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1 Introduction

In [9, p. 190], Henry obtained the following result about weakly singular Gronwall type in-
equality.

Theorem 1.1. Let a, b, α, β be nonnegative constants with α < 1, β < 1. Suppose that u ∈ L1[0, T]
satisfies

u(t) ≤ at−α + b
∫ t

0
(t− s)−βu(s)ds, a.e. t ∈ (0, T]. (1.1)

Then there is a constant C(b, β, T) such that

u(t) ≤ at−α

1− α
C(b, β, T), a.e. t ∈ (0, T]. (1.2)

One version of a doubly singular case of Henry is the following, cf. [9, p. 189].

Theorem 1.2. Suppose β > 0, γ > 0, β + γ > 1 and a ≥ 0, b ≥ 0, u is nonnegative and tγ−1u(t) is
locally integrable on 0 ≤ t < T, and u satisfies

u(t) ≤ a + b
∫ t

0
(t− s)β−1sγ−1u(s)ds, a.e. t ∈ [0, T). (1.3)

Then

u(t) ≤ aEβ,γ

(
bΓ(β)

1
β+γ−1 t

)
, (1.4)

where Eβ,γ(z) is given by an infinite series related to the two-parameter Mittag-Leffler function.
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Since fractional integral inequality is a well-known tool in the study of fractional differ-
ential equations and evolution equations, Henry’s work was followed by many scholars (for
example, see [6,12–14,19,21–23]). Recently, by the Hölder inequality and a method introduced
by Medved’ [13, 14], Zhu [22] considered the following inequality

Theorem 1.3. Let 0 < T ≤ ∞, β > 0, a(t), b(t) and l(t) be continuous, nonnegative functions on
[0, T), and u(t) be a continuous, nonnegative function on [0, T) with

u(t) ≤ a(t) +
b(t)
Γ(β)

∫ t

0
(t− s)β−1l(s)u(s)ds, (1.5)

then

u(t) ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ)B(τ)dτ

)
ds
) 1

p

, (1.6)

where

A(t) = 2p−1ap(t), B(t) = 2p−1

(
b(t)

Γ(β)(q(β− 1) + 1)
1
q

tβ−1+ 1
q

)p

, L(t) = lp(t),

and p, q ∈ (0, ∞) such that 1
q + β > 1 and 1

q +
1
p = 1.

By a reduction to the classical Gronwall inequality, Webb [19] studied the following Gron-
wall type inequality with a double singularity.

Theorem 1.4. Let a, b ≥ 0 and c > 0 be constants. Let 0 < α, β, γ < 1 with α + γ < 1 and
β + γ < 1. Suppose that u(t)tα ∈ L∞

+ [0, T] and u satisfies

u(t) ≤ at−α + b + c
∫ t

0
(t− s)−βs−γu(s)ds, a.e. t ∈ (0, T]. (1.7)

Then we have, for a.e. t ∈ (0, T],

u(t) ≤ at−α + acB1t−α+1−β−γ + ac2B1B2t−α+2(1−β−γ) + . . .

+ (b + acmB1B2 . . . Bmt−α+m(1−β−γ)) exp

(
ct−β

r1

1− β− γ
t1−γ

)
,

(1.8)

where m is the smallest positive integer such that m(1− β − γ) − α ≥ 0, r1 = β
1−γ , and for n ∈

N, Bn = B(1 − β, 1 − α − γ + (n − 1)(1 − β − γ)). In particular, there is an explicit constant
C(b, c, β, γ, T) such that u(t) ≤ at−αC for a.e. t ∈ (0, T].

In this paper, we study the following fractional integral inequalities

u(t) ≤ a(t) + b(t)
∫ t

0
(t− s)β−1s−γl(s)u(s)ds, t ∈ [0,+∞), (1.9)

where γ ≥ 0 and β ∈ (0, 1), and

u(t) ≤ at−α + bt−δ
∫ t

0
(t− s)β−1l(s)u(s)ds, t ∈ (0,+∞), (1.10)

where a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1). The special cases b(t) ≡ C or γ = 0 of the inequality
(1.9) are proved in Medved’ [13, Theorem 2 and Theorem 3] and Zhu [22, Theorem 2.4 and
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Theorem 2.6]. Medved’ also studied the inequality (1.9) in [13, Theorem 4] and obtained two
different results with exponential functions for different β and γ. The conclusion of Theorem 4
in [13] has a more complicated appearance. Webb [19] obtained several results of inequality
(1.10) for the special case l(t) = t−γ by reducing the inequality (1.10) to the classical Gronwall
inequality. In this paper, we study the inequality (1.9) under the hypothesis β ∈ (0, 1) and
γ ≥ 0. The proof is more simple than Theorem 4 in [13]. We present a new method to study
a integral inequality which was first studied by Willett [20]. By this integral inequality, we
study the inequality (1.9) for the special cases b(t) = t1−β and γ = 1− β. The conclusion and
the method of proof seem to be new in this case. We also obtain some results of the inequality
(1.10) and examples show our results are improvements on [19].

