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Abstract. This paper is concerned with the nonlinear eigenvalue problem

−u′′(t) = λ (u(t) + g(u(t))) , u(t) > 0, t ∈ I := (−1, 1), u(±1) = 0,

where g(u) = up sin(uq) (0 ≤ p < 1, 0 < q ≤ 1) and λ > 0 is a bifurcation parameter. It
is known that, for a given α > 0, there exists a unique solution pair (λ(α), uα) ∈ R+ ×
C2(I) satisfying α = ‖uα‖∞ (= uα(0)). We establish the precise asymptotic formula
for Lr-norm ‖uα‖r (1 ≤ r < ∞) of the solution uα as α → ∞ to show the evidence
that uα(t) is oscillatory as α → ∞. We also obtain the asymptotic formula for λ in
Lr-framework, which has different property from that for diffusive logistic equation of
population dynamics.
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1 Introduction

This paper is concerned with the following nonlinear eigenvalue problems

−u′′(t) = λ (u(t) + g(u(t))) , t ∈ I := (−1, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(−1) = u(1) = 0, (1.3)

where g(u) is an oscillatory nonlinear term and λ > 0 is a parameter. We know from [11] that
if u + g(u) > 0 for u > 0, then for any given α > 0, there exists a unique classical solution pair
(λ, uα) of (1.1)–(1.3) satisfying α = ‖uα‖∞ (= uα(0)). Furthermore, λ is parametrized by α as
λ = λ(α) and is continuous in α > 0.

In this paper, we study the oscillatory behavior of uα(t) as α → ∞ by establishing the
asymptotic formula for ‖uα‖r, where ‖uα‖r (1 ≤ r < ∞) is Lr-norm of uα. Furthermore, we
establish the asymptotic formula for λ(β) (β := ‖uα‖r) as α→ ∞.
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A lot of investigation on the global behavior of the bifurcation curves have been made for
a long time. Indeed, many topics come from mathematical biology, engineering, etc., and have
been investigated intensively by many authors. We refer to [1–3, 5, 6, 12] and the references
therein. On the other hand, there seems to be few works about the oscillatory properties
of bifurcation curves. The important point is that, if bifurcation curves have the oscillatory
structures, it is reasonable to suppose that the equations contain some oscillatory nonlinear
terms. Therefore, there is a close relationship between oscillatory phenomena of bifurcation
curves and inverse bifurcation problems. We refer to [7,9,10,13,14] and the references therein.

Our equation here is motivated by the work of Cheng [4], which was proposed as a model
case of oscillatory bifurcation phenomenon. In [4], the equation (1.1)–(1.3) with g(u) = sin

√
u

has been treated. It has been shown there that there are arbitrary many solutions near the line
λ = π2/4.

Theorem 1.1 ([4, Theorem 6]). Let g(u) = sin
√

u (u ≥ 0). Then for any integer n ≥ 1, there is
δ > 0 such that if λ ∈ (π2/4− δ, π2/4 + δ), then (1.1)–(1.3) has at least n distinct solutions.

Theorem 1.1 suggests that λ(α) oscillates and intersects the line λ = π2/4 infinitely many
times for α � 1 if g(u) = sin

√
u. Motivated by this result, the following asymptotic formula

has been obtained recently in [13].

Theorem 1.2 ([13, Theorem 1.1]). Let g(u) = sin
√

u. Then as α→ ∞,

λ(α) =
π2

4
− π3/2α−5/4 sin

(√
α− π

4

)
+ o(α−5/4). (1.4)

It should be mentioned that the proof of Theorem 1.2 depends on a very long calculation
of the time-map, and it seems that the method in [13] is not applicable to the case where g(u)
is a relevant nonlinear term, such as g(u) = sin(uq). We remark that the case g(u) = sin u
was considered in [8] and found that stationary phase method is applicable to understand the
oscillatory bifurcation.

Motivated by [8] and [13] by using the time-map argument and careful use of the stationary
phase method, the precise asymptotic formulas for λ(α) with g(u) = up sin(uq) as α→ ∞ were
obtained in [15].

