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Abstract. The system

q̈k + γq̇k = V′(qk+1 − qk)−V′(qk − qk−1) (k = 1, . . . , N − 2)

is considered, where 0 < γ = const., 2 < N ∈ N, V : (A, B) → R (−∞ ≤ A < B ≤ ∞)
is a strictly convex, two times continuously differentiable function. We connect to the
system three kinds of boundary conditions: q0(t) = 0, qN−1(t) = L = const. > 0
(fixed endpoints – this is the original Fermi–Pasta–Ulam oscillator provided that the
damping coefficient γ equals zero); q1(t) − q0(t) = L/(N − 1), qN−1(t) − qN−2(t) =
L/(N − 1) (free endpoints); q0(t) = −(K − qN−2(t)), qN−1(t) = q1(t) + K, K = const.
(cycle). We prove that the unique equilibrium state of the system with fixed endpoints
is asymptotically stable. We also prove that the system with free endpoints and the
cycle asymptotically stop at an equilibrium state along their arbitrary motion, i.e., for
every motion there is q∞

1 ∈ R such that limt→∞ qk(t) = q∞
1 + (k− 1)r, limt→∞ q̇k(t) = 0

(k = 1, . . . , N − 2), where the constant r is defined by the equation V′(r) = 0.

Keywords: asymptotic stability, asymptotic stop, invariance principle, total mechanical
energy.
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1 Introduction

In early 1950’s physicist Enrico Fermi, computer scientist John R. Pasta and mathematician
Stanisław Ulam took the initiative in investigating nonlinear dynamical problems “experi-
mentally” by the use of computers. The first model they chose was a series of masses placed
along a line and coupled to their nearest neighbors by springs [2]. They obtained this system
as the discretization of a partial differential equation model of a string.

If one linearizes the system, or in other words, if the connecting springs are linear, i.e.,
the restoring forces depend on the displacements linearly (Hooke’s law), then the system of
ordinary differential equations describing motions of the coupled system is linear. It is known
that the general solution is the sum of the “normal modes” of the oscillation corresponding to
the eigenvalues and the eigenvectors of the matrix of the system. The mechanical energy of
the oscillator is distributed between the normal modes and it wanders between the modes.
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For the original nonlinear system, Fermi, Pasta, and Ulam expected “thermalization”.
This would be a process, during which the oscillator would tend to equalize and the process
would lead to the “equipartition of energy.” However, they were surprised: the thermalization
did not occur, instead the energy wandered between the modes for a while, then eventually
almost all the energy returned to the initial mode. This exciting experience led to interesting
new theories and concepts in mathematics and mathematical physics [3–6, 9].

In this paper we investigate what happens if the damping is taken into account. One
expects that the mechanical energy will be dissipated and the system “asymptotically stops.”
We prove that this conjecture is true. We consider three versions of the model, which differ
from each others only in boundary conditions. In the first version the endpoints of the masses-
springs chain are fixed – this is the original Fermi–Pasta–Ulam model. In the second one the
endpoints of the chain are free. In the third variant the masses are placed along a circle and
the first and the last one are also connected by a spring (“cycle”). It will be pointed out that
the system with fixed endpoints has a unique equilibrium position, but the other two models
have infinitely many ones. We prove that in the case of fixed endpoints the unique equilibrium
state is globally asymptotically stable, and the other two systems asymptotically stop along
their arbitrary motion. The letter property means that along every motion velocities tend to
zero and displacements tend to an equilibrium position as the time tends to infinity.

2 The models

Let N > 2 be a natural number. Suppose that N − 2 mass points of mass 1 can move along
a line, and the neighboring mass points are connected by springs of the same kind. Let
qk(t) (k ∈ 1, N − 2) denote the coordinate of the kth mass point on the line at time t ≥ 0;
pk(t) := q̇k(t) is the derivative of qk(t) (velocity). Let −V(q) be the force function of the
springs, where V : R ⊃ (A, B) → R (−∞ ≤ A < B ≤ ∞) is a strictly convex, two times
continuously differentiable function. Consider the representation of the Fermi–Pasta–Ulam
oscillator given in [1, Figure 3.4]. If γ > 0 denotes the damping coefficient, then the equations
of motions are

