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1 Introduction

We consider the qualitative theory of the Cauchy problem for a system of reaction-diffusion
equations modeling two species interacting with predator–prey relationship. The system in
consideration is

La,ν ≡ ut − auxx − νux = −pu + quv ≡ f (u, v), x ∈ R, t > 0, (1.1)

Lb,µ ≡ vt − bvxx − µvx = +rv− suv ≡ g(u, v), x ∈ R, t > 0, (1.2)

supplemented with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R. (1.3)

The functions u = u(x, t) and v = v(x, t) represent the densities of predators and preys in time
t and at position x, respectively. The coefficient of diffusion a and b are positive constants
which describe the rate of movement of predators and prey respectively. The nonnegative
constants p and r are the coefficients of evolution, and the coefficients q and s are related to
the increase of the density of predators, and the decrease of the density of preys due to the
presence of predators, respectively. The initial conditions u0 and v0 are two bounded and
uniformly continuous functions on R.
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For a biomathematical discussion of these factors and for a background of the equations, see
see [10] and [15].

For the modeling of this system see for example [12], page 53: if we have a lack where there
are two species of fish: A, which lives on plants of which there is a plentiful supply, and B (the
predator) which subsists by eating A (the prey), where u = u(x, t) represents the population
of B and v = v(x, t) represents the population of A.
Further, we suppose the domain is unbounded without boundary and no flux boundary con-
ditions, instead of this we can suppose that the initial species distribution are describing by
functions of finite support u0 and v0; namely, the initial conditions are of the form

u(x, 0) = u0(x) for − ∆u < x < ∆u, otherwise u(x, 0) = 0.

v(x, 0) = v0(x) for − ∆v < x < ∆v, otherwise v(x, 0) = 0.

where ∆u and ∆v give the radius of the initially invaded domain, see [16].
The problem could be treated in the realistic two spatial dimension setting, in order to

simplify the mathematics we are to treat it by one dimension space.
When the initial data are continuous, uniformly bounded, and nonnegative, it is shown

that (1.1)–(1.2)–(1.3) has a classical positive global solution. Under some conditions on the
coefficients or on the initial data, we show that this solution is in fact globally bounded.
Moreover, if

• r = 0, p > q ‖v0‖, then v is bounded and u→ 0 exponentially as t→ ∞.

• p = 0, u0 ≥ k > r/s or u∗0 = min
{

u−0 , u+
0

}
> r/s, where u±0 = limx→±∞ u0(x) then u(t)

is bounded and v→ 0 exponentially as t→ ∞.

On the other hand, we study the behaviour of (u, v) when x → ±∞ whenever u0 and v0 have
limits at ±∞. We show that u(±∞, t) and v(±∞, t) satisfy an ordinary differential system
(ODS) in t. The qualitative behaviour of solutions to (1.1)–(1.2)–(1.3), as x → ±∞, can then be
obtained from the ODS associated to it [7].

Some systems of predator–prey were studied in bounded domains, see [9, 19] and in
the references therein. Also, some results about global existence of solutions for systems
of reaction-diffusion systems were established in [4, 5, 8, 13, 14].

In the following, u0 and v0 will be taken nonnegative and are elements of the Banach space
X = (BUC(R), ‖·‖), the space of bounded and uniformly continuous functions on R endowed
with the supremum norm ‖u‖ = supx∈R |u(x)|.

Note here that every continuous function of finite support is a uniformly continuous func-
tion on R.

2 Existence, positivity and a priori bounds

We denote by A1 and A2 the linear operators a(·)xx + ν(·)x and b(·)xx + µ(·)x, respectively. It
is well known that Aj, j = 1, 2, generates an analytic semigroup of contractions on the Banach
space X given explicitly by the expression

[
Sj(t)u

]
(x) =

1√
4παt

∫ +∞

−∞

[
exp

(
−|x + σt− ξ|2

4αt

)]
u(ξ)dξ, (2.1)
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where α = a and σ = ν for j = 1, and α = b and σ = µ for j = 2.

