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Abstract. For a self-adjoint boundary value problem for a functional-differential equa-
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1 The problem, notation, results

1.1 The problem

If the length of the interval [a, b] is less than the distance between the zeros of solutions of an
ordinary second-order differential equation, then the Green function and the corresponding
quadratic functional are positive. Due to their importance, these properties have been gener-
alized many times. The case of a self-adjoint operator is interesting because of its applications
in physics. A second order self-adjoint functional differential operator with Sturm–Liouville
boundary conditions was considered in [12, 13]. In this paper, we establish the equivalence of
the analogue of the Jacobi condition and the analogs of the statements about the differential
and integral inequality and positive definiteness of the quadratic functional for a two-term
functional differential equation.

Let the operator L be defined by (:= means ‘is equal to’ by definition)

Lu(x) :=
1

ρ(x)

(
(−1)mu(2m) −

∫ l

0
u(s)q(x, ds)

)
, x ∈ [0, l] (m ≥ 1). (1.1)

(ρ(x) is a fixed positive weight function). Under boundary conditions

u(k)(0) = 0, k = 0, . . . , m− 1, (1.2)

u(k)(l) = 0, k = m, . . . , 2m− 1, (1.3)
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operator L will be self-adjoint. These conditions are a special case of the boundary conditions
considered in [6] and [11]. The study of such boundary conditions is related to the oscillatory
property of solutions (see, for example, [7]). Let

L0u(x) :=
1

ρ(x)
(−1)mu(2m), (1.4)

Qu(x) :=
1

ρ(x)

∫ l

0
u(s)q(x, ds). (1.5)

Then L = L0 − Q. Let’s call L0 the main part of the operator L. Below L0 and Q will be
defined in a special space.

1.2 Notation and assumptions

1.2.1 Basic notation and assumptions

In (1.1) q(x, ·) is a measure depending on the parameter x. Instead of q(x, ds) it can be
written dsq(x, s), considering q(x, ·) as usual non-decreasing function. If

∫ l
0 u(s)q(x, ds) =

∑∞
i=1 qi(x)u(hi(x)), we have an equation with deviating argument. Let us introduce the fol-

lowing notation, definitions and assumptions.

• BVP is ‘boundary value problem’, := means equal by definition, 6≡ means not equivalent
for measurable functions.

• ∆ := [0, l].

• [u, v], 〈u, v〉, ( f , g) and Q(u, v) are bilinear forms defined by the equalities

[u, v] :=
∫ l

0
u(m)v(m) dx, (1.6)

〈u, v〉 := [u, v]−Q(u, v), (1.7)

( f , g) :=
∫ l

0
f (x)g(x)ρ(x) dx, (1.8)

Q(u, v) :=
∫

∆×∆
u(s)v(x) dξ. (1.9)

In (1.9) the measure ξ is defined on ∆× ∆ and it is symmetric (see below).

• L2(∆, ρ) is the space of Lebesgue quadratic integrable on ∆ with positive weight ρ(x)
and scalar product (1.8). L2(∆) := L2(∆, 1). Assume that

∫ l
0 ρ(x) dx < ∞.

• q(x, ·) is non-decreasing on ∆ for almost all x ∈ ∆, for any s ∈ ∆ the function q(·, s) is
measurable on ∆, q(x) := q(x, l)− q(x, 0) = q(x, ∆). Assume that

q
ρ
∈ L2(∆, ρ). (1.10)

ξ(x, y) :=
∫ x

0 q(t, y) dt is assumed to be symmetric: ξ(y, x) = ξ(x, y). It defines a sym-
metric measure (ξ(e× g) = ξ(g× e)) on ∆× ∆ denoted by the same letter.

• ACk (k ≥ 0) is the set of functions u that have absolutely continuous on [0, l] derivative
u(k), u(0) := u.



On monotone solutions for a functional-differential equation 3

• W is the Hilbert space (Lemma 3.5) of functions in ACm−1, satisfying the conditions (1.2)
and [u, u] < ∞, with scalar product [u, v].

• R(A) is the range of an operator A.