Fractional differential equations (FDEs) have been of great interest in the past three decades.
It is caused both by the intensive development of the theory of fractional calculus itself and
by the applications in various sciences. Recently, many researchers began to investigate the
existence of solutions of nonlinear fractional differential equations (for example, see [4–6,8,11,
12,18,19,21–24] and references therein). In this paper, we continue to investigate the existence
and uniqueness of global solutions of the following initial value problem{

Dβ
r x(t) = f (t, x(t)) t ∈ (0,+∞), β ∈ (0, 1),

limt→0+ t1−βx(t) = x0,
(1.11)

where Dβ
r is the Riemann–Liouville fractional derivative. It should be pointed out that such

global existence results are fundamental in the theory of fractional differential equations and
crucial in stability analysis of fractional differential equations.

The existence and uniqueness of global solutions of the fractional differential equation
(1.11) have been studied by many scholars. For example, under the assumption that f satisfies
an inequality of the form

| f (t, x)| ≤ p(t)ω
(
|x|

1 + t2

)
+ q(t),

Kou et al. [11] proved the global existence of solutions of fractional differential equation (1.11)
in a special Banach space

E =

{
x(t)|x(t) ∈ C1−β(0,+∞), lim

t→+∞

t1−βx(t)
1 + t2 = 0

}
.

Trif [18] investigated the global existence of solutions to initial value problems for nonlinear
fractional differential equation (1.11) by constructing a special locally convex space which is
metrizable and complete. Webb [19] proved the existence results of equation (1.11) under
the assumption that nonnegative function f satisfies f (t, x) = t−γg(t, x), where g(t, x) ≤
M(1 + x), M > 0 and 0 ≤ γ < β. Unlike all the previous papers, by new fractional inequality
(1.9) and fixed point theorem, we present the existence and uniqueness results of the fractional
differential equation (1.11). Our result includes the main result of [18, Theorem 4.2]. Finally,
examples are given to illustrate the applicability of our results and can not be solved by
Theorem 4.2 in [18].

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used
throughout this paper.
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Let β ∈ (0, 1), denote Cβ(0, T] = {x : (0, T]→ R and x(t) = t−βy(t) for some y ∈ C[0, T]}.
Let ‖x‖β = sup0<t≤T tβ|x(t)|, then Cβ(0, T] endowed with the norm ‖ · ‖β is a Banach space.
We denote Cβ(0,+∞) = {x : (0,+∞) → R and x(t) = t−βy(t) for some y ∈ C[0,+∞)}.
Lp

Loc[0,+∞) (p ≥ 1) is the space of all real valued functions which are Lebesgue integrable
over every bounded subinterval of [0,+∞).

Definition 2.1. The Riemann–Liouville fractional integral of order β ∈ (0, 1) of a function
f ∈ L1[0, T] is defined by

(Iβ f )(t) =
1

Γ(β)

∫ t

0

f (s)
(t− s)1−β

ds.

Definition 2.2. The Riemann–Liouville fractional derivative of order β ∈ (0, 1) of a function f
where I1−β f is absolutely continuous (AC) is defined by

(Dβ
r f )(t) =

d
dt
(I1−β f )(t) =

1
Γ(1− β)

d
dt

∫ t

0

f (s)
(t− s)β

ds.

Remark 2.3. If f ∈ L1[0, T], then the integral (Iβ f )(t) exists for almost every t ∈ [0, T] and
Iβ f ∈ L1[0, T]. If f ∈ AC[0, T], then Dβ

r f exists almost everywhere in [0, T]. If f ∈ Iβ(L1) =

{ f : f = Iβg, g ∈ L1[0, T]}, then I1−β f ∈ AC[0, T]. For more details about fractional calculus,
we refer the reader to the texts [7, 10, 16, 17].

Theorem 2.4 ([3]). Let f (t, x) be a function that is continuous on the set

B =
{
(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I

}
,

where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T] → I is continuous and
that both x(t) and f (t, x(t)) are absolutely integrable on (0, T]. Then x(t) satisfies the initial value
problem (1.11) on (0, T] if and only if it satisfies the Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t− s)β−1 f (s, x(s))ds (2.1)

on (0, T].

Remark 2.5. f is absolutely integrable on (0, T] if f is Riemann integrable on every closed in-
terval [η, T], where η ∈ (0, T], and limη→0+

∫ T
η | f (t)|dt exists and is finite. From Proposition 2.1

in [3], if f ∈ L1[0, T] is continuous on (0, T], then f is absolutely integrable on (0, T].