Moreover, for any integer n there is a positive constant c = c(n) such that for any u ∈ X,
any positive t we have DnSj(t)u ∈ X and the estimates∥∥DnSj(t)u

∥∥ ≤ ct−n/2 ‖u‖ , (2.2)

where Dn = dn/(dx)n, and j = 1, 2, holds true [6].

Our first result provides the existence of a global positive solution.

Theorem 2.1. Suppose that u0, v0 ∈ X, there exists a unique global classical nonnegative solution to
the problem (1.1)–(1.2)–(1.3).

Proof. Local existence and uniqueness follow from standard arguments of abstract parabolic
theory or from fixed point arguments involving the heat kernel and the Duhamel principle;
whence, there exists a t0 > 0 such that the problem (1.1)–(1.2)–(1.3) has a unique local mild
solution (u, v) ∈ C ([0, t0] ; X)× C ([0, t0] ; X), i.e.

u(t) = S1(t)u0 +
∫ t

0
S1(t− s) f (u(s), v(s)) ds, t ∈ [0, t0] ,

v(t) = S2(t)v0 +
∫ t

0
S2(t− s)g (u(s), v(s)) ds, t ∈ [0, t0] .

From the Lebesgue theory and the fact the functions (x, y) 7−→ f (x, y) and (x, y) 7−→ g(x, y)
are of class C∞(R2; R) we can conclude that the solution (u, v) ∈ C∞ (]0, T]; X)×C∞ (]0, T]; X)
for all 0 < T < Tmax, and (u(t), v(t)) ∈ C∞ (R; R)× C∞ (R; R) for all t ∈]0, T]; where Tmax is
the maximal time of existence of the solution.

The continuous dependence of the solution on the initial data makes use of the local
existence result and the Gronwall lemma.

The nonnegativity of the solution can be proved as follows: let λ1 = sup{‖u(t)‖, 0 ≤
t ≤ T} and λ2 = sup {‖v(t)‖ , 0 ≤ t ≤ T} where 0 < T < Tmax (Tmax is the maximal time of
existence of (u, v)), and λ0 ≥ sup {r + sλ1, p + qλ2}. The substitutions u = eλ0t ϕ and v = eλ0tψ

transform system (1.1)–(1.2)–(1.3) into

ϕt − aϕxx − νϕx + (p− qv + λ0)ϕ ≡ 0, x ∈ R, 0 < t ≤ T,

ψt − bψxx − µϕx + (−r + su + λ0)ψ ≡ 0, x ∈ R, 0 < t ≤ T,

with
ϕ(x, 0) = e−λ0tu0(x) ≥ 0 and ψ(x, 0) = e−λ0tv0(x) ≥ 0, x ∈ R.

As u, v ∈ C ([0, T] ; X) and p− qv + λ0 ≥ 0 and −r + su + λ0 ≥ 0 for all t ∈ [0, T], we can use
Theorem 9 on page 43 of the maximum principle in [11] to get that ϕ and ψ are nonnegative
which in turn implies the nonnegativity of u and v.

If one can establish the existence of a priori bounds for the solution components u, v on
[0, Tmax[, standard continuation arguments yield global well posedness.

The solution to (1.1)–(1.2)–(1.3) can be written in integral form as follows

u(t) = e−ptS1(t)u0 +
∫ t

0
e−p(t−τ)S1(t− τ)qu(τ)v(τ)dτ, (2.3)

v(t) = e+rtS2(t)u0 −
∫ t

0
e+r(t−τ)S2(t− τ)su(τ)v(τ)dτ. (2.4)
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Using the nonnegativity of (u, v) we get

‖v(t)‖ ≤ ert ‖v0‖ , for all t ≥ 0. (2.5)

Using (2.3) and (2.5) we obtain

‖u(t)‖ ≤ ‖u0‖+ q ‖v0‖
∫ t

0
erτ ‖u(τ)‖ dτ, for all t ≥ 0. (2.6)

Gronwall’s inequality yields

‖u(t)‖ ≤ ‖u0‖ eq‖v0‖k(t), for all t ≥ 0, (2.7)

where

k(t) =

{
1
r

(
ert − 1

)
, if r > 0,

t, if r = 0.