• r(A) is the spectral radius of an operator A.

• T : W → L2(∆, ρ) is the operator defined by Tu(x) := u(x), x ∈ ∆. The definition is
correct and T is continuous (Lemma 3.6). T∗ is the adjoint operator to T.

• DL0 :=
{

u ∈ AC2m−1 : ρ−1u(2m) ∈ L2(∆, ρ)
}

is domain of L0. However, note that from
ρ−1u(2m) ∈ L2(∆, ρ) it follows u ∈ AC2m−1, since

∫
∆ ρ(x) dx < ∞.

• λ0 is minimal eigenvalue of the operator L (λ is an eigenvalue, if Lu = λTu for some
u 6= 0).

• λ0(L0) is minimal eigenvalue of the operator L0.

• B is the boundary conditions operator defined on the set AC2m−1 by

B(u) :=
(

u(0), . . . , u(m−1)(0), u(m)(l),−u(m+1)(l), . . . , (−1)m−1u(2m−1)(l)
)

.

• Uα is the solution to the problem L0u = 0, B(u) = α (it is a polynomial of the degree
not higher than 2m− 1).

• Cm ⊂ DL0 is the set of functions satisfying

u(k) ≥ 0 (k = 0, . . . , m− 1), (−1)k−mu(k) ≥ 0 (k = m, . . . , 2m− 1). (1.11)

It is easy to see that Cm is a cone*.

• G0 is the Green operator of the problem

L0u = z, B(u) = α (1.12)

It means (Lemma 3.1) that the solution of this problem for any z ∈ L2(∆, ρ) has the form

u = G0z + Uα. (1.13)

• G is the Green operator of the problem Lu = f , (1.2), (1.3), that is, u = G f , if the problem
is uniquely solvable.

1.2.2 The Green functions

The operator G0 is integral operator (this can be verified directly)

G0z(x) =
∫ l

0
G0(x, s)z(s)ρ(s) ds,

where

G0(x, s) =
∫ min{x,s}

0

(x− t)m−1(s− t)m−1

((m− 1)!)2 dt, (1.14)

moreover, the Green function is symmetric: G0(x, s) = G0(s, x). It is easy to verify the follow-
ing lemma.

*a closed convex set C of a Banach space is called cone if from x ∈ C, x 6= 0 it follows αx ∈ C for α ≥ 0 and
−x /∈ C (see, for example [8])
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Lemma 1.1. If z ≥ 0, α ≥ 0, the solution to the problem (1.12) belongs to the cone Cm.

The Green operator G has integral representation (see for example [2])

u(x) =
∫ l

0
G(x, s) f (s)ρ(s) ds.

The Green function G(x, s) is symmetric, that is G(x, s) = G(s, x). For each s the section G(·, s)
is the solution to the problem Lu = 0, (1.2), (1.3) (considering the jump of the derivative of
order 2m− 1).

1.3 Results

Theorem 1.2. The spectral problem Lu = λTu under boundary conditions (1.2), (1.3) has complete
and orthogonal in L2(∆, ρ) system of eigenfunctions: Luk = λkTuk, k = 0, 1, 2, . . . The eigenvalues
are bounded from below and have the unique density point +∞, that is, λ0 ≤ λ1 ≤ · · · , and λk → ∞.
If λ is not an eigenvalue, the BVP Lu− λTu = f has unique solution in W for any f ∈ L2(∆, ρ).

Define truncated operator L(ν) by

L(ν)u :=
1
ρ

(
(−1)mu(2m) −

∫ l

ν
u(s)q(x, ds)

)
, x ∈ [ν, l],

and boundary condition
u(k)(ν) = 0, k = 0, . . . , m− 1. (1.15)

The following theorem is presented in the form of equivalence of several assertions. This
naturally arises in similar boundary-value problems (see for example [2, 10, 14]), which are
sometimes called focal [1].

Theorem 1.3. The following affirmations are equivalent.