q̈k + γq̇k = V ′(qk+1 − qk)−V ′(qk − qk−1) (k ∈ 1, N − 2); (2.1)

q0 is the coordinate of the left-hand end of the first spring, qN−1 is the coordinate of the right-
hand end of the last spring; there are no mass points at these ends. The endpoints of the chain
are connected to unmovable walls:

q0 = 0, qN−1 = L (2.2)

where L denotes the distance of the walls along the line. Introducing the notations

ri := qi+1 − qi (i ∈ 0, N − 2) (2.3)

we can rewrite system (2.1) into the equivalent system of first order equations

q̇k = pk, ṗk = V ′(rk)−V ′(rk−1)− γpk (k ∈ 1, N − 2). (2.4)

The state variables of system (2.4) determining a state of the system are q1, q2, . . . , qN−2;
p1, p2, . . . , pN−2, which are independent of each other. However, (2.1) and (2.4) contains also
variables q0, qN−1, they are not independent, they are determined by boundary conditions in
terms of q1, q2, . . . , qN−2. We consider three cases:
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(A) fixed endpoints:
q0(t) ≡ 0, qN−1(t) ≡ L; (2.5)

(B) free endpoints: If there is an L0 > 0 with V ′(L0) = 0, then we can require the boundary
conditions

r0(t) = q1(t)− q0(t) ≡ L0, rN−2(t) = qN−1(t)− qN−2(t) ≡ L0. (2.6)

The third model is the cycle. Suppose that N − 2 mass points are placed along a circle of arc
length K and the neighboring mass points are connected by springs, so the number of springs
is N− 2. Let us fix a point O of the circle and denote by qk the length of the arc between O and
the kth mass point in the anticlockwise direction. If we use notations (2.3), then the boundary
conditions are

(C) cycle:
r0(t) ≡ rN−2(t) = K− (r1 + · · ·+ rN−3), (2.7)

or, equivalently,
q0 := −(K− qN−2), qN−1 := q1 + K. (2.8)

3 Equilibria

We are looking for equilibria

q1 = q1 = const., . . . , qN−2 = qN−2 = const.; p1 = 0, . . . , pN−2 = 0

of (2.4)&(2.5), (2.4)&(2.6), and (2.4)&(2.8). Since V is strictly convex, from (2.4) for ri :=
qi+1 − qi we obtain

r0 = r1 = · · · = rN−2,

i.e.,
q1 − q0 = q2 − q1 = · · · = qN−1 − qN−2.

If the endpoints are fixed, then

(A) fixed endpoints: qk = kL0 (k ∈ 1, N − 2) (3.1)

where L0 := L/(N − 1). There is one and only one equilibrium position. Without loss of the
generality we can suppose that

V(L0) = 0, V ′(L0) = 0. (3.2)

In fact, define the function

Ṽ(r) := V(r)−V(L0)−V ′(L0)(r− L0) (r ∈ R). (3.3)

Then Ṽ(L0) = 0, Ṽ ′(L0) = 0, and Ṽ ′(r)− Ṽ ′(s) = V ′(r)− V ′(s) for all r, s ∈ R. Obviously, if
in (2.4) we change force function V to Ṽ, then the new equation is equivalent to the old one.

If the endpoints are free, then ri = L0 (i ∈ 0, N − 2) where L0 is defined by the properties
V ′(L0) = 0, V(L0) = 0, and, consequently

(B) free endpoints: q1 ∈ R, qk = q1 + (k− 1)L0 (k ∈ 1, N − 2),
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i.e., equilibrium positions form a line in RN−2.
In the case of cycle we have ri = K0 := K/(N − 2) (i ∈ 0, N − 2) and, therefore

(C) cycle: q1 ∈ R, qk = q1 + (k− 1)K0 (k ∈ 1, N − 2),

where we can also suppose that V ′(K0) = 0, V(K0) = 0. Equilibrium positions also form a
line in RN−2.