Estimates (2.5) and (2.7) imply that the solution is global, i.e., Tmax = +∞.

3 Boundedness and extinction results

The solution to (1.1)–(1.2)–(1.3) established in Theorem 2.1 is not always bounded as is shown
in the following proposition.

Proposition 3.1. Assume v0 6≡ 0 (v0 is not identically null) and r is sufficiently large, then (u, v) is
unbounded. More precisely, v grows exponentially as t goes to ∞.

Proof. Assume the contrary that (u, v) is a globally bounded solution, i.e., ‖u(t)‖ ≤ C and
‖v(t)‖ ≤ C for any t ≥ 0 and some constant C > 0. As v0 6= 0, there exists a constant δ > 0
such that S2(t)v0 ≥ δ for any t ≥ 0. Furthermore, we use (2.4) to obtain

v(t) ≥
(
δ− sC2/r

)
ert + sC2/r, for all t ≥ 0.

Choosing r > sC2/δ we clearly have ‖v(t)‖ −→ +∞ as t goes to +∞. Whence (u, v) could not
be bounded.

It is now clear that to get bounded solutions we have to impose some restrictions either on
the coefficients of the system or on the initial data.

Theorem 3.2. If u0, v0 ∈ X then we have the estimates

‖v(t)‖ ≤ ‖v0‖ ert, for all t ≥ 0, (3.1)

‖u(t)‖ ≤ e(q‖v0‖erT−p)t ‖u0‖ , for all t ∈ [0, T] . (3.2)

Moreover, if r = 0 and p > q ‖v0‖ we have

lim
t→∞
‖u(t)‖ = 0. (3.3)
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Proof. Setting

u = ϕ exp (−pt) , (3.4)

v = ψ exp (rt) , (3.5)

the system (1.1)–(1.2) becomes

ϕt − aϕxx − νϕx = qert ϕψ, (3.6)

ψt − bψxx − µψx = −se−pt ϕψ, (3.7)

with the initial data satisfying

ϕ0(x) = u0(x), (3.8)

ψ0(x) = v0(x). (3.9)

As ϕ ≥ 0 and ψ ≥ 0, we first have from (3.7) and (3.9)

ψ(t) = S2(t)v0 − s
∫ t

0
S2(t− τ)e−pτ ϕ(τ)ψ(τ)dτ ≤ S2(t)v0 ≤ ‖v0‖ , (3.10)

for all (x, t) ∈ R× [0, T] . Whence v(t) ≤ ‖v0‖ ert, for all t ≥ 0.

Substituting (3.10) into (3.6) yields

ϕt − aϕxx − νϕx ≤ q ‖v0‖ ert ϕ. (3.11)

If we set ϕ = eMtw, where M = q ‖v0‖ erT, then we have over R× [0, T]

wt − awxx − νwx ≤ 0, w(x, 0) = ϕ0(x) = u0(x). (3.12)

Furthermore

w(t) = S1(t)u0 ≤ ‖u0‖ , for all t ≥ 0. (3.13)

Whence ϕ ≤ eMt ‖u0‖ and then

u(t) ≤ eMt ‖u0‖ e−pt = e(q‖v0‖erT−p)t ‖u0‖ , for all t ∈ [0, T] .

Thus we obtain (3.2).
We deduce from (3.1)–(3.2) that if r = 0 and p > q ‖v0‖ we will have

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0 and lim
t→∞
‖u(t)‖ = 0.