1. The quadratic functional 〈u, u〉 is positive definite in W (〈u, u〉 ≥ ε[u, u] for some ε > 0).

2. The minimal eigenvalue λ0 of the spectral problem {Lu = λTu, B(u) = 0} is positive.

3. The BVP {Lu = f , B(u) = 0} is uniquely solvable and its solution is positive with respect to
the cone Cm for any f ≥ 0.

4. The Green function of the BVP {Lu = f , B(u) = 0} is positive in the square (0, l]× (0, l], and
for any s > 0 the section g(x) = G(x, s) satisfies (1.11).

5. r(QG0) < 1.

6. There exists v ∈ Cm such that Lv = ψ ≥ 0 and either ψ 6≡ 0 or B(v) 6= 0.

7. For any ν ∈ [0, l) the truncated BVP L(ν)u = 0, (1.15), (1.3) has only trivial solution.

Consider some corollaries from this theorem. The statement about the existence of a
function v(x) with nonnegative Lv is de la Vallée-Poussin like theorem [4] about differen-
tial inequality. Using concrete functions v lets to obtain effective positivity conditions of the
quadratic functional. For example, letting v(x) = (x + ε)m−0.5, we obtain the following.
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Corollary 1.4. If for some ε > 0

∫ l

0
(s + ε)m−0.5dsq(x, s) ≤ ((2m− 1)!!)2

22m (x + ε)−m−0.5 (1.16)

then λ0 > 0.

In particular case
∫ l

0 u(s)dsq(x, s) = q(x)u(x) we have q(x) ≤ ((2m−1)!!)2

22m(x+ε)2m , that for m = 1

coincides with well known estimate q(x) ≤ 1/(4(x + ε)2).
Note that from (2.2) and (3.6) for the minimal eigenvalue λ0(L0) of the operator L0 it

follows the estimate

λ0(L0) ≥ ((m− 1)!)2(2m− 1)
(∫ l

0
x2m−1ρ(x) dx

)−1

.

If ρ(x) ≡ 1 then

λ0(L0) ≥
((m− 1)!)2(2m− 1)2m

l2m .

For m = 1 obtain λ0(L0) ≥ 2/l2. The exact value is λ0(L0) = π2/4l2 ≈ 2.47/l2.
An estimate in integral form can be obtained by Corollary 3.18.

Corollary 1.5. Consider the case Qu(x) = q(x)u(x). If

∫ l

x
s2m−3/2ρ(s)q(s) ds ≤ m((m− 1)!)2

2
√

x
, (1.17)

then λ0 > 0.

Proof. It is easy to obtain the estimate G0(x, s) ≤ xm−1

((m−1)!)2
sm

m for x ≥ s. Let v(x) = xm−1/2.

From (1.17) it follows the integral inequality
∫ l

0 G0(x, s)ρ(s)q(s)v(s) ds ≤ v(x).

Note another important statement.

Theorem 1.6. The first eigenfunction u0(x) is positive on (0, l] and satisfies the equalities (1.11) that
is it positive with respect to the cone Cm if λ0 > 0 or λ0 ≤ 0 but has small absolute value.

2 Boundary value and spectral problems. Variational method

The study we realize in abstract form referring to the properties of operators and spaces,
confirmed in the relevant lemmas in the section 3. First we consider the operator L0 defined
in (1.4), then the operator L = L0 − Q defined by the equality (1.1). The representation
u = G0 f + Uα of the solution of the problem 1.12, as well as the properties of G0 are verified
directly (Lemma 3.1).

However, the application of the variational method gives more information. We use the
scheme from [13]. According to the variational method, equation L0u = f will be obtained
from the equation in the variational form.

We will use a separate space W for solutions that is different from L2(∆, ρ). This small
simplification avoids the consideration of unbounded operators in the spectral theory.
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2.1 The main part of the differential operator

The problem of the minimum of a quadratic functional (1/2)[u, u]− ( f , Tu) leads to the equa-
tion in the variational form

[u, v] = ( f , Tv), ∀v ∈W. (2.1)

The equation is considered in u ∈ W for a given f ∈ L2(∆, ρ). The following statement is the
short form of Lemma 3.4.

Lemma 2.1. The equation (2.1) is equivalent to the BVP {L0u = f , B(u) = 0}.

