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1. Introduction

Consider the second-order Hamiltonian systems with impulsive effects















ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

∆u̇i(tj) = u̇i(t+j ) − u̇i(t−j ) = Iij(u
i(tj)), i = 1, 2, ..., N ; j = 1, 2, ...,m.

(1.1)

where T > 0, t0 = 0 < t1 < t2 < ... < tm < tm+1 = T, u(t) = (u1(t), u2(t), ..., uN (t)), Iij : R → R(i =

1, 2, ..., N ; j = 1, 2, ...,m.) are continuous and and F : [0, T ]× R
N → R satisfies the following assumption:

(A) F (t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for a.e. t ∈ [0, T ], and

there exist a ∈ C(R+,R+) and b ∈ L1([0, T ],R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
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for all x ∈ R
N and a.e. t ∈ [0, T ].

For the sake of convenience, in the sequel, we define A = {1, 2, ..., N}, B = {1, 2, ...,m}.

When Iij ≡ 0, (1.1) reduces to the second order Hamiltonian system, it has been proved that problem

(1.1) has at least one solution by the least action principle and the minimax methods (see [2, 7-9, 11, 12,

15-18, 20-22, 25, 26]). Many solvability conditions are given, such as the coercive condition (see [2]), the

periodicity condition (see [20]); the convexity condition (see [7]); the subadditive condition (see [15]); the

bounded condition (see [8]).

When the nonlinearity ∇F (t, x) is bounded sublinearly, that is, there exist f, g ∈ L1([0, T ], R
+) and

α ∈ [0, 1) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t) (1.2)

for all x ∈ R
N and a.e. t ∈ [0, T ], Tang [17] also proved the existence of solutions for problem (1.1) when

Iij ≡ 0 under the condition

lim
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt → +∞, (1.3)

or

lim
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt → −∞, (1.4)

which generalizes Mawhin-Willem’s results under bounded condition (see [8]).

When α = 1, condition (1.2) reduces to the linearly bounded gradient condition, in this case, Zhao and

Wu [21, 22] also proved the existence of solutions for problem (1.1) under the condition

∫ T

0

f(t)dt <
12

T
(1.5)

and (1.3) or (1.4) with α = 1.

For Iij 6≡ 0, i ∈ A, j ∈ B, problem (1.1) is an impulsive differential problem. Impulsive differential

equations arising from the real world describe the dynamics of processes in which sudden, discontinuous

jumps occur. For the background, theory and applications of impulsive differential equations, we refer the

readers to the monographs and some recent contributions as [1, 3, 4, 13, 20]. Some classical tools such as

fixed point theorems in cones [1, 5, 19], the method of lower and upper solutions [3, 23] have been widely

used to study impulsive differential equations.

Recently, the Dirichlet and periodic boundary conditions problems with impulses in the derivative are

studied by variational method. For some general and recent works on the theory of critical point theory and

variational methods, we refer the readers to [10, 14, 19, 27, 28]. It is a novel approach to apply variational

methods to the impulsive boundary value problem (IBVP for short).

In the recent paper [28], based upon the conditions (1.3) and (1.4), Zhou and Li studied the existence

of solutions for (1.1). However, there exists F neither satisfies (1.3) nor (1.4) in [28].

Let

F (t, x) = sin

(

2πt

T

)

|x|7/4 + (0.6T − t)|x|3/2.

It is easy to see that

|∇F (t, x)| ≤
7

4

∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

|x|3/4 +
3

2
|0.6T − t||x|1/2 ≤

7

4

(∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

+ ε

)

|x|3/4 +
T 3

ε2

for all x ∈ R
N and t ∈ [0, T ], where ε > 0. The above shows (1.2) holds with α = 3/4 and

f(t) =
7

4

(∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

+ ε

)

, g(t) =
T 3

ε2
.
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However, F (t, x) neither satisfies (1.3) nor (1.4). In fact,

|x|−2α

∫ T

0

F (t, x)dt = |x|−3/2

∫ T

0

[

sin

(

2πt

T

)

|x|7/4 + (0.6T − t)|x|3/2

]

dt = 0.1T 2.

The above example shows that it is valuable to improve (1.3) and (1.4) for the problem (1.1).

In the present paper, motivated by the above papers [15, 21, 22, 28], we study the existence of solutions

for problem (1.1) under the condition (1.2). We will use the saddle point theorem in critical theory to

generalize some results in [28]. In fact, we will establish some new existence criteria to guarantee that

system (1.1) has at least one solutions under more relaxed assumptions on F (t, x), which are independent

from (1.3) and more general than (1.4) in [17] and [28], to our best knowledge, it seems not to have been

considered in the literature.