Theorem 1.3 ([15]). Let g(u) = up sin(uq), where 0 ≤ p < 1 and 0 < q ≤ 1 are fixed constants.
Then as α→ ∞,

λ(α) =
π2

4
− π3/2√

2q
αp−1−(q/2) sin

(
αq − π

4

)
+ o(αp−1−(q/2)). (1.5)

Nevertheless to say, Theorem 1.3 coincides with Theorem 1.2 if p = 0 and q = 1/2.
On the other hand, as far as the author knows, the precise asymptotic behavior of uα(t)

itself as α→ ∞ is not known yet. It is easy to see from Theorem 1.3 that as α→ ∞,

uα(t)
α
→ cos

(π

2
t
)

(1.6)

in C( Ī). In other words, the leading term of uα(t) is equal to α cos
(

π
2 t
)
. Therefore, it seems

interesting to clarify how uα(t) oscillates as α→ ∞. In this paper, since it is difficult to obtain
the explicit second term of uα, we establish the precise asymptotic formula for ‖uα‖r to show
that uα(t) certainly oscillates as α→ ∞.

Now we state our main result.
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Theorem 1.4. Let 1 ≤ r < ∞ be fixed, and g(u) = up sin(uq), where 0 ≤ p < 1, 0 < q ≤ 1 are
fixed constants satisfying p = 0, q = 1 or p + 1 ≥ 2q.

(i) The following asymptotic formulas hold as α→ ∞.

‖uα‖r
r =

∥∥∥α cos
(π

2
t
)∥∥∥r

r
+

4
π

(
Ar

√
2

πq
−
√

π

2q

)
αp−1−q/2+r sin

(
αq − π

4

)
(1.7)

+ o(αp−1−q/2+r),

where

Ar :=
∫ 1

0

sr
√

1− s2
ds =

∫ π/2

0
cosr tdt. (1.8)

(ii) Let βr(α) :=
(

π
4Ar

)1/r
‖uα‖r. Then as α→ ∞

λ(βr(α)) =
π2

4
− π3/2√

2q
βr(α)

p−1−(q/2) sin
(

βr(α)
q − π

4

)
+ o(βr(α)

p−1−(q/2)). (1.9)

Corollary 1.5. Let vα(t) := uα(t)− α cos
(

π
2 t
)
. Assume p = 0, q = 1/2. Then as α→ ∞,

∫ 1

−1
vα(t)dt =

4
π

(
2√
π
−
√

π

)
α−1/4 sin

(√
α− π

4

)
+ o(α−1/4). (1.10)

Therefore, we see that uα(t) is eventually oscillatory as α → ∞. The restriction of p and q
in Theorem 1.4 comes from the lack of regularity when we use the stationary phase method
in the proof.

It should be mentioned that the asymptotic formula (1.9) for α � 1 coincides with (1.5)
up to the second term. Such phenomenon for λ in L∞-framework and Lr-framework does not
occur when we consider the diffusive logistic equations of population dynamics (cf. [12]). If
we consider the asymptotic behavior of λ in Lr-framework, then usually, its second term is
affected by the growth rate of the slope of boundary layer u′α(±1), and in the case of diffusive
logistic equation, it is greater than that of ‖uα‖∞. On the other hand, in our problem, the the
growth rate of u′α(±1) is the same as that of ‖uα‖∞. This is the reason why (1.9) is the same
as (1.5).

2 Proof of Theorem 1.4

Let α� 1 in this section. We denote by C the various positive constants independent of α. Let
g(u) = up sin(uq) for u ≥ 0 and

G(u) :=
∫ u

0
g(s)ds. (2.1)

If (uα, λ(α)) ∈ C2( Ī)×R+ satisfies (1.1)–(1.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (2.2)

uα(0) = max
−1≤t≤1

uα(t) = α, (2.3)

u′α(t) > 0, −1 ≤ t < 0. (2.4)
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We introduce the standard time-map argument (cf. [15]). By (1.1), we obtain(
u′′α(t) + λ (uα(t) + g(uα(t)))

)
u′α(t) = 0.

