|

2} <∞.By using Lemma 1, for every n > N we get
|αn| =

∣

∣

∣

∣

cos(ωnt2)Dn − cos(ωnt1)En

ωn sin(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

ωn

n

m
En

∣

∣

∣

∣

,

|βn| =

∣

∣

∣

∣

sin(ωnt2)Dn − sin(ωnt1)En

ωn sin(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

ωn

n

m
En

∣

∣

∣

∣

,whih means that
(30′′) max{|αn|, |βn|} < c4 max{|Dn|, |En|} n ∈ N,EJQTDE, 2012 No. 7, p. 11



with a suitable onstant c4.Combining (29′′), (30′′) and the de�nition of the norm ‖.‖s we get the desired inequality
(28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤

∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c24M
2

∞
∑

n=1

n2s+2 max{|Dn|
2, |En|
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