2. Preliminaries

In this section, we recall some basic facts which will be used in the proofs of our main results. In order

to apply the critical point theory, we construct a variational structure. With this variational structure, we

can reduce the problem of finding solutions of (1.1) to that of seeking the critical points of a corresponding

functional.

Let H1
T be the Sobolev space

H1
T =

{

u : [0, T ] → R
N | u is absolutely continuous, u(0) = u(T ), u̇ ∈ L2([0, T ],RN)

}

,

it is a Hilbert space with the inner product

< u, v >=

∫ T

0

(u(t), v(t))dt +

∫ T

0

(u̇(t), v̇(t))dt, ∀ u, v ∈ H1
T ,

the corresponding norm is defined by

‖u‖H1
T

=

(

∫ T

0

[

|u̇(t)|2 + |u(t)|2
]

dt

)
1
2

for u ∈ H1
T .

Let us recall that

‖u‖L2 =

(

∫ T

0

|u(t)|2dt

)
1
2

and ‖u‖∞ = max
t∈[0,T ]

|u(t)|.

Definition 2.1.[28] We say that a function u ∈ H1
T is a weak solution of problem (1.1) if the identity

∫ T

0

(u̇(t), v̇(t))dt+

m
∑

j=1

N
∑

i=1

Iij(u
i(tj))v

i(tj)) = −

∫ T

0

(∇F (t, u(t)), v(t))dt

holds for any v ∈ H1
T .

The corresponding functional ϕ on H1
T given by

ϕ(u) =
1

2

∫ T

0

|u̇(t)|2dt+

∫ T

0

F (t, u(t))dt +

m
∑

j=1

N
∑

i=1

∫ ui(tj)

0

Iij(t)dt

= ψ(u) + φ(u) (2.1)
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where

ψ(u) =
1

2

∫ T

0

|u̇(t)|2dt+

∫ T

0

F (t, u(t))dt and φ(u) =
m
∑

j=1

N
∑

i=1

∫ ui(tj)

0

Iij(t)dt.

It follows from assumption (A) that ψ ∈ C1(H1
T ,R). By the continuity of Iij , i ∈ A, j ∈ B, one has that

φ ∈ C1(H1
T ,R). Thus, ϕ ∈ C1(H1

T ,R). For any v ∈ H1
T , we have

< ϕ′(u), v >=

∫ T

0

(u̇(t), v̇(t))dt +

m
∑

j=1

N
∑

i=1

Iij(u
i(tj)v

i(tj)) +

∫ T

0

(∇F (t, u(t)), v(t))dt. (2.2)

By Definition 2.1, the weak solutions of problem (1.1) correspond to the critical points of ϕ.

To prove our main results, we need the following definition and lemma.

Definition 2.2.[8] Let X be a real Banach space and I ∈ C1(X,R). I is said to satisfy the (PS) condition

on X if any sequence {xn} ⊆ X for which I(xn) is bounded and I ′(xn) → 0 as n→ ∞ possesses a convergent

subsequence in X .

Lemma 2.1.[8] For u ∈ H1
T , let ū = 1

T

∫ T

0
u(t)dt and ũ(t) = u(t) − ū. Then one has

‖ũ‖2
∞ ≤

T

12

∫ T

0

|u̇(t)|2dt (Sobolev′s inequality), (2.3)

and

‖ũ‖2
L2 ≤

T 2

4π2

∫ T

0

|u̇(t)|2dt (Writinger′s inequality). (2.4)

3. Main results and Proofs

Theorem 3.1. Suppose that (A) and (1.2) hold, and the following conditions are satisfied:

(I1) There exist aij , bij > 0 and βij ∈ (0, 1), γ ∈ [0, α) such that

|Iij(t)| ≤ aij + bij |t|
γβij , for every t ∈ R, i ∈ A, j ∈ B; (3.1)

(I2) For any i ∈ A, j ∈ B,

Iij(t)t ≤ 0, ∀ t ∈ R; (3.2)

(F1)

lim sup
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt < −
T

8

(

∫ T

0

f(t)dt

)2

. (3.3)

Then problem (1.1) has at least one weak solution in H1
T .