This along with (2.3) implies that, by putting t = 0, we obtain

1
2

u′α(t)
2 + λ

(
1
2

uα(t)2 + G(uα(t))
)
= constant = λ

(
1
2

α2 + G(α)

)
.

This along with (2.4) implies that for −1 ≤ t ≤ 0,

u′α(t) =
√

λ
√

α2 − uα(t)2 + 2(G(α)− G(uα(t))). (2.5)

For 0 ≤ s ≤ 1, we have∣∣∣∣G(α)− G(αs)
α2(1− s2)

∣∣∣∣ =
∣∣∣∣∣
∫ α

αs g(t)dt
α2(1− s2)

∣∣∣∣∣ ≤ C
αp+1(1− sp+1)

α2(1− s2)
≤ Cαp−1 � 1. (2.6)

By (2.2), (2.4), (2.5), (2.6), putting s := uα(t)/α and Taylor expansion, we obtain

‖uα‖r
r = 2

∫ 0

−1
uα(t)rdt (2.7)

=
2√
λ

∫ 0

−1

uα(t)ru′α(t)√
α2 − uα(t)2 + 2(G(α)− G(uα(t)))

dt

=
2√
λ

∫ α

0

θr√
α2 − θ2 + 2(G(α)− G(θ))

dθ

=
2αr
√

λ

∫ 1

0

sr

√
1− s2

√
1 + 2(G(α)−G(αs))

α2(1−s2)

ds

=
2αr
√

λ

∫ 1

0

sr
√

1− s2

{
1− 1

α2 (1 + o(1))
G(α)− G(αs)

1− s2

}
ds

=
2αr
√

λ

{
Ar −

1
α2 (1 + o(1))

∫ 1

0

sr(G(α)− G(αs))
(1− s2)3/2 ds

}
.

We put

D(α) :=
∫ 1

0

sr(G(α)− G(αs))
(1− s2)3/2 ds. (2.8)

By combining [8, Lemma 2] and [10, Lemma 2.25], we have following equalities.

Lemma 2.1 ([8, Lemma 2], [10, Lemma 2.25]). Assume that the function f (r) ∈ C2[0, 1], and
h(r) = cos(πr/2). Then as µ→ ∞

∫ 1

0
f (r)eiµh(r)dr = ei(µ−(π/4))

√
2

πµ
f (0) + O

(
1
µ

)
. (2.9)

In particular, by taking the imaginary part of (2.9),

∫ 1

0
f (r) sin(µh(r))dr =

√
2

πµ
f (0) sin

(
µ− π

4

)
+ O

(
1
µ

)
. (2.10)
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Lemma 2.2. Assume that p = 0, q = 0 or p + 1 ≥ 2q. Then as α→ ∞,

D(α) =

√
π

2q
αp+1−q/2 sin

(
αq − π

4

)
+ O(α−q). (2.11)

Proof. We put s = sin θ in (2.8). Then by integration by parts, we obtain

D(α) =
∫ π/2

0

1
cos2 θ

{sinr θ(G(α)− G(α sin θ))}dθ (2.12)

=
∫ π/2

0
(tan θ)′{sinr θ(G(α)− G(α sin θ))}dθ

= [tan θ{ sinr θ(G(α)− G(α sin θ))}]π/2
0

−
∫ π/2

0
tan θ{r sinr−1 θ cos θ(G(α)− G(α sin θ))− α cos θ sinr θg(α sin θ)}dθ

:= D0(α)− rD1(α) + αD2(α),

where

D0(α) := [tan θ{ sinr θ(G(α)− G(α sin θ))}]π/2
0 , (2.13)

D1(α) :=
∫ π/2

0
sinr θ(G(α)− G(α sin θ))dθ, (2.14)

D2(α) =
∫ π/2

0
sinr+1 θg(α sin θ)dθ. (2.15)

By l’Hôpital’s rule, we obtain

lim
θ→π/2

∫ α
α sin θ yp sin(yq)dy

cos θ
= lim

θ→π/2

α cos θ(α sin θ)p sin((α sin θ)q)

sin θ
= 0.