Lemma 2.6 ([2, 17]). Suppose ρ ∈ Lq[0, 1]. Then

∫ t

0
(t− s)β−1ρ(s)ds

is continuous on [0, 1], where β ∈ (0, 1) and q > 1
β .

Theorem 2.7 ([1]). Let E be a Banach space, C a closed, convex subset of E and 0 ∈ C. Let F : C → C
be a continuous and completely continuous map, and let the set {x ∈ E : x = λFx for some λ ∈ (0, 1)}
be bounded. Then F has at least one fixed point in E.
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3 Fractional integral inequalities

In this section, we are now to prove some results concerning fractional integral inequalities
(1.9) and (1.10), which can be used to study the global existence of solutions of fractional
differential equation (1.11).

Theorem 3.1. Let β ∈ (0, 1) and γ ≥ 0, a(t) and b(t) be nonnegative and continuous functions
on [0,+∞), l(t) be a nonnegative and continuous function on (0,+∞) and t−γl(t) ∈ Lq

Loc[0,+∞)

(q > 1
β ), and u(t) be a continuous, nonnegative function on [0,+∞) with

u(t) ≤ a(t) + b(t)
∫ t

0
(t− s)β−1s−γl(s)u(s)ds. (3.1)

Then

u(t) ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ)B(τ)dτ

)
ds
) 1

q

, t ∈ [0,+∞), (3.2)

where A(t) = 2q−1aq(t), B(t) = 2q−1bq(t)tqβ−q+ q
p

(pβ−p+1)
q
p

, L(t) = t−qγlq(t) and p ∈ (1,+∞) such that 1
p +

1
q = 1 .

Proof. Since q > 1
β and 1

p +
1
q = 1, then β− 1 + 1

p > 0. From the inequality (3.1) and using the
Hölder inequality, we have

u(t) ≤ a(t) + b(t)
∫ t

0
(t− s)β−1s−γl(s)u(s)ds

≤ a(t) + b(t)
(∫ t

0
(t− s)p(β−1)ds

) 1
p
(∫ t

0
(s−γl(s)u(s))qds

) 1
q

= a(t) +
b(t)tβ−1+ 1

p

(pβ− p + 1)
1
p

(∫ t

0
(s−γl(s)u(s))qds

) 1
q

.

(3.3)

Then

uq(t) ≤ 2q−1aq(t) +
2q−1bq(t)tqβ−q+ q

p

(pβ− p + 1)
q
p

∫ t

0
s−qγlq(s)uq(s)ds.

Let w(t) = uq(t), A(t) = 2q−1aq(t), B(t) = 2q−1bq(t)tqβ−q+ q
p

(pβ−p+1)
q
p

and L(t) = t−qγlq(t), then

w(t) ≤ A(t) + B(t)
∫ t

0
L(s)w(s)ds.

By the Gronwall–Beesack inequality [15, p. 356], we obtain

w(t) ≤ A(t) + B(t)
∫ t

0
L(s)A(s) exp(

∫ t

s
L(τ)B(τ)dτ)ds.

Thus, we obtain the inequality (3.2) and complete the proof.

Theorem 3.2. Let a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1), l(t) be a nonnegative and continuous function
on (0,+∞) and t−αl(t) ∈ Lq

Loc[0,+∞) (q > 1
β ). Suppose that tαu(t) is a continuous, nonnegative

function on [0,+∞) and u(t) satisfies the inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t− s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.4)
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Then

u(t) ≤ t−α

(
2q−1aq + 2q−1aqB(t)

∫ t

0
L(s) exp

(∫ t

s
L(τ)B(τ)dτ

)
ds
) 1

q

, t ∈ (0,+∞), (3.5)

where B(t) = 2q−1bqtqα−qδ+qβ−q+ q
p

(pβ−p+1)
q
p

, L(t) = t−qαlq(t) and p ∈ (1,+∞) such that 1
p +

1
q = 1 .

Proof. Let v(t) = tαu(t), so that v(t) satisfies the inequality

v(t) ≤ a + btα−δ
∫ t

0
(t− s)β−1s−αl(s)v(s)ds, t ∈ [0,+∞). (3.6)

By Theorem 3.1, we obtain the inequality (3.5) and complete the proof.

Lemma 3.3 ([20]). Let 1 ≤ p < ∞, a(t) and b(t) be nonnegative continuous on [0, ∞), l(t) be a non-
negative and continuous function on (0,+∞) and l(t) ∈ L1

Loc[0,+∞). Suppose u(t) is a nonnegative
continuous function on [0,+∞) with

u(t) ≤ a(t) + b(t)
(∫ t

0
l(s)up(s)ds

) 1
p

, t ∈ [0, ∞). (3.7)

Then

u(t) ≤ a(t) + b(t)

(∫ t
0 l(s)e(s)ap(s)ds

) 1
p

1− [1− e(t)]
1
p

,

where e(t) = exp(−
∫ t

0 l(s)bp(s)ds).