Theorem 3.2. Suppose that (A), (1.5), (I2) hold, and the following conditions are satisfied:

(F2) There exist f, g ∈ L1([0, T ], R
+) such that

|∇F (t, x)| ≤ f(t)|x| + g(t) (3.4)
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for all x ∈ R
N and a.e. t ∈ [0, T ];

(I3) There exist aij , bij > 0 and βij ∈ (0, 1), γ ∈ (0, 1) such that

|Iij(t)| ≤ aij + bij |t|
γβij , for every t ∈ R, i ∈ A, j ∈ B; (3.5)

(F3)

lim sup
|x|→+∞

|x|−2

∫ T

0

F (t, x)dt < −
3T

2
(

12 − T
∫ T

0
f(t)dt

)

(

∫ T

0

f(t)dt

)2

. (3.6)

Then problem (1.1) has at least one weak solution in H1
T .

Throughout this paper, for the sake of convenience, we denote

M1 =

∫ T

0

f(t)dt, M2 =

∫ T

0

g(t)dt. (3.7)

a = max
i∈A,j∈B

aij , b = max
i∈A,j∈B

bij . (3.8)

Let δ1, δ2, δ3, δ
′
1, δ

′
2, δ

′
3 denote the positive number and fix

δ1 + δ2 + δ3 <
1

2
, δ′1 + δ′2 + δ′3 <

1

2
+
TM1

24
. (3.9)

Let

G(δ1, δ2, δ3) =
(1 + δ1)

(1
2 − δ1 − δ2 − δ3)

,

when δ1, δ2, δ3 are small enough, it is easy to see that G(δ1, δ2, δ3) is monotone increasing for every variable.

Furthermore, we have

lim
(δ1,δ2,δ3)→(0+,0+,0+)

G(δ1, δ2, δ3) = 2. (3.10)

Let

H(δ′1, δ
′
2, δ

′
3) =

(1 + TM1

24 + δ′1)

(1
2 − TM1

24 − δ′1 − δ′2 − δ′3)
,

when δ′1, δ
′
2, δ

′
3 are small enough, noting that M1 <

T
12 (see (1.5) and (3.7)), it is easy to see that H(δ′1, δ

′
2, δ

′
3)

is monotone increasing for every variable. Furthermore, we have

lim
(δ′

1
, δ′

2
, δ′

3
)→(0+, 0+, 0+)

H(δ′1, δ
′
2, δ

′
3) =

24 + TM1

12 − TM1
. (3.11)

Now, we can prove our results.

Proof of Theorem 3.1. First, we prove that ϕ satisfies the (PS) condition. Suppose that {un} ⊂ H1
T is

a (PS) sequence of ϕ, that is {ϕ(un)} is bounded and ϕ′(un) → 0 as n → ∞ . By (F1), we can choose an

a1 > T/12 such that

lim sup
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt < −
3

2
a1M

2
1 . (3.12)
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It follows from (1.2) and Lemma 2.1 that

∣

∣

∣

∣

∣

∫ T

0

(F (t, un(t)) − F (t, ūn))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F (t, ūn + sũn(t)), ũn(t))dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

f(t) |ūn + sũn(t)|
α
|ũn(t)| dsdt+

∫ T

0

∫ 1

0

g(t) |ũn(t)| dsdt

≤

∫ T

0

f(t) (|ūn|
α

+ |ũn(t)|
α
) |ũn(t)| dt+

∫ T

0

g(t) |ũn(t)| dt

≤ (|ūn|
α
‖ũn‖∞ + ‖ũn‖

α+1
∞ )

∫ T

0

f(t)dt+ ‖ũn‖∞

∫ T

0

g(t)dt

= M1|ūn|
α‖ũn‖∞ +M1‖ũn‖

α+1
∞ +M2‖ũn‖∞

≤
1

2a1
‖ũn‖

2
∞ +

a1

2
M2

1 |ūn|
2α +M1‖ũn‖

α+1
∞ +M2‖ũn‖∞

≤
T

24a1
‖u̇n‖

2
L2 +

a1

2
M2

1 |ūn|
2α +

(

T

12

)(α+1)/2

M1‖u̇n‖
α+1
L2 +

(

T

12

)1/2

M2‖u̇n‖L2

≤
1

2
‖u̇n‖

2
L2 +

a1

2
M2

1 |ūn|
2α +

(

T

12

)(α+1)/2

M1‖u̇n‖
α+1
L2 +

(

T

12

)1/2

M2‖u̇n‖L2 ,

which means that
∣

∣

∣

∣

∣

∫ T

0

(∇F (t, un(t)), ũn(t))dt

∣

∣

∣

∣

∣

≤

(

1

2
+ δ1

)

‖u̇n‖
2
L2 +

a1

2
M2

1 |ūn|
2α +M3, (3.13)

where M3 is a positive constant dependent of the arbitrary positive number δ1 which satisfies (3.9).