This implies that D0(α) = 0.
We put S(θ) :=

∫ θ
0 sinr xdx, sinq θ = sin x. By this and (2.14), we obtain

D1(α) =
∫ π/2

0
S′(θ)(G(α)− G(α sin θ))dθ (2.16)

= [S(θ)(G(α)− G(α sin θ))]π/2
0 + αp+1

∫ π/2

0
S(θ) cos θ sinp θ sin(αq sinq θ)dθ

= αp+1
∫ π/2

0
S(θ) cos θ sinp θ sin(αq sinq θ)dθ

=
αp+1

q

∫ π/2

0
S(sin−1(sin1/q x)) sin(p+1−q)/q x cos x sin(αq sin x)dx.

By direct calculation, we obtain

d
dx

S(sin−1(sin1/q x)) =
1
q

sin(r+1−q)/q x

√
1− sin2 x

1− sin2/q x
. (2.17)

Since (r + 1− q)/q ≥ 1, we see that sin(r+1−q)/q x ∈ C1[0, π/2]. Furthermore, by direct cal-

culation, we see that
√

1−sin2 x
1−sin2/q x

∈ C2[0, π/2]. Consequently, S(sin−1(sin1/q x)) ∈ C2[0, π/2].
Now we put x = π

2 (1− y) to obtain

D1(α) =
π

2q
αp+1

∫ 1

0
S
(

sin−1
(

cos1/q
(π

2
y
)))

(2.18)

× cos(p+1−q)/q
(π

2
y
)

sin
(π

2
y
)

sin
(

αq cos
(π

2
y
))

dy.
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Let f (y) = S
(
sin−1 (cos1/q (π

2 y
)))

cos(p+1−q)/q (π
2 y
)

sin
(

π
2 y
)

and µ = αq. If p = 0 and q = 1,
p + 1 = 2q or p + 1 ≥ 3q, then we directly apply Lemma 2.1 to (2.18) to obtain that D1(α) =

O(α−q). If 2q < p + 1 < 3q, then we are also able to apply Lemma 2.1 and obtain that
D1(α) = O(α−q), although cos(p+1−q)/q (π

2 y
)
∈ C1+ε[0, 1] with 0 < ε = (p + 1− 2q)/q < 1.

(cf. Appendix). Finally,

D2(α) = αp
∫ π/2

0
sinr+1+p θ sin(αq sinq θ)dθ (2.19)

=
π

2q
αp
∫ 1

0
cos(p+2+r−q)/q

(π

2
y
)√ 1− cos2

(
π
2 y
)

1− cos2/q
(

π
2 r
) sin

(
αq cos

(π

2
y
))

dy.

Let f (y) = cos(p+2+r−q)/q (π
2 y
)√ 1−cos2( π

2 y)
1−cos2/q( π

2 r)
and µ = αq. Then it is easy to see that f ∈ C2[0, 1]

and we are able to apply Lemma 2.1 to (2.19) and obtain

D2(α) =

√
π

2q
αp−q/2 sin

(
αq − π

4

)
+ O(α−q). (2.20)

By this, (2.12), (2.18), we obtain that

D(α) =

√
π

2q
αp+1−q/2 sin

(
αq − π

4

)
+ O(αp+1−q). (2.21)

Thus the proof is complete.