Corollary 2.2. If u ∈ DL0 and B(u) = 0, then [u, v] = (L0u, Tv).

The solution to the problem {L0u = f , B(u) = 0} is G0 f . On the other hand, T is
bounded (Lemma 3.6), therefore (2.1) has the unique solution u = T∗ f . So, we obtain the
following corollary.

Corollary 2.3. G0 = T∗.

Remark 2.4. T∗ : L2(∆, ρ)→W, G0 : L2(∆, ρ)→ DL0 , but R(T∗) = R(G0).

We will keep in mind that in order to consider the spectrum it would be necessary to deal
with complex spaces. The spectrum of the operator L0 is determined by the spectral problem
L0u = λTu, that is, by the resolvent (L0 − λT)−1. This problem is equivalent to u = λT∗Tu.
The operators T and T∗ are compact (Lemma 3.8), therefore the spectrum of the operator L0

is discrete and real. The minimal eigenvalue of the operator L0 is determined by

λ0(L0) = inf
u 6=0

(L0u, Tu)
(Tu, Tu)

= inf
u 6=0

[u, u]
(Tu, Tu)

= ‖T‖−2 . (2.2)

2.2 General case

2.2.1 Boundary value problem

The substitution u = T∗z + Uα converts BVP {Lu = f , B(u) = α} to equation

z−QT∗z = QUα + f (2.3)

with compact operator QT∗ (Lemmas 3.8, 3.9). If the unit is not an eigenvalue of QT∗, then
z = (I − QT∗)−1 f (I is the identity operator). The operator QT∗ is positive. Therefore, if its
spectral radius r(QT∗) < 1, then (I −QT∗)−1 is positive. The Green operator

G = T∗(I −QT∗)−1, (2.4)

is integral operator with symmetric kernel, has ordinary properties. By Lemma 1.1 and Corol-
lary 2.3, G is positive in the sense that it maps the cone of non-negative functions from L2(∆, ρ)

to the cone Cm:

r(QT∗) < 1⇒ G ≥ 0 in the sense of Cm. (2.5)
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2.2.2 The spectral problem

The spectral problem (under condition B(u) = 0) is written in the form

Lu = L0u−Qu = λTu. (2.6)

Theorem 2.5. The spectrum of the L is real and discrete.

Proof. The substitution u = T∗z leads the spectral problem (2.6) to the equation z− QT∗z =

λTT∗z. If the unit is not a point of the spectrum of QT∗, the last equation is converted to

z = λ(I −QT∗)−1TT∗z.

If the unit is an eigenvalue of QT∗, then for a small ε

z = (λ + ε)(I −QT∗ − εTT∗)−1TT∗z.

In both cases we can conclude that the spectrum of the problem (2.6) is discrete, since TT∗ is
compact.

Since Q(u, v) = (Qu, Tv) (equation (3.11)),

〈u, v〉 = [u, v]− (Qu, Tv) = (Lu, Tv). (2.7)

If Lu = λTu, then 〈u, u〉 = λ(Tu, Tu). So, λ is real.

If λ1 6= λ2 are two eigenvalue, the corresponding eigenvectors Tu1 and Tu2 are orthogonal:
(Tu1, Tu2) = 0.

Since 〈u, u〉 = (Lu, Tu), from [3, Chapter 6]

λ0 = inf
u 6=0

〈u, u〉
(Tu, Tu)

(2.8)

is exact lower bound of the spectrum of the operator L.

Remark 2.6. The minimal eigenvalue λ0 exists, because the form 〈u, u〉 is semibounded from
below (Lemma 3.10).

Lemma 2.7. Positive definiteness of the form 〈u, u〉 is equivalent to r(QT∗) < 1.

Proof. The exact upper bound of the operator T∗Q is equal to exact upper bound of the spec-
trum

sup
u 6=0

[T∗Qu, u]
[u, u]

= r(T∗Q) = r(QT∗) = r.

So, 〈u, u〉 = [u, u]− (Qu, Tu) = [u, u]− [T∗Qu, u] ≥ (1− r)[u, u]. If r < 1, then 〈u, u〉 is positive
definite.