4 Total mechanical energy

Without loss of the generality we can suppose in cases (A) and (B), that V(L0) = 0, while in
case (C), that V(K0) = 0. The total mechanical energy H = H(q1, . . . , qN−2; p1, . . . , pN−2) is
equal to the sum of the kinetic and potential energy:

(A) fixed endpoints: HA = (1/2)∑N−2
k=1 (pk)

2 + ∑N−3
j=1 V(rj) + V(q1) + V(L− qN−2);

(B) free endpoints: HB = (1/2)∑N−2
k=1 (pk)

2 + ∑N−3
j=1 V(rj);

(C) cycle: HC = (1/2)∑N−2
k=1 (pk)

2 + ∑N−3
j=1 V(rj) + V(r0).

With the notation H1 := (1/2)∑N−2
k=1 (pk)

2 + ∑N−3
j=1 V(rj), for the derivative of H1 with respect

to (2.4) we have

Ḣ1 =
N−2

∑
k=1

(
pkV ′(rk)− pkV ′(rk−1)

)
+

N−3

∑
j=1

(
pj+1V ′(rj)− pjV ′(rj)

)
− γ

N−2

∑
k=1

(pk)
2 = −γ

N−2

∑
k=1

(pk)
2 − p1V ′(r0) + pN−2V ′(rN−2).

In case (A) from (V(q1) + V(L− qN−2))̇ = p1V ′(r0)− pN−2V ′(rN−2) we get

ḢA = ḢA(q1, . . . , qN−2; p1, . . . , pN−2) = −γ
N−2

∑
k=1

(pk)
2. (4.1)

In case (B) we have V ′(r0) = V ′(L0) = 0, V ′(rN−2) = V ′(L0) = 0, therefore we obtain

ḢB = ḢB(q1, . . . , qN−2; p1, . . . , pN−2) = −γ
N−2

∑
k=1

(pk)
2. (4.2)

In case (C) we know that (V(r0))̇ = (V(q1 + K − qN−2))̇ = p1V ′(r0)− pN−2V ′(rN−2), so we
have

ḢC = ḢC(q1, . . . , qN−2; p1, . . . , pN−2) = −γ
N−2

∑
k=1

(pk)
2. (4.3)

Formulae (4.1), (4.2), and (4.3) describes how the total mechanical energy varies along motions.
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5 Asymptotic stability for the oscillator with fixed endpoints

In proofs of the main theorems we will use the invariance principle [8]. Consider the system
of differential equations ẋ = f (x), where f : Ω → Rn (Ω ⊂ Rn is open) is continuously
differentiable. A set M ⊂ Ω is called invariant if for every point x∗ ∈ M the trajectory starting
from x∗ remains in M.

Invariance Principle. Suppose that there exists a set E ⊂ Ω, closed in Ω such that for every solution
t 7→ x(t) one has x(t) → E as t → ∞. If the positive half trajectory ∪t≥0x(t) is bounded, then
x(t)→ M as t→ ∞ where M is the largest invariant subset of E.

Theorem 5.1. The unique equilibrium (3.1) of the system (2.4)&(2.5) with fixed endpoints is asymp-
totically stable, i.e., it is stable in Lyapunov sense, and for every solution of (2.4) starting from a
neighborhood of (3.1) with sufficiently small velocities we have

lim
t→∞

qk(t) = kL0, lim
t→∞

pk(t) = 0 (k ∈ 1, N − 2). (5.1)

Proof. Let us introduce the new variables

xj := qj − jL0, yk := pk (j ∈ 0, N − 1, k ∈ 1, N − 2). (5.2)

The model (2.4)&(2.5) and the mechanical energy HA have the following forms in the new
variables:

ẋk = yk, ẏk = V ′(xk+1 − xk + L0)−V ′(xk − xk−1 + L0)− γyk (k ∈ 1, N − 2), (5.3)

HA =
1
2

N−2

∑
k=1

(yk)
2 +

N−2

∑
j=0

V(sj + L0); sj := xj+1 − xj. (5.4)