Proof of Theorem 1.4. (i) By (2.7), Theorem 1.3, Lemma 2.2 and Taylor expansion, we obtain

‖uα‖r
r =

2αr
√

λ

{
Ar −

√
π

2q
αp−1−q/2 sin

(
αq − π

4

)
+ O(αp−1−q)

}
(2.22)

= 2αr
{

Ar −
√

π

2q
αp−1−q/2 sin

(
αq − π

4

)
+ O(αp−1−q)

}

×
{

π2

4
− π3/2√

2q
αp−1−q/2 sin

(
αq − π

4

)
+ o(αp−1−q/2)

}−1/2

=
4
π

αr
{

Ar −
√

π

2q
αp−1−q/2 sin

(
αq − π

4

)
+ O(αp−1−q)

}
×
{

1 +

√
2

πq
αp−1−2/q sin

(
αq − π

4

)
+ o(αp−1−q/2)

}

=
4
π

αr

{
Ar +

(
Ar

√
2

qπ
−
√

π

2q

)
αp−1−q/2 sin

(
αq − π

4

)
+ o(αp−1−q/2)

}
.

This implies Theorem 1.4 (i). The proof of Theorem 1.4 (ii) is a direct consequence of Theo-
rem 1.3 and (2.22). Thus the proof is complete.

3 Appendix

The argument in this section, namely, (2.9) in Lemma 2.1 holds for 0 ≤ p < 1 and 0 < q ≤ 1,
is taken from [15]. We put m = 1/q. For 0 ≤ x ≤ 1, let

f (x) = f1(x) f2(x) := cos(p+2−q)/q
(π

2
x
)√ 1− cos2

(
π
2 x
)

1− cos2m
(

π
2 x
) . (3.1)
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The essential point of the proof of (2.9) in this case is to show Lemma 2.24 in [10] (see also
[10, Lemma 2.25]). Namely, as µ→ ∞,

Φ(µ) :=
∫ 1

0
f (x)e−iµx2

dx =
1
2

√
π

µ
e−i(π/4) f (0) + O

(
1
µ

)
. (3.2)

We put w(x) = ( f (x) − f (0))/x. Then we have f (x) = f (0) + xw(x). We know from [10,
Lemma 2.24] that

∫ 1

0
e−iµx2

dx =
1
2

√
π

µ
e−iπ/4 + O

(
1
µ

)
. (3.3)

Since f (0) =
√

q, by (3.3), we obtain

Φ(µ) = f (0)
∫ 1

0
e−iµx2

dx +
∫ 1

0
xe−iµx2

w(x)dx (3.4)

=
1
2

√
π

µ
e−iπ/4√q + O

(
1
µ

)
+
∫ 1

0
xe−iµx2

w(x)dx.

We put

Φ1(µ) :=
∫ 1

0
xe−iµx2

w(x)dx. (3.5)

Now we prove that w(x) ∈ C1[0, 1], because if it is proved, then by integration by parts, we
easily show that Φ1(µ) = O(1/µ) and our conclusion (3.2) follows immediately from (3.4) and
(3.5). To do this, there are several cases to consider. We note that, by direct calculation, we can
show that if q > 0, namely, m > 1, then f2(x) ∈ C2[0, 1].

Case 1. Assume that p = 0 and q = 1. Then we have f (x) = cos
(

π
2 x
)

and f ∈ C2[0, 1].

Case 2. Assume that 0 < q < 1 and p + 2 ≥ 3q. Then (p + 2− q)/q ≥ 2 and f1(x) ∈ C2[0, 1].
Consequently, f ∈ C2[0, 1] in this case.

Case 3. Assume that 0 < p < 1 and q = 1. Then f (x) = cosp+1 (π
2 x
)
6∈ C2[0, 1]. However,

by direct calculation, we can show that w(x) = ( f (x)− f (0))/x ∈ C1[0, 1]. It is reasonable,
because by Taylor expansion, for 0 < x � 1, we have

w(x) = − (p + 1)π2

8
x + O(x3). (3.6)

Case 4. Assume that 0 < q < 1 and p + 2 < 3q. Then 1 < m < 3/2 and m(p + 2− (1/m)) =

mp + 2(m− 1) + 1 := η + 1 > 1, 0 < η < 1 and f1(x) = cosη+1 x. Since f2 ∈ C2[0, 1], by the
consequence of Case 3 above, we find that w ∈ C1[0, 1].

Thus the proof is complete.
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