By (I1) and Lemma 2.1, we have

∣

∣

∣

∣

∣

∣

m
∑

j=1

N
∑

i=1

Iij(u
i
n(t))ũi

n(t)

∣

∣

∣

∣

∣

∣

≤

m
∑

j=1

N
∑

i=1

(aij + bij |u
i
n(t)|γβij )|ũi

n(t)|

≤

m
∑

j=1

N
∑

i=1

(aij + bij |ū
i
n(t) + ũi

n(t)|γβij )|ũi
n(t)|

≤ amN‖ũn‖∞ + b
m
∑

j=1

N
∑

i=1

2(|ūn|
γβij + ‖ũn‖

γβij
∞ )‖ũn‖∞

≤ amN

(

T

12

)1/2

‖u̇n‖L2 + b

m
∑

j=1

N
∑

i=1

βij |ūn|
2γ

+2b
m
∑

j=1

N
∑

i=1

2 − βij

2
‖ũn‖

2
2−βij
∞ + 2b

m
∑

j=1

N
∑

i=1

‖ũn‖
γβij+1
∞

≤ amN

(

T

12

)1/2

‖u̇n‖L2 + b

m
∑

j=1

N
∑

i=1

βij |ūn|
2γ

+b

m
∑

j=1

N
∑

i=1

(2 − βij)

(

T

12

∫ T

0

|u̇n|
2dt

)
1

2−βij

+ 2b

m
∑

j=1

N
∑

i=1

(

T

12

∫ T

0

|u̇n|
2dt

)

γβij+1

2

,
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which means that
∣

∣

∣

∣

∣

∣

m
∑

j=1

N
∑

i=1

Iij(u
i
n(t))ũi

n(t)

∣

∣

∣

∣

∣

∣

≤ δ2‖u̇n‖
2
L2 + bmN |ūn|

2γ +M4 (3.14)

for all un, where M4 is a positive constant dependent of the arbitrary positive number δ2 which satisfies

(3.9).

Since limn→∞ ϕ′(xn) = 0, we have by (3.13) and (3.14)

‖ũn‖ ≥ |〈ϕ′(un), ũn〉|

=

∣

∣

∣

∣

∣

∣

‖u̇n‖
2
L2 +

∫ T

0

(∇F (t, un(t)), ũn(t))dt +

m
∑

j=1

N
∑

i=1

Iij(u
i
n(t))ũi

n(t)

∣

∣

∣

∣

∣

∣

≥

(

1

2
− δ1

)

‖u̇n‖
2
L2 −

a1

2
M2

1 |ūn|
2α − δ2‖u̇n‖

2
L2 − bmN |ūn|

2γ −M4. (3.15)

On the other hand, by (2.4), we have

‖ũn‖ ≤
(4π2 + T 2)

1/2

2π
‖u̇n‖L2 ≤ δ3‖u̇n‖

2
L2 +M5, (3.16)

where M5 is a positive constant dependent of the arbitrary positive number δ3 which satisfies (3.9).

It follows from (3.9), (3.15) and (3.16) that there exists M6 > 0 dependent of δ1, δ2, δ3 such that

‖u̇n‖
2
L2 ≤

a1M
2
1

2
(

1
2 − δ1 − δ2 − δ3

) |ūn|
2α +

bmN
(

1
2 − δ1 − δ2 − δ3

) |ūn|
2γ +M6. (3.17)

Combining with (I2), (3.13) and (3.17), we have

ϕ(un) =
1

2
‖u̇n‖

2
L2 +

∫ T

0

[F (t, un(t)) − F (t, ūn)] dt+

∫ T

0

F (t, ūn)dt+ φ(un)

≤ (1 + δ1) ‖u̇n‖
2
L2 +

a1

2
M2

1 |ūn|
2α +

∫ T

0

F (t, ūn)dt+M3

≤

[

(1 + δ1)a1M
2
1

2(1
2 − δ1 − δ2 − δ3)

+
a1

2
M2

1 + |ūn|
−2α

∫ T

0

F (t, ūn)dt

]

|ūn|
2α

+
bmN

(

1
2 − δ1 − δ2 − δ3

) |ūn|
2γ +M7 (3.18)

for some positive constant M7 dependent of δ1, δ2 and δ3.