We have to prove that the zero solution of (5.3) is globally asymptotically stable. Define the
function

a(u) := min{V(L0 − u); V(L0 + u)} (u ≥ 0), (5.5)

which is strictly increasing and continuous on [0, ∞), and limu→∞ a(u) = ∞. With the nota-
tions

x := (x1, x2, . . . , xN−2) ∈ RN−2, y := (y1, y2, . . . , yN−2) ∈ RN−2,

(x, y) ∈ R2(N−2), ‖x‖ := max{|x1|, . . . , |xN−2|}

obviously,

HA(x, y) ≥ a(|x1|) + a(|s1|) + · · ·+ a(|sN−3|) + a(|xN−2|) +
1
2

N−2

∑
k=1

y2
k , (5.6)

and the state space, where the right-hand side of (5.3) is determined, is

Ω :=
{
(x, y) ∈ R2(N−2) : xj+1 − xj ∈ (A− L0, B− L0), y ∈ R

}
. (5.7)

For ε > 0 given let initial values ‖x(0)‖, ‖y(0)‖ be so small that

HA(x(0), y(0)) < min
{

ε2

2
; a
(

ε

N − 1

)}
. (5.8)
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Then for all t we have HA(x(t), y(t)) ≤ HA(x(0), y(0)), from which there follows

|y(t)| < ε (t ≥ 0). (5.9)

On the other hand, from (5.6) and (5.8) we obtain

a(|x1(t)|) ≤ V(x1(t) + L0) ≤ a
(

ε

N − 1

)
,

whence we have |x1(t)| < ε/(N − 1). In the same way we have

|x2(t)− x1(t)| <
ε

N − 1
, . . . , |xN−2(t)− xN−3(t)| <

ε

N − 1
,

|xN−2(t)| <
ε

N − 1
.

Therefore,

|x2(t)| < |x2(t)− x1(t)|+ |x1(t)| ≤ 2
ε

N − 1
≤ ε,

and so on,

|xk+1(t)| < |xk+1(t)− xk(t)|+ |xk(t)| ≤
ε

N − 1
+ k

ε

N − 1
≤ ε

for k ∈ 1, N − 3. This together with (5.9) means that the zero solution of (5.3) is stable. It has
remained to prove that the zero solution is attractive.

Stability implies that every solution starting from a neighborhood of x = y = 0 is bounded.
At first we prove that for these solutions velocities yk tend to zero as t → ∞. In fact, if this is
not true, then from (4.1) there follows the existence of k∗ ∈ 1, N − 2, 0 < ε1 < ε2, and sequence
(αn, βn)∞

n=1 such that

αn < βn < αn+1, lim
n→∞

αn = ∞,

y2
k∗(αn) = ε1, y2

k∗(βn) = ε2, ε1 ≤ y2
k∗(t) ≤ ε2 (αn ≤ t ≤ βn)

for all n ∈N. From (4.1) we obtain

−HA(x(αn), y(αn)) + HA(x(βn), y(βn)) ≥ γ
∫ βn

αn

y2
k∗(t)dt ≥ γε1(βn − αn),

whence, taking into account also HA ≥ 0, we have limn→∞(βn − αn) = 0. However, this is
impossible, because, according to (5.3), the derivative of y2

k∗ is bounded.
Now we apply the invariance principle. We have proved that the trajectory of every solu-

tion tends to the set
E := {(x, y) ∈ Ω : y = 0}

as t → ∞, and every positive half trajectory is bounded. E consists of equilibrium states
of (5.3). By (3.1) the maximal invariant subset M of E is equal to the singleton {(0, 0)}.
Application of the invariance principle yields the attractivity of (0, 0).

Remark 5.2. It is easy to see that if A = −∞ and B = ∞, then the equilibrium state is globally
asymptotically stable in Theorem 5.1, i.e., (5.1) is satisfied for every motion.
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Remark 5.3. Fermi, Pasta and Ulam investigated only the case of fixed endpoints (A). They
directly considered the form (5.3) of the model. They wrote: “If xi denotes the displacement of
the i-th point from its original position. . . ”, and the “original position” should be understood
as the equilibrium position qi = i(L/(N − 1)) = iL0 (see (5.2)). A comparison between (5.2)
and the equations of Fermi, Pasta and Ulam [2, p. 979, (1) and (2)] shows that their force
function satisfies either

V ′(r + L0) = r + αr2 (α ≥ 0),

or
V ′(r + L0) = r + βr3 (β ≥ 0),

where “α and β were chosen so that at the maximum displacement the nonlinear term was
small, e.g., the order of one-tenth of the linear term.” Since V(L0) = 0, this means that either

V(s) =
1
2
(s− L0)

2 +
α

3
(s− L0)

3,

or

V(s) =
1
2
(s− L0)

2 +
β

4
(s− L0)

4,

and A = −1/(2α), B = ∞ or A = −∞, B = ∞, respectively.