Theorem 3.4. Let a, b ≥ 0, α > δ ≥ 0 and β ∈ (0, 1), l(t) be a nonnegative and continuous function
on (0,+∞) and t−αl(t) ∈ Lq

Loc[0,+∞) (q > 1
β ). Suppose that tαu(t) is a continuous, nonnegative

function on [0,+∞) and u(t) satisfies the inequality

u(t) ≤ at−α + bt−δ
∫ t

0
(t− s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.8)

Then

u(t) ≤ at−α + at−αB(t)

(∫ t
0 L(s)e(s)ds

) 1
q

1− [1− e(t)]
1
q

, t ∈ (0,+∞), (3.9)

where B(t) = btα−δ+β−1+ 1
p

(pβ−p+1)
1
p

, L(t) = t−qαlq(t), e(t) = exp(−
∫ t

0 L(s)Bq(s)ds), and p ∈ (1,+∞) such

that 1
p +

1
q = 1 .

Proof. Let v(t) = tαu(t) and using the Hölder inequality, we have

v(t) ≤ a + btα−δ

(∫ t

0
(t− s)p(β−1)ds

) 1
p
(∫ t

0
(s−αl(s)v(s))qds

) 1
q

= a +
btα−δ+β−1+ 1

p

(pβ− p + 1)
1
p

(∫ t

0
s−qαlq(s)vq(s)ds

) 1
q

.

(3.10)
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By Lemma 3.3, we get

v(t) ≤ a + aB(t)

(∫ t
0 L(s)e(s)ds

) 1
q

1− [1− e(t)]
1
q

,

where B(t) = btα−δ+β−1+ 1
p

(pβ−p+1)
1
p

, L(t) = t−qαlq(t) and e(t) = exp(−
∫ t

0 L(s)Bq(s)ds). Then we obtain

the inequality (3.9) and complete the proof.

In [20], Willett studied the inequality (3.7) by using the Minkowski inequality. Now, we
use a new method to study the inequality (3.7).

Lemma 3.5. Let 1 ≤ p < ∞, a(t) and b(t) be continuous and nonnegative functions on [0, ∞),
nonnegative function l(t) ∈ Lp

Loc[0,+∞), and u(t) be a continuous and nonnegative function with

u(t) ≤ a(t) + b(t)
(∫ t

0
lp(s)up(s)ds

) 1
p

, t ∈ [0, ∞). (3.11)

Then

u(t) ≤ a(t) + b(t)
(

A(t) exp(
∫ t

0
L(s)ds)

) 1
p

, t ∈ [0, ∞), (3.12)

where A(t) =
∫ t

0 2p−1lp(s)ap(s)ds and L(t) = 2p−1lp(t)bp(t).

Proof. From (3.11), we know

l(t)u(t) ≤ l(t)a(t) + l(t)b(t)
(∫ t

0
lp(s)up(s)ds

) 1
p

and

∫ t

0
lp(s)up(s)ds ≤

∫ t

0

(
l(s)a(s) + l(s)b(s)

(∫ s

0
lp(τ)up(τ)dτ

) 1
p
)p

ds

≤
∫ t

0
2p−1lp(s)ap(s) + 2p−1lp(s)bp(s)

∫ s

0
lp(τ)up(τ)dτds.

(3.13)

Let w(t) =
∫ t

0 lp(s)up(s)ds, A(t) =
∫ t

0 2p−1lp(s)ap(s)ds and L(t) = 2p−1lp(t)bp(t), then

w(t) ≤ A(t) +
∫ t

0
L(s)w(s)ds.

Since A(t) is a nondecreasing function and using Gronwall integral inequality, thus we obtain

w(t) ≤ A(t) exp
(∫ t

0
L(s)ds

)
.

Thus, we obtain the inequality (3.12) and complete the proof.

If we replace b(t) by t1−β and γ by 1− β in Theorem 3.1, and using Lemma 3.5, we can
obtain the following conclusions under the hypotheses l(t) ∈ Lq

Loc[0,+∞).
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Theorem 3.6. Let β ∈ (0, 1), a(t) be a nonnegative and continuous function on [0,+∞), l(t) be
a nonnegative and continuous function on (0,+∞) and l(t) ∈ Lq

Loc[0,+∞)(q > 1
β ), and u(t) be a

continuous, nonnegative function on [0,+∞) with

u(t) ≤ a(t) + t1−β
∫ t

0
(t− s)β−1sβ−1l(s)u(s)ds. (3.14)

Then

u(t) ≤ a(t) + b(t)
(

A(t) exp
(∫ t

0
L(s)ds

)) 1
q

, t ∈ [0, ∞), (3.15)

where b(t) = 2
1
p tβ−1+ 1

p

(pβ−p+1)
1
p

, A(t) =
∫ t

0 2q−1lq(s)aq(s)ds, L(t) = 2q−1lq(t)bq(t) and p ∈ (1,+∞) such

that 1
p +

1
q = 1.