We claim that {|ūn|} is bounded. In fact, if {|ūn|} is unbounded, we may assume that, going to a

subsequence if necessary, |ūn| → +∞, n→ +∞. It follows from (F1), (3.9), (3.10), (3.12) and (3.18) that

ϕ(un) → −∞, n→ ∞.

which contradicts the boundedness of {ϕ(un)} (see (PS) condition). Hence {|ūn|} is bounded. Then, it

follows from (3.16), (3.17) and the boundedness of {|ūn|} that {un} is bounded in H1
T , going if necessary

to a subsequence, we can assume that

un ⇀ u0 in H1
T , (3.19)

by Proposition 1.2 in [8], we have

un → u0 in C([0, T ],RN). (3.20)
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It follows from (2.2) that

〈ϕ′(un) − ϕ′(u0), un − u0〉

=

∫ T

0

|u̇n(t) − u̇(t)|2dt

+

∫ T

0

(∇F (t, un(t)) −∇F (t, u0(t)), un(t) − u0(t))dt

+

m
∑

j=1

N
∑

i=1

(Iij(u
i
n(tj)) − Iij(u

i(tj)))(u
i
n(tj)) − ui(tj))). (3.21)

From (3.19)-(3.21), (A) and the continuity of Iij , it follows that un → u in H1
T . Thus, ϕ satisfies the (PS)

condition.

Let H̃1
T = {u ∈ H1

T | ū = 0}. Then H1
T = H̃1

T ⊕ R
N .

In order to use the saddle point theorem ([12], Theorem 4.6), we only need to verify the following

conditions:

(A1) ϕ(x) → −∞ as |x| → ∞ in R
N .

(A2) ϕ(u) → +∞ as ‖u‖ → ∞ in H̃1
T .

In fact, by (F1), we get

∫ T

0

F (t, x)dt → −∞ as |x| → ∞ in R
N . (3.22)

From (I2) and (3.22), we have

ϕ(x) =

∫ T

0

F (t, x)dt+ φ(x) → −∞ as |x| → ∞ in R
N .

Thus, (A1) is verified.

Next, for all u ∈ H̃1
T , by (1.2) and Sobolev’s inequality, we have

∣

∣

∣

∣

∣

∫ T

0

[F (t, u(t)) − F (t, 0)]dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F (t, su(t)), u(t))dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

f(t)|u(t)|α+1dt+

∫ T

0

g(t)|u(t)|dt

≤ M1‖u‖
α+1
∞ +M2‖u‖∞

≤

(

T

12

)(α+1)/2

M1‖u̇‖
α+1
L2 +

(

T

12

)1/2

M2‖u̇‖L2 . (3.23)
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It derives from (I1) that

|φ(u)| = |

m
∑

j=1

N
∑

i=1

∫ ui(tj)

0

Iij(t)dt|

≤

m
∑

j=1

N
∑

i=1

∫ ui(tj)

0

(aij + bij |t|
γβij )dt

≤ amN‖u‖∞ + b

m
∑

j=1

N
∑

i=1

‖u‖γβij+1
∞

≤ amN

(

T

12

)1/2

‖u̇‖L2 + b

m
∑

j=1

N
∑

i=1

(

T

12

)

γβij+1

2

‖u̇‖
γβij+1

2

L2 . (3.24)

It follows from (2.3), (3.23) and (3.24) that

ϕ(u) =
1

2
‖u̇‖2

L2 +

∫ T

0

[F (t, u(t)) − F (t, 0)]dt+

∫ T

0

F (t, 0)dt+ φ(u)

≥
1

2
‖u̇‖2

L2 −

(

T

12

)(α+1)/2

M1‖u̇‖
α+1
L2 −

(

T

12

)1/2

M2‖u̇‖L2 +

∫ T

0

F (t, 0)dt

−amN

(

T

12

)1/2

‖u̇‖L2 − b

m
∑

j=1

N
∑

i=1

(

T

12

)

γβij+1

2

‖u̇‖
γβij+1

2

L2 (3.25)

for all u ∈ H̃1
T . By (2.4), ‖u‖ → ∞ in H̃1

T if and only if ‖u̇‖L2 → ∞. So we obtain ϕ(u) → +∞ as ‖u‖ → ∞

in H̃1
T from (3.25), i.e. (A2) is verified. The proof of Theorem 3.1 is complete.