6 Asymptotic stop for the oscillators with free endpoints and the
cycle

We return to the original common system (2.4). Exchange the state variables q1, q2, . . . , qN−2;
p1, p2, . . . , pN−2 for q1, r1, r2, . . . , rN−3; p1, p2, . . . , pN−2. The universal model (2.4) in the new
state variables has the form

ṙm = pm+1 − pm (m ∈ 1, N − 3),

ṗk = V ′(rk)−V ′(rk−1)− γpk (k ∈ 1, N − 2)
(6.1)

with the boundary conditions (2.6) (free endpoints) and (2.7) (cycle), respectively. We omitted
the equation q̇1 = p1 because q1 can be separated from the other state variables: at first we
solve (6.1), then we compute q1(t). Let us consider (6.1) as a system in the state space R2N−5

and find the equilibrium states

r1 = r1 = const., . . . , rN−3 = rN−3 = const.;

p1 = p1 = const., . . . , pN−2 = pN−2 = const.

in this space. From the first block of equations (6.1) we obtain that there is a p =const. such
that p1 = · · · = pN−2 = p. Summing the equations of the second block of (6.1) we get

0 = V ′(rN−2)−V ′(r0)− γ(N − 2)p.

By boundary conditions (2.6) and (2.7) rN−2 = r0, so p = 0, therefore from the equations of
the second block of (6.1) it follows that

r0 = r1 = . . . = rN−2 = r.
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According to (2.6) and (2.7) constant r is determined by the equation V ′(r) = 0, i.e., r :=
L/(N − 1) = L0, respectively, r := K/(N − 2) = K0 (see (2.2)). This means that (6.1) has one
and only one equilibrium state

(r, . . . , r; 0, . . . , 0) ∈ R2N−5.

Introduce the notations

r := (r1, . . . , rN−3) ∈ RN−3, p := (p1, . . . , pN−2) ∈ RN−2;

r := (r, . . . , r) ∈ RN−3; ‖ · ‖ : the maximum norm in Rl .

Lemma 6.1. The unique equilibrium state r = r, p = 0 of (6.1) is stable and attractive in R2N−5 for
both systems (6.1)&(2.6) and (6.1)&(2.7).

Proof. Obviously, V(r) ≥ a(|r− r|) (r ∈ R) is satisfied with function a defined in (5.5). There-
fore HB and HC are positive definite. By (4.2) and (4.3), Lyapunov’s theorem on the stability
guarantees stability.

On the other hand, if ‖(r, p)‖ → ∞, then HB(r, p) → ∞ and HC(r, p) → ∞. The maximal
invariant subset of the set

E := {(r, p) ∈ R2N−5 : ḢB(r, p) ≡ ḢC(r, p) = 0} = {(r, p) : p = 0}

is the unique equilibrium state (r, 0). Applying the invariance principle we get attractivity.

Lemma 6.2. Every solution t 7→ (q(t), p(t)) of (2.4) is bounded on [0, ∞).

Proof. Introduce the notations

Q(t) :=
N−2

∑
k=1

qk(t), P(t) :=
N−2

∑
k=1

pk(t).

If we sum the equations for ṗk’s in (2.4) then by (2.6) and (2.7) we get

Ṗ(t) = −γP(t) =⇒ P(t) = P(0)e−γt,

from which by integration we obtain

Q(t)−Q(0) = P(0)
1
γ

(
1− e−γt) . (6.2)

In consequence of Lemma 6.1 this means that every qk(t) is bounded and the assertion of
Lemma 6.2 is true.