Proof. Since q > 1
β and 1

p +
1
q = 1, then 1 < p < 1

1−β . From the inequality (3.14) we have

u(t) ≤ a(t) +
∫ t

0

(
t

(t− s)s

)1−β

l(s)u(s)ds

= a(t) +
∫ t

0

(
1

t− s
+

1
s

)1−β

l(s)u(s)ds

≤ a(t) +

(∫ t

0

(
1

t− s
+

1
s

)p(1−β)

ds

) 1
p (∫ t

0
(l(s)u(s))qds

) 1
q

≤ a(t) +
(∫ t

0
(t− s)p(β−1) + sp(β−1)ds

) 1
p
(∫ t

0
(l(s)u(s))qds

) 1
q

= a(t) +
2

1
p tβ−1+ 1

p

(pβ− p + 1)
1
p

(∫ t

0
lq(s)uq(s)ds

) 1
q

.

(3.16)

Let b(t) = 2
1
p tβ−1+ 1

p

(pβ−p+1)
1
p

. Then by Lemma 3.5, we obtain the inequality (3.15).

Corollary 3.7. Let β ∈ (0, 1) and u0 > 0, l(t) be a nonnegative and continuous function on (0,+∞)

and l(t) ∈ Lq
Loc[0,+∞) (q > 1

β ), and nonnegative function u(t) ∈ C1−β(0,+∞) with

u(t) ≤ u0tβ−1 +
1

Γ(β)

∫ t

0
(t− s)β−1l(s)u(s)ds, t ∈ (0,+∞). (3.17)

Then

u(t) ≤ u0tβ−1 + tβ−1b(t)
(

A(t) exp
(∫ t

0
L(s)ds

)) 1
q

, t ∈ (0,+∞), (3.18)

where b(t) = 2
1
p tβ−1+ 1

p

Γ(β)(pβ−p+1)
1
p

, A(t) =
∫ t

0 2q−1uq
0lq(s)ds, L(t) = 2q−1lq(t)bq(t) and p ∈ (1,+∞) such

that 1
p +

1
q = 1.

Proof. Since u(t) ∈ C1−β(0,+∞), then v(t) = t1−βu(t) ∈ C[0,+∞) and

v(t) ≤ u0 +
t1−β

Γ(β)

∫ t

0
(t− s)β−1sβ−1l(s)v(s)ds.

By Theorem 3.6, we obtain the inequality (3.18) and complete the proof.
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Remark 3.8. Medved’ studied the inequality (1.9) in [13, Theorem 4] for different β and γ.
If β > 1

2 and γ > 1− 1
2p (p > 1), then Medved’ obtained the bound of the inequality (1.9).

If β = 1
m+1 and γ > 1− 1

kq (m ≥ 1, k > 1 and q = m + 2), then Medved’ obtained another
bound. In Theorem 3.1, we study the inequality (1.9) under the hypothesis β ∈ (0, 1) and
γ ≥ 0. The proof of the inequality (1.9) is more simple than Theorem 4 in [13]. Lemma 3.5
and Theorem 3.6 we now discuss seem to be new. For the special b(t) and γ, the hypothesis
in Theorem 3.6 is weaker than that in Theorem 3.1.

Example 3.9. Suppose that t
1
2 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
2 + t−

1
3

∫ t

0
(t− s)−

1
3

6
√

s√
1 + s2

u(s)ds, t ∈ (0,+∞). (3.19)

Let p = q = 2, by Theorem 3.2, then we have

u(t) ≤ t−
1
2 (2 + 12t

2
3 exp(6 arctan t)

∫ t

0

s
−2
3

1 + s2 exp(−6 arctan s)ds)
1
2 .

We know ∫ t

0

s
−2
3

1 + s2 exp(−6 arctan s)ds ≤
∫ +∞

0

s
−2
3

1 + s2 ds

=
1
2

∫ 1

0
(1− u)

−5
6 u

−1
6 du

= π,

(3.20)

where u = 1
1+s2 . Then we obtain

u(t) ≤ t−
1
2

(
2 + 12π exp(3π)t

2
3

) 1
2

, t ∈ (0,+∞).

Example 3.10. Suppose that t
1
3 u(t) is a continuous, nonnegative function on [0,+∞) and u(t)

satisfies the inequality

u(t) ≤ t−
1
3 +

∫ t

0
(t− s)−

1
3 s−

1
3 u(s)ds, t ∈ (0,+∞). (3.21)

Let v(t) = t
1
3 u(t), then

v(t) ≤ 1 + t
1
3

∫ t

0
(t− s)−

1
3 s−

2
3 v(s)ds, t ∈ [0,+∞).