Proof of Theorem 3.2. Firstly, we prove that ϕ satisfies the (PS) condition. Suppose that {un} ⊂ H1
T

is a (PS) sequence of ϕ, that is {ϕ(un)} is bounded and ϕ′(un) → 0 as n→ ∞. By (F3) and (1.5), we can

choose an a2 >
T
12 such that

lim sup
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt < −
18a2

12 − TM1
M2

1 . (3.26)
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It follows from (F2) and Lemma 2.1 that

∣

∣

∣

∣

∣

∫ T

0

(F (t, un(t)) − F (t, ūn))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F (t, ūn + sũ(t)), ũn(t))dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

f(t) (|ūn| + s|ũn(t)|) |ũn(t)| dsdt+

∫ T

0

∫ 1

0

g(t) |ũn(t)| dsdt

=

∫ T

0

f(t)

(

|ūn| +
1

2
|ũn(t)|

)

|ũn(t)| dt+

∫ T

0

g(t) |ũn(t)| dt

≤

(

|ūn| ‖ũn‖∞ +
1

2
‖ũn‖

2
∞

)
∫ T

0

f(t)dt+ ‖ũn‖∞

∫ T

0

g(t)dt

= M1|ūn|‖ũ‖∞ +
M1

2
‖ũn‖

2
∞ +M2‖ũn‖∞

≤
1

2a2
‖ũn‖

2
∞ +

a2

2
M2

1 |ūn|
2 +

M1

2
‖ũn‖

2
∞ +M2‖ũn‖∞

≤

(

T

24a2
+
TM1

24

)

‖u̇n‖
2
L2 +

a2

2
M2

1 |ūn|
2 +

(

T

12

)1/2

M2‖u̇n‖L2

≤

(

1

2
+
TM1

24

)

‖u̇n‖
2
L2 +

a2

2
M2

1 |ūn|
2 +

(

T

12

)1/2

M2‖u̇n‖L2,

which means that
∣

∣

∣

∣

∣

∫ T

0

(∇F (t, un(t)), ũn(t))dt

∣

∣

∣

∣

∣

≤

(

1

2
+
TM1

24
+ δ′1

)

‖u̇‖2
L2 +

a2

2
M2

1 |ūn|
2 +M ′

3, (3.27)

where M ′
3 is a positive constant dependent of the arbitrary positive number δ′1 which satisfies (3.9).

By (1.5), (2.2) and (3.27), we have

‖ũn‖ ≥ |〈ϕ′(un), ũn〉|

=

∣

∣

∣

∣

∣

∣

‖u̇n‖
2
L2 +

∫ T

0

(∇F (t, un(t)), ũn(t))dt +

m
∑

j=1

N
∑

i=1

Iij(u
i
n(t))ũi

n(t)

∣

∣

∣

∣

∣

∣

≥

(

1

2
−
TM1

24
− δ′1

)

‖u̇n‖
2
L2 −

a2

2
M2

1 |ūn|
2

−δ′2‖u̇n‖
2
L2 − bmN |ūn|

2γ −M ′
4, (3.28)

where M ′
4 is a positive constant dependent of the arbitrary positive number δ′2 which satisfies (3.9).

On the other hand, by (2.4), we have

‖ũn‖ ≤
(4π2 + T 2)

1/2

2π
‖u̇n‖L2 ≤ δ′3‖u̇n‖

2
L2 +M ′

5, (3.29)

where M ′
5 is a positive constant dependent of the arbitrary positive number δ′3 which satisfies (3.9).

It follows from (3.28) and (3.29) that there exists M ′
6 > 0 dependent of δ′1, δ

′
2 and δ′3 such that

‖u̇n‖
2
L2 ≤

a2M
2
1

2
(

1
2 − TM1

24 − δ′1 − δ′2 − δ′3
) |ūn|

2 +
bmN

(

1
2 − TM1

24 − δ′1 − δ′2 − δ′3
) |ūn|

2γ +M ′
6. (3.30)

EJQTDE, 2011 No. 78, p. 10



In a way similar to the proof of Theorem 3.1, we have

∣

∣

∣

∣

∣

∫ T

0

(F (t, un(t)) − F (t, ūn))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F (t, ūn + sũn(t)), ũn(t))dsdt

∣

∣

∣

∣

∣

≤

(

1

2
+ δ′1 +

TM1

24

)

‖u̇n‖
2
L2 +

a2

2
M2

1 |ūn|
2 +M ′

3. (3.31)

By (I2) and (3.31), we have

ϕ(un) =
1

2
‖u̇n‖

2
L2 +

∫ T

0

[F (t, un(t)) − F (t, ūn)] dt+

∫ T

0

F (t, ūn)dt+ φ(u)

≤

(

1 +
TM1

24
+ δ′1

)

‖u̇n‖
2
L2 +

a2

2
M2

1 |ūn|
2 +

∫ T

0

F (t, ūn)dt+M ′
3

≤

[

(1 + TM1

24 + δ′1)a2M
2
1

2(1
2 − TM1

24 − δ′1 − δ′2 − δ′3)
+
a2M

2
1

2
+

∫ T

0

F (t, ūn)dt

]

|ūn|
2

+
bmN

(

1
2 − TM1

24 − δ′1 − δ′2 − δ′3
) |ūn|

2γ +M ′
7 (3.32)

for some positive constant M ′
7 dependent of δ′1, δ

′
2 and δ′3.