Theorem 3.3. If r = 0, a ≤ b and ν = µ, then the solution to (1.1)–(1.2) is globally bounded. We
have the estimates

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0, (3.14)

and

‖u(t)‖ ≤ ‖u0‖+
q
s

√
b/a ‖v0‖ , for all t ≥ 0. (3.15)
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Proof. Let Y and Z be the solutions to

Yt − aYxx − νYx + pY = uv, Y(x, 0) = 0, (3.16)

and

Zt − bZxx − µZx = uv, Z(x, 0) = 0, (3.17)

respectively, where (u, v) is the solution to (1.1)–(1.2)–(1.3) with r = 0, a ≤ b and µ = ν. Then
(u, v) can be written in terms of (Y, Z) as follows

u(x, t) = e−ptS1(t)u0(x) + qY(x, t), t ≥ 0, (3.18)

v(x, t) = S2(t)v0(x)− sZ(x, t), t ≥ 0. (3.19)

Using the positivity of Z(x, t) we deduce (3.14) from (3.19). By the explicit formulas of Y
and Z:

Y(t) =
∫ t

0
e−p(t−τ)S1(t− τ)u(τ)v(τ)dτ ≤

∫ t

0
S1(t− τ)u(τ)v(τ)dτ, (3.20)

Z(t) =
∫ t

0
S2(t− τ)u(τ)v(τ)dτ. (3.21)

As a ≤ b, ν = µ and (2.1), it is easy (see [1]) to deduce that
√

aS1(t)w ≤
√

bS2(t)w, for all w ∈ X

and then

S1(t)w ≤
√

b
a

S2(t)w, for all t ≥ 0. (3.22)

From (3.20)–(3.22) we obtain

Y(t) ≤
√

b
a

∫ t

0
S2(t− τ)u(τ)v(τ)dτ =

√
b
a

Z(t), for all t ≥ 0. (3.23)

As v is nonnegative, from (3.19) we get

Z(x, t) ≤ 1
s

S2(t)v0, for all t ≥ 0. (3.24)

Using (3.24) in (3.23) we get

Y(t) ≤ 1
s

√
b
a

S2(t)v0, for all t ≥ 0. (3.25)

Finally, from (3.25) in (3.18) we get (3.15).

Theorem 3.4. Assume p = 0 and u0 ≥ r/s for all x ∈ R. Then we have

‖v(t)‖ ≤ ‖v0‖ , for all t ≥ 0. (3.26)

Moreover, if there is a constant k > r/s such that u0 > k for all x ∈ R, then

‖u(t)‖ ≤
(

1 +
q

ks− r
‖u0‖

)
‖v0‖ , for all t ≥ 0, (3.27)

and

‖v(t)‖ ≤ e−(ks−r)t ‖v0‖ , for all t ≥ 0. (3.28)

In particular, v −→ 0 uniformly in x ∈ R as t −→ ∞.
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Proof. For p = 0 and u0 ≥ r/s , from (2.1) we get

u(t) ≥ r/s, for all t ≥ 0. (3.29)

Setting B(t) = r− su(t), we have

vt = [A2 + B(t)] v(t). (3.30)

As the linear operator B(t) is dissipative on X [18], A2 + B(t) generates for each t fixed a
semigroup of contractions. Whence A2 + B(t) generates on X a system of evolution P(t, τ) of
contractions [18]. Whence the solution to (3.17)–(1.3) is

v(t) = P(t, 0)v0, for all t ≥ 0. (3.31)

This implies (3.26).
If u0 ≥ k > r/s , then from (1.1) we get u(t) ≥ k, and consequently r− su(t) ≤ r− ks < 0

for any t ≥ 0. Setting ω := ks− r ( ω > 0), equation (1.2) can be written in the form

v(t) = [A2 + B(t) + ωI] v(t)−ωv(t). (3.32)

The dissipative operator B(t) + ωI generates on X a system of evolution G(t, τ) of contrac-
tions. Consequently, A2 + B(t) generates a system of evolution U(t, τ) given by

U(t, τ) = e−ω(t−τ)G(t, τ).

Hence the solution v(t) of (3.32)–(1.3) can be written in the form

v(t) = U(t, 0)v0 = e−ωtG(t, 0)v0, for all t ≥ 0. (3.33)

This implies estimate (3.13). Using (1.1), (3.33) and Gronwall’s lemma we get (3.15).