Let p = 8
3 and q = 8

5 , by Theorem 3.6, we have

v(t) ≤ 1 + 18
3
8 t

1
24

(
15
7

2
3
5 t

7
15 exp

(
15
8

36
3
5 t

8
15

)) 5
8

= 1 + 36
3
8

(
15
7

) 5
8

t
1
3 exp

(
75
64

36
3
5 t

8
15

)
≤ 1 + 7t

1
3 exp(11t

8
15 )

(3.22)
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and
u(t) ≤ t

−1
3 + 7 exp(11t

8
15 ), t ∈ (0,+∞).

We know t
−2
3 /∈ Lq

Loc[0,+∞) (q > 3
2 ). Thus, Theorem 3.2 can not be applied to Example 3.10.

Using Theorem 3.9 in [19], we know

u(t) ≤ t
−1
3 + B1 exp(6B0t

2
3 ), t ∈ (0,+∞),

where B0 = B( 2
3 , 2

3 ) and B1 = B( 2
3 , 1

3 ) (B(p, q) =
∫ 1

0 (1− s)p−1sq−1ds is the Beta function). Due
to 8

15 < 2
3 , this indicates that our results are improvements on [19] as t → ∞. Theorem 3.9 of

[19] can also be applied to the inequality (1.10) when l(t) = t−γ.

4 Global solutions of fractional differential equations

In this section, we give the existence and uniqueness results of the initial value problem (1.11).

Lemma 4.1. Suppose f : (0, T] × R → R is a continuous function, and there exist nonnegative
functions l(t), k(t) with tβ−1l(t) ∈ C(0, T]

⋂
Lq[0, T] and k(t) ∈ C(0, T]

⋂
Lq[0, T] (q > 1

β , β ∈
(0, 1)) such that

| f (t, x)| ≤ l(t)|x|+ k(t)

for all (t, x) ∈ (0, T]×R. Then the following Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t− s)β−1 f (s, x(s))ds (4.1)

has at least one solution in C1−β(0, T].

Proof. Let G : C1−β(0, T]→ C1−β(0, T] be the operator defined by

Gx(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t− s)β−1 f (s, x(s))ds (4.2)

for all x ∈ C1−β(0, T].

Step 1: we show that the operator G is continuous. To see this let xn → x in C1−β(0, T] and we
will show that Gxn → Gx in C1−β(0, T]. Now xn → x implies that there exists r > 0 such that
‖xn‖1−β ≤ r and ‖x‖1−β ≤ r. For each s ∈ (0, T], we have

f (s, xn(s))→ f (s, x(s)).

Using the assumption of f , we get

(t− s)β−1| f (s, xn(s))− f (s, x(s))| ≤ 2(t− s)β−1(rsβ−1l(s) + k(s)).

Since tβ−1l(t) ∈ C(0, T]
⋂

Lq[0, T] and k(t) ∈ C(0, T]
⋂

Lq[0, T], using the Hölder inequality,
then we know the function

s→ 2r(t− s)β−1sβ−1l(s) + 2(t− s)β−1k(s)

is integrable for s ∈ [0, t]. By means of the Lebesgue dominated convergence theorem yields

t1−β

∣∣∣∣∫ t

0
(t− s)β−1[ f (s, xn(s))− f (s, x(s))]ds

∣∣∣∣→ 0
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as n → +∞. Therefore t1−βGxn(t) → t1−βGx(t) pointwise on [0, T] as n → +∞. If we show
the convergence is uniform then of course G is continuous. Let t1, t2 ∈ [0, T] with t2 < t1.
Then ∣∣∣t1−β

1 Gx(t1)− t1−β
2 Gx(t2)

∣∣∣
≤
∣∣∣∣∣ t

1−β
1 − t1−β

2
Γ(β)

∣∣∣∣∣
∣∣∣∣∫ t2

0
(t2 − s)β−1 f (s, x(s))ds

∣∣∣∣
+

t1−β
1

Γ(β)

∣∣∣∣∫ t1

0
(t1 − s)β−1 f (s, x(s))ds−

∫ t2

0
(t2 − s)β−1 f (s, x(s))ds

∣∣∣∣ .

(4.3)

Since
| f (t, x(t))| ≤ l(t)|x(t)|+ k(t) ≤ tβ−1l(t)t1−β|x(t)|+ k(t),

from the assumptions of f , we know f (t, x(t)) ∈ Lq[0, T] (q > 1
β ) when x(t) ∈ C1−β(0, T].

From Lemma 2.6, we obtain ∫ t

0
(t− s)β−1 f (s, x(s))ds

is continuous on [0, T]. As t1 → t2, the right-hand side of the above inequality (4.3) tends to
zero. Now (4.3) together with the fact that t1−βGxn(t)→ t1−βGx(t) pointwise on [0, T] implies
that the convergence is uniform. Consequently G : C1−β(0, T]→ C1−β(0, T] is continuous.