Theorem 6.3. The system with free endpoints (2.4)&(2.6) and the cycle (2.4)&(2.8) asymptotically
stop along every motion. This means that for every motion t 7→ (q(t), p(t)) there exists a q∞

1 ∈ R

such that
lim
t→∞

qk(t) = q∞
1 + (k− 1)r, lim

t→∞
pk(t) = 0 (k ∈ 1, N − 2),

where r is determined by the equation V ′(r) = 0 (i.e., r = L0 and r = K0, respectively).
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Proof. By Lemma 6.1 for every ε > 0 there exists a t(ε) such that

|rm(t)− r| < ε (t > t(ε); m ∈ 1, N − 3).

Let ε > 0 be fixed sufficiently small, it will be restricted exactly later (see (6.3)).
Thanks to Lemma 6.1 it is enough to prove that t 7→ q1(t) has a finite limit as t → ∞.

Using the method of contradiction, let us suppose that this is not true. Then, in consequence
of Lemma 6.2, the upper and the lower limit of q1 are finite and different, i.e., there are S, T
(S < T) and a sequence (sn, tn)∞

n=1 such that

s1 > t(ε), sn < tn < sn+1, lim
n→∞

sn = ∞,

q1(sn) = S, q1(tn) = T; sn ≤ t ≤ tn =⇒ S ≤ q1(t) ≤ T (n ∈ 1, ∞).

Let us fix ε so that

0 < ε <
T − S

4N
. (6.3)

Then

q1(tn)− q1(sn) = T − S;

q2(tn)− q2(sn) ≥ q1(tn) + (r− ε)− (q1(sn) + (r + ε)) ≥ T − S− 2ε.

By induction we get

qk(tn)− qk(sn) ≥ T − S− 2(k− 1)ε ≥ (T − S)− T − S
2

=
T − S

2
(k ∈ 3, N − 2).

Therefore

Q(tn)−Q(sn) ≥ (N − 2)
T − S

2
(n ∈ 1, ∞).

On the other hand, in view of (6.2) we have

Q(tn)−Q(sn) = P(0)
1
γ

(
e−γsn − e−γtn

)
→ 0 (n→ ∞),

which is a contradiction, i.e., t 7→ q1(t) has a finite limit as t→ ∞.

7 An outlook

The cycle is important from the point of view of a further development of the Fermi–Pasta–
Ulam problem. Suppose that we have infinitely many mass points in the lattice. Then, instead
of (2.1), one has to consider the system

q̈m + γq̇m = V ′(qm+1 − qm)−V ′(qm − qm−1) (m ∈ Z). (7.1)

With
rm := qm+1 − qm (m ∈ Z)

the equivalent system of first order differential equations is

q̇m = pm, ṗm = V ′(rm)−V ′(rm−1)− γpm (m ∈ Z). (7.2)
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If the total mechanical energy

H = ∑
m∈Z

(
1
2
(pm)

2 + V(rm)

)
is divergent, then the problem is extremely difficult. However, if initial values are periodic in
rm’s and pm’s, then the system can be reduced to a cycle and one can apply Theorem 6.3.

Let M ≥ 1 be an arbitrary natural number, and consider system (7.2) with the initial values

qm(0) = q0
m, pm(0) = p0

m (r0
m = r0

m+M, p0
m = p0

m+M) (m ∈ Z). (7.3)

Obviously, if t 7→ (q(t), p(t)) = (q(t; 0, q0, p0), p(t; 0, q0, p0)) is the solution of the initial value
problem (7.2)&(7.3), then

rm(t) ≡ rm+M(t), pm(t) ≡ pm+M(t) (t ∈ R; m ∈ Z),

so (7.2)&(7.3) is equivalent to the cycle (2.4)&(2.8) with K := MK0, N := M + 2.

Corollary 7.1. The infinite system (7.2) asymptotically stops along every motion with periodic initial
values (7.3). This means that for every such motion t 7→ (q(t), p(t)) there exists a q∞

1 ∈ R such that

lim
t→∞

qm(t) = q∞
1 + (m− 1)r, lim

t→∞
pm(t) = 0 (m ∈ Z), (7.4)

where r is determined by the equation V ′(r) = 0.

Possessing this corollary we conjecture that system (7.2) asymptotically stops along arbi-
trary motion:

Conjecture 7.2. The infinite system (7.2) asymptotically stops along its every motion, i.e., (7.4) holds
for every solution of (7.2) with some q∞

1 .
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