In what follows, we denote by C± the closed subspaces of X defined as follows

C± :=
{

u ∈ X such that : lim
x→±∞

u(x) exists
}

.

Lemma 3.5. Let f ∈ C± be such that f+, f− > 0. Then for any ε > 0 there exists t∗ > 0 such that[
Sj(t) f

]
(x) ≥ f ∗ − ε, for all x ∈ R,

where f ∗ := min ( f+, f−).

Proof. The proof is similar to that of [4, Lemma 5.3].

In what follows we denote u±0 = limx→±∞ u0(x) and u∗0 = min
{

u−0 , u+
0

}
.

Theorem 3.6. Assume p = 0 and u0 ∈ C±. If u∗0 > r/s, then there exists t∗ > 0 and three positive
constants C1, C2 and ω∗ such that

‖v(t)‖ ≤ C1e−ω∗(t−t∗), for all t ≥ t∗, (3.34)

‖u(t)‖ ≤ C2, for all t ≥ t∗. (3.35)
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Proof. Choose ε > 0 such that u∗0 − ε > r/s, then by Lemma 3.5, there exists t∗ > 0 such that
[S1(t)u0] (x) ≥ u∗0 − ε, for any x ∈ R. We then have u(t) ≥ u∗ − ε, for any t ≥ t∗. Using
Theorem 3.4 with initial data (u(t∗), v(t∗)) and k = u∗0 − ε, ω∗ = ks− r, we then have

‖v(t)‖ ≤ ‖v(t∗)‖ e−ω∗(t−t∗), for all t ≥ t∗.

We get (3.34) by setting C1 = ‖v(t∗)‖.
Now, combining (2.3) and (3.34) we infer

‖u(t)‖ ≤ ‖u0‖+ qC1eω∗t∗
∫ t

0
e−ω∗τ ‖u(τ)‖ dτ, for all t ≥ t∗.

The Gronwall inequality yields

‖u(t)‖ ≤ ‖u0‖ e
qC1
ω∗ eω∗ t∗

= C2, for all t ≥ t∗.

Whence (3.35).

4 Stability of the solution

Definition 4.1. We say that the solution to the problem (1.1)–(1.2)–(1.3) is unconditionally
stable on R+, if for all T > 0 and all ε > 0, there exist δ = δ(T, ε) > 0 such that for all
solution (u, v) with initial condition (u0, v0) to the same problem satisfying ‖u0 − u0‖ < δ and
‖v0 − v0‖ < δ we have ‖u(t)− u(t)‖ < ε and ‖v(t)− v(t)‖ < ε for all t ∈ [0, T].

Proposition 4.2. The solution of the problem (1.1)–(1.2) is unconditionally stable on R+.

Proof. From the integral writin of the solution (u, v) and (u, v) we get

‖u(t)− u(t)‖ ≤ ‖u0 − u0‖+
∫ t

0
{p ‖u(τ)− u(τ)‖+ q ‖u(τ)v(τ)− u(τ)v(t)‖} dτ, (4.1)

‖v(t)− v(t)‖ ≤ ‖v0 − v0‖+
∫ t

0
{r ‖v(τ)− v(τ)‖+ s ‖u(τ)v(τ)− u(τ)v(t)‖} dτ. (4.2)

Setting Φ = (u, v) , Φ = (u, v) , Φ0 = (u0, v0) , Φ0 = (u0, v0) and define
‖Φ(t)‖ = ‖(u(t), v(t))‖ = ‖u(t)‖+ ‖v(t)‖; then from (4.1)–(4.2) we get

∥∥Φ(t)−Φ(t)
∥∥ ≤ ∥∥Φ0 −Φ0

∥∥+ (p + r)
∫ t

0
‖u(τ)− u(τ)‖ dτ

+ (q + s)
∫ t

0
‖u(τ)v(τ)− u(τ)v(t)‖ dτ.