Step 2: Next we claim that the operator G is completely continuous. To see this let Ω ∈
C1−β(0, T] be bounded and ‖x‖1−β ≤ M for each x ∈ Ω, we will show that t1−βG(Ω) is
uniformly bounded and equicontinuous on [0, T]. The equicontinuity of t1−βG(Ω) on [0, T]
follows essentially the same reasoning as that used to prove (4.3). Also t1−βG(Ω) is uniformly
bounded. Since for t ∈ [0, T], we have

|t1−βGx(t)| ≤ |x0|+
t1−β

Γ(β)

∫ t

0
(t− s)β−1sβ−1l(s)s1−β|x(s)|ds +

t1−β

Γ(β)

∫ t

0
(t− s)β−1k(s)ds

≤ |x0|+
t1−β

Γ(β)

(∫ t

0
(t− s)p(β−1)ds

) 1
p
(∫ t

0
(Msβ−1l(s))qds

) 1
q

+
t1−β

Γ(β)

(∫ t

0
(t− s)p(β−1)ds

) 1
p
(∫ t

0
kq(s)ds

) 1
q

≤ |x0|+
t

1
p

Γ(β)(p(β− 1) + 1)
1
p

[(∫ t

0
(Msβ−1l(s))qds

) 1
q

+

(∫ t

0
kq(s)ds

) 1
q
]

,

(4.4)

then

‖Gx‖1−β ≤ |x0|+
T

1
p

Γ(β)(p(β− 1) + 1)
1
p

[(∫ T

0
(Msβ−1l(s))qds

) 1
q

+

(∫ T

0
kq(s)ds

) 1
q
]

.

Consequently G : C1−β(0, T]→ C1−β(0, T] is completely continuous.

Step 3: If x ∈ C1−β(0, T] is any solution of

x(t) = λ

(
x0tβ−1 +

1
Γ(β)

∫ t

0
(t− s)β−1 f (s, x(s))ds

)
, t ∈ (0, T]
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for λ ∈ (0, 1). Let v(t) = t1−βx(t) ∈ C[0, T], then

|v(t)| ≤ |x0|+
∣∣∣∣ t1−β

Γ(β)

∫ t

0
(t− s)β−1 f (s, sβ−1v(s))ds

∣∣∣∣
≤ |x0|+

t
1
p

Γ(β)(p(β− 1) + 1)
1
p

(∫ t

0
kq(s)ds

) 1
q

+
t1−β

Γ(β)

∫ t

0
(t− s)β−1sβ−1l(s)|v(s)|ds.

(4.5)

Consequently, by Theorem 3.1, we can get

|v(t)| ≤
(

A(t) + B(t)
∫ t

0
L(s)A(s) exp

(∫ t

s
L(τ)B(τ)dτ

)
ds
) 1

q

, t ∈ [0, T],

where

A(t) = 2q−1

(
|x0|+

t
1
p

Γ(β) (p(β− 1) + 1)
1
p

(∫ t

0
kq(s)ds

) 1
q
)q

,

B(t) =
2q−1t

q
p

Γq(β)(pβ− p + 1)
q
p

,

L(t) = tq(β−1)lq(t)

and p ∈ (1,+∞) such that 1
p +

1
q = 1. Then we get

‖v‖ = ‖x‖1−β ≤
(

A(T) + B(T)
∫ T

0
L(s)A(s) exp

(∫ T

s
L(τ)B(τ)dτ

)
ds
) 1

q

.

Finally, by applying fixed point Theorem 2.7, the operator G has a fixed point x(t) ∈
C1−β(0, T], which is the solution of the integral equation (4.1).

Lemma 4.2. Let f be as in Lemma 4.1. A function x ∈ C1−β(0, T] is a solution of fractional differential
equation (1.11) if and only if it is a solution of the Volterra integral equation

x(t) = x0tβ−1 +
1

Γ(β)

∫ t

0
(t− s)β−1 f (s, x(s))ds, t ∈ (0, T]. (4.6)

Proof. Since x ∈ C1−β(0, T] and

| f (t, x(t))| ≤ l(t)|x(t)|+ k(t) = tβ−1l(t)t1−β|x(t)|+ k(t)

with tβ−1l(t)∈C(0, T]
⋂

Lq[0, T] and k(t)∈C(0, T]
⋂

Lq[0, T], then we have x ∈ C(0, T]
⋂

L1[0, T]
and f (t, x(t)) ∈ C(0, T]

⋂
L1[0, T]. By virtue of Theorem 2.4, then we complete the proof.