We claim that {|ūn|} is bounded. In fact, if {|ūn|} is unbounded, we may assume that, going to a

subsequence if necessary, |ūn| → +∞, n→ +∞.

It follows from (F3), (1.5), (3.26) and (3.32) that

ϕ(un) → −∞, n→ ∞,

which contradicts the boundedness of {ϕ(un)} (see (PS) condition). Hence {|ūn|} is bounded. Arguing then

as in the proof in Theorem 3.1, we conclude that the (PS) condition is satisfied.

Similar to the proof of Theorem 3.1, we only need to verify (A1) and (A2). It is easy to verify (A1) by

(3.6). In what follows, we verify that (A2) also holds . For all u ∈ H̃1
T , by (3.4) and Sobolev’s inequality,

we have
∣

∣

∣

∣

∣

∫ T

0

[F (t, u(t)) − F (t, 0)]dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(∇F (t, su(t)), u(t))dsdt

∣

∣

∣

∣

∣

≤
1

2

∫ T

0

f(t)|u(t)|2dt+

∫ T

0

g(t)|u(t)|dt

≤
M1

2
‖u‖2

∞ +M2‖u‖∞

≤
TM1

24
‖u̇‖2

L2 +

(

T

12

)1/2

M2‖u̇‖L2 . (3.33)

Similar to the proof in (3.24), by (I3), we have

|φ(u)| ≤ amN

(

T

12

)1/2

‖u̇‖L2 + b

m
∑

j=1

N
∑

i=1

(

T

12

)

γβij+1

2

‖u̇‖
γβij+1

2

L2 . (3.34)
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It follows from (2.1), (3.5) and (3.34) that

ϕ(u) =
1

2
‖u̇‖2

L2 +

∫ T

0

[F (t, u(t)) − F (t, 0)]dt+

∫ T

0

F (t, 0)dt+ φ(u)

≥
12 − TM1

24
‖u̇‖2

L2 −

(

T

12

)1/2

M2‖u̇‖L2 +

∫ T

0

F (t, 0)dt

−amN

(

T

12

)1/2

‖u̇‖L2 − b

m
∑

j=1

N
∑

i=1

(

T

12

)

γβij+1

2

‖u̇‖
γβij+1

2

L2 (3.35)

for all u ∈ H̃1
T . By Wirtinger’s inequality (see (2.4)), ‖u‖ → ∞ in H̃1

T if and only if ‖u̇‖L2 → ∞. So we

obtain ϕ(u) → +∞ as ‖u‖ → ∞ in H̃1
T from (1.5) and (3.35), i.e. (A2) is verified. The proof of Theorem

3.2 is complete.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. Let T = 0.0003, m = 5, t1 = 0.0002, consider the second-order Hamiltonian systems with

impulsive effects















ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) − u(0.0003) = u̇(0) − u̇(0.0003) = 0,

∆u̇i(0.0002) = u̇i(0.0002+) − u̇i(0.0002−) = Ii1(u
i(0.0002)), i = 1, 2, ..., N ; j = 1, 2, 3, 4, 5.

(4.1)

Let

F (t, x) = sin

(

2πt

T

)

|x|7/4 + (0.4T − t)|x|3/2 + (h(t), x), Ii1 = −t
1
7 , (4.2)

where h ∈ L1([0, T ],RN), γ = βij = 1√
7
. It is easy to see that

|∇F (t, x)| ≤
7

4

∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

|x|3/4 +
3

2
|0.4T − t||x|1/2 + |h(t)|

≤
7

4

(∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

+ ε

)

|x|3/4 +
T 3

ε2
+ |h(t)|

for all x ∈ R
N and a.e. t ∈ [0, T ], where ε > 0. The above shows (1.2) holds with α = 3/4 and

f(t) =
7

4

(∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

+ ε

)

, g(t) =
T 3

ε2
+ |h(t)|. (4.3)

However, F (t, x) neither satisfies (1.3) nor (1.4). In fact,

|x|−2α

∫ T

0

F (t, x)dt = |x|−3/2

∫ T

0

[

sin

(

2πt

T

)

|x|7/4 + (0.4T − t)|x|3/2 + (h(t), x)

]

dt

= −0.1T 2 +

(

∫ T

0

h(t)dt, |x|−3/2x

)

.