(4.3)

Let ε > 0 and T > 0. As u, v, u, v ∈ C (R+; X); then, they are bounded over [0, T]. Define

‖u‖∞ = sup
t∈[0,T]

‖u(t)‖ , for all u ∈ C
(
R+; X

)
, (4.4)

then we have

‖uv− uv‖∞ ≤ M
∥∥Φ(t)−Φ(t)

∥∥ , for all t ∈ [0, T] , (4.5)

where M = ‖u‖∞ + ‖v‖∞.
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From (4.3) and (4.5) we get∥∥Φ(t)−Φ(t)
∥∥ ≤ ∥∥Φ0 −Φ0

∥∥+ [p + r + M(q + s)]
∫ t

0

∥∥Φ(τ)−Φ(τ)
∥∥ dτ. (4.6)

Using Gronwall inequality we obtain∥∥Φ(t)−Φ(t)
∥∥ ≤ ∥∥Φ0 −Φ0

∥∥ e[p+r+M(q+s)]t, for all t ∈ [0, T] . (4.7)

The estimate (4.6) gives the stability of the solution to the problem (1.1)–(1.2)–(1.3).

5 Remarks

Remark 5.1. In turns out that if u0, v0 ∈ C+ then the diffusive system for x large will behave
like the system of ordinary differential equations associated to it, and hence, for x large can
be replaced by the latter which is simpler to analyze [7]

dU(t)
dt

= −pU(t) + qU(t)V(t), for all t > 0,

dV(t)
dt

= +rU(t)− sU(t)V(t), for all t > 0,

satisfying the initial data

U(0) = lim
x→+∞

u0(x), V(0) = lim
x→+∞

v0(x),

where
U(t) = lim

x→+∞
u(x, t), V(t) = lim

x→+∞
u(x, t)

This result is based on the fact that if h∈C+ with h+= limx→+∞ h(x), then limx→+∞
[
Sj(t)h

]
(x)=

h+, for j = 1, 2.
The same thing holds if u0, v0 ∈ C−.

Remark 5.2. The same analysis can also be done for x ∈ [0,+∞[ . In this case, the explicit
formula associated to (1.1)–(1.2)–(1.3)

u(t) = e−ptS1(t)u0 +
∫ t

0
e−p(t−τ)S1(t− τ) f (u(τ), v(τ)) dτ,

v(t) = e+rtS2(t)u0 +
∫ t

0
e+r(t−τ)S2(t− τ)g (u(τ), v(τ)) dτ,

will be

u(x, t) =
∫ ∞

0
N1(x, ξ, t)u0(ξ)dξ +

∫ t

0

x
t− τ

K1(x, t− τ)u1(τ)dτ

+
∫ t

0

∫ +∞

0
N1(x, ξ, t− τ) f (u, v)(ξ, τ)dξdτ,

and

v(x, t) =
∫ ∞

0
N2(x, ξ, t)v0(ξ)dξ ++

∫ t

0

x
t− τ

K2(x, t− τ)v1(τ)dτ

+
∫ t

0

∫ +∞

0
N2(x, ξ, t− τ)g(u, v)(ξ, τ)dξdτ,
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where

N1(x, ξ, t) = K1(x− ξ, t)− K1(x + ξ, t), K1(x, t) =
1√

4πat
exp

(
−|x + νt|2

4at

)
,

N2(x, ξ, t) = K2(x− ξ, t)− K2(x + ξ, t), K2(x, t) =
1√

4πbt
exp

(
−|x + µt|2

4bt

)
,

and
u1(t) = u(0, t), v1(t) = v(0, t),

with u1, v1 bounded. These expressions can be deduced from [17, Chapter 3, Section 3].
It will be interesting to perform the same analysis for the case x ∈ [0,+∞[ with other

boundary conditions.

Remark 5.3. For x ∈ Rn (n ≥ 2) and replacing auxx and bvxx in (1.1)–(1.2) by the second order
uniform elliptic operators

L1u =
n

∑
i,j=1

(
aij(x)uxj

)
uxi , L2u =

n

∑
i,j=1

(
bij(x)vxj

)
vxi ,

the problem deserves to be studied in appropriate functional spaces using the results in
Aronson [2] and [3].
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