Theorem 4.3. Suppose f : (0,+∞)×R → R is a continuous function, and there exist nonnegative
functions l(t), k(t) with tβ−1l(t) ∈ C(0,+∞)

⋂
Lq

Loc[0,+∞) and k(t) ∈ C(0,+∞)
⋂

Lq
Loc[0,+∞)

(q > 1
β , β ∈ (0, 1)) such that

| f (t, x)| ≤ l(t)|x|+ k(t)

for all (t, x) ∈ (0,+∞)×R. Then the initial value problem (1.11) has at least one continuous solution
in C1−β(0,+∞).
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Proof. From Lemma 4.1 and Lemma 4.2, We know the equation (1.11) has at least one solution
in C1−β(0, T]. Since T can be chosen arbitrarily constant, then the equation (1.11) has at least
one global solution on (0,+∞). Thus, we complete the proof of Theorem 4.3.

Theorem 4.4. If f : (0,+∞)×R→ R is a continuous function, and

| f (t, x)− f (t, y)| ≤ l(t)|x− y|

for all x, y ∈ R and t ∈ (0,+∞), where tβ−1l(t) ∈ C(0,+∞)
⋂

Lq
Loc[0,+∞) and | f (t, 0)| ∈

Lq
Loc[0,+∞) (q > 1

β ). Then equation (1.11) has a unique solution on (0,+∞).

Proof. We know

| f (t, x)| ≤ | f (t, x)− f (t, 0)|+ | f (t, 0)| ≤ l(t)|x|+ | f (t, 0)|.

By Theorem 4.3, we suppose x1(t), x2(t) are two global solutions of equation (1.11). Then

|x1(t)− x2(t)| =
∣∣∣∣ 1
Γ(β)

∫ t

0
(t− s)β−1( f (s, x1(s))− f (s, x2(s)))ds

∣∣∣∣
≤ 1

Γ(β)

∫ t

0
(t− s)β−1l(s)|x1(s)− x2(s)|ds

=
1

Γ(β)

∫ t

0
(t− s)β−1sβ−1l(s)s1−β|x1(s)− x2(s)|ds.

(4.7)

Let u(t) = t1−β|x1(t)− x2(t)|, then

u(t) ≤ t1−β

Γ(β)

∫ t

0
(t− s)β−1sβ−1l(s)u(s)ds.

By Theorem 3.1, we can get x1(t) = x2(t). Thus the proof is complete.

Remark 4.5. In [18], Trif proved that the equation (1.11) has a unique solution when continu-
ous function f (t, x) = p(t)x + q(t) for all (t, x) ∈ (0,+∞)×R, where p ∈ Cα(0,+∞) and q ∈
C1−β(0,+∞) with 0 ≤ α < β. Then under the above conclusions, Trif presented the existence
result when f (t, x) ≤ p(t)x + q(t), where p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞) with 0 ≤ α < β

and 2β− α > 1. In fact, if p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞), let 1 + α− β < 1
q < β, then

tβ−1 p(t) ∈ C(0,+∞)
⋂

Lq
Loc[0,+∞) and q(t) ∈ C(0,+∞)

⋂
Lq

Loc[0,+∞). Thus, our result in-
cludes the main result of [18, Theorem 4.2]. Theorem 4.11 of [19] also states a global existence
result of the equation (1.11) but with only a sketch of the proof.

Example 4.6. {
D

3
4
r x(t) = (t

−1
4 + 1)

√
x(t) + t

−1
2 ,

limt→0+ t
3
4 x(t) = 1.

(4.8)

We know

(t
−1
4 + 1)

√
x(t) + t

−1
2 ≤ t

−1
4 + 1

2
|x(t)|+ t

−1
4 + 1

2
+ t

−1
2 . (4.9)

Let q = 5
3 , then t

−1
4 (t

−1
4 +1)

2 ∈ C(0,+∞)
⋂

L
5
3
Loc[0,+∞) and t

−1
4 +1
2 + t

−1
2 ∈ C(0,+∞)

⋂
L

5
3
Loc[0,+∞).

From Theorem 4.3, equation (4.8) has at least one global solution on (0,+∞).
A global solution is proved in [18] under the following hypothesis f (t, x) ≤ p(t)x + q(t),

where p ∈ Cα(0,+∞) and q ∈ C1−β(0,+∞) with 0 ≤ α < β and 2β− α > 1. From (4.9), we

know t
−1
4 +1
2 + t

−1
2 /∈ C 1

4
(0,+∞).
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Example 4.7. D
3
4
r x(t) = t

−1
3

1+x2(t)
1+x(t) + t

−1
2 ,

limt→0+ t
3
4 x(t) = 1.

(4.10)

We know

|1 + x2

1 + x
− 1 + y2

1 + y
| ≤ |x− y|,

where x, y∈ [0,+∞). Since t
−7
12 ∈C(0,+∞)

⋂
Lq

Loc[0,+∞) and t
−1
3 +t

−1
2 ∈C(0,+∞)

⋂
Lq

Loc[0,+∞)

(q > 4
3 ), then from Theorem 4.4, equation (4.10) has a unique global solution on (0,+∞).
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