On the other hand, we have

T

8

(

∫ T

0

f(t)dt

)2

=
T

8

[

7

4

∫ T

0

(∣

∣

∣

∣

sin

(

2πt

T

)∣

∣

∣

∣

+ ε

)

dt

]2

=
49T 3

128

(

2

π
+ ε

)2

.
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We can choose ε sufficient small such that

lim sup
|x|→+∞

|x|−2α

∫ T

0

F (t, x)dt = −0.1T 2 < −
49T 3

128

(

2

π
+ ε

)2

= −
T

8

(

∫ T

0

f(t)dt

)2

.

This shows that (F1) holds. By Theorem 3.1, problem (1.1) has at least one solution.

Example 4.2. Let T = 1,m = 3, t1 = 0.5, consider the second-order Hamiltonian systems with impulsive

effects














ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) − u(1) = u̇(0) − u̇(1) = 0,

∆u̇i(0.5) = u̇i(0.5+) − u̇i(0.5−) = Iij(u
i(0.5)), i = 1, 2, ..., N ; j = 1, 2, 3.

(4.4)

Let

F (t, x) = (0.4T − t)|x|2 + t|x|3/2 + (h(t), x), Ii1 = −t
1
9 , (4.5)

where h ∈ L1([0, T ],RN), γ = βij = 1
3 . It is easy to see that

|∇F (t, x)| ≤ 2|0.4T − t||x| +
3t

2
|x|1/2 + |h(t)|

≤ 2 (|0.4T − t| + ε) |x| +
T 2

2ε
+ |h(t)|

for all x ∈ R
N and a.e. t ∈ [0, T ], where ε > 0. The above shows (3.4) holds with

f(t) = 2 (|0.4T − t| + ε) , g(t) =
T 2

2ε
+ |h(t)|. (4.6)

Observe that

|x|−2

∫ T

0

F (t, x)dt = |x|−2

∫ T

0

[

(0.4T − t)|x|2 + t|x|3/2 + (h(t), x)
]

dt

= −0.1T 2 + 0.5T 2|x|−1/2 +

(

∫ T

0

h(t)dt, |x|−2x

)

.

On the other hand, we have

∫ T

0

f(t)dt = 2

∫ T

0

(|0.4T − t| + ε) dt = 0.52T 2 + 2εT,

(

∫ T

0

f(t)dt

)2

= (0.52T 2 + 2εT )2 = 0.2704T 4 + 2.08εT 3 + 4ε2T 2.

We choose ε > 0 sufficient small such that

∫ T

0

f(t)dt = 0.52T 2 + 2εT <
12

T

and

lim sup
|x|→+∞

|x|−2

∫ T

0

F (t, x)dt = −0.1T 2

< −
3T

2
(

12 − T
∫ T

0
f(t)dt

)

(

∫ T

0

f(t)dt

)2

These show that (F3) holds. By Theorem 3.2, problem (1.1) has at least one solution.
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431-453.

[10] J. J. Nieto, D. O’Regan, Variational approach to impulsive differential equations, Nonlinear Anal. RWA

10 (2009) 680-690.

[11] P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33

(1980) 609-633.

[12] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,

in: CBMS Regional Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.

[13] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific Publishing Co.

Pte. Ltd, Singapore, 1995.

[14] J. T. Sun, H. B. Chen, L. Yang, The existence and multiplicity of solutions for an impulsive differential

equation with two parameters via a variational method, Nonlinear Anal. 73 (2010) 440-449.

EJQTDE, 2011 No. 78, p. 14



[15] C. L. Tang, Periodic solutions of nonautonomous second order systems with γ -quasisubadditive po-

tential, J. Math. Anal. Appl. 189 (1995) 671-675.

[16] C. L. Tang, Periodic solutions of nonautonomous second order systems, J. Math. Anal. Appl. 202 (1996)

465-469.

[17] C. L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity,

Proc. Amer. Math. Soc. 126 (1998) 3263-3270.

[18] C. L. Tang, X. P. Wu, Periodic solutions for second order systems with not uniformly coercive potential,

J. Math. Anal. Appl. 259 (2001) 386-397.

[19] Y. Tian, W. G. Ge, Applications of variational methods to boundary value problem for impulsive

differential equations, Proc. Edinburgh Math. Soc. 51 (2008) 509-527.
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