Conversely, if 〈u, u〉 ≥ ε[u, u] for some ε > 0, that is, [u, u] − [T∗Qu, u] ≥ ε[u, u], then
r ≤ 1− ε < 1.
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2.3 Proofs of theorems

Proof of Theorem 1.2. See Section 2.2.2.

Proof of Theorem 1.3. Proof consists of a series of consecutive implications. First, consider the
chain 6⇒ 5⇒ 3⇒ 6.

• 6 ⇒ 5. Let v ∈ Cm satisfy the inequality Lv = ψ ≥ 0. Then v = T∗z + Uα, where
α = B(v), and either ψ 6≡ 0 or α 6= 0. From (2.3) z−QT∗z = QUα + ψ. If QUα + ψ ≡ 0,
then ψ ≡ 0, and

∫ l
0 Uα(s)dsq(x, s) ≡ 0. Since the polynomial Uα(x) > 0 for x ∈ (0, l],

the last identity can be valid only if Qu(x) = q(x)u(0). In this case the operator QG0 is
equal zero.

If QUα + ψ 6≡ 0, then z = Qv + ψ ≥6≡ 0. The inequality r(QT∗) < 1 it follows from
Corollary 3.17.

• 5⇒ 3. The affirmation is proved in Section 2.2.1, implication (2.5).

• 3 ⇒ 6 is obvious because v can be any solution to the problem Lu = f , (1.2), (1.3) with
nonzero f ≥ 0.

• 3⇔ 4, obviously.

• 1⇔ 2 follows from (2.8).

• 1⇔ 5 follows from Lemma 2.7.

• 1⇔ 7. See Theorem 2.8.

Theorem 2.8 (Analogue of Jacobi’s theorem). The statements 1 and 7 of Theorem 1.3 are equivalent.

Proof. Consider the bilinear form

〈u, v〉ν :=
∫ l

ν
u(m)v(m) dx−

∫
[ν,l]×[ν,l]

u(s)v(x) dξ (2.9)

in the space Wν = {u ∈ W : u(x) = 0 if x ∈ [0, ν]}. It is clear that Wν has the same properties
as W. Let λ

(ν)
0 be the minimal eigenvalue of L(ν). Note, λ

(ν)
0 = infu 6=0,u∈Wν

〈u,u〉ν
(Tu,Tu) .

It can be shown that the function F(ν) := min{〈u, u〉ν : u ∈ Wν, ‖u‖ = 1} is continuous.
The proof of continuity is based on estimation of the function u(x) and its derivatives with
relation to [u, u]. Note, that F(ν) does not decrease. Not also that F(ν) = 0 iff λ

(ν)
0 = 0.

If 1 holds, then 〈u, u〉ν > 0 for any ν ∈ [0, l) and u ∈ Wν. If, for some ν > 0, the BVP
L(ν)u = 0, (1.15), (1.3) has a nonzero solution, then 〈u, u〉ν = 0 (see (2.7)). This is contradiction.

Conversely, suppose 7 holds, but λ0 ≤ 0. By virtue of continuity, F(ν) = 0 for some
ν ≥ 0, therefore λ

(ν)
0 = 0. Then BVP L(ν)u = 0, (1.15), (1.3) has a nonzero solution. This is

contradiction.

The proof of Theorem 1.6 relies on the statement of positivity with respect to the cone of
the first eigenvector of the compact operator [9]. Let K be almost almost reproducing cone**

in a Banach space E, and A : E→ E is linear compact operator. Let A be positive with respect
to K, that is AK ⊂ K. Let r = r(A) be the spectral radius of A (see[8]).

**K is almost reproducing cone, if closure of its linear span is all the space E
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Theorem 2.9 (M. Krein, M. Rutman [9]). If the spectrum of A contains points different from zero,
then its spectral radius r is eigenvalue of both the A and its adjoint A∗, this eigenvalue is simple, and
it is associated with an eigenvector v0 ∈ K: Av0 = rv0.

Proof of Theorem 1.6. Let λ0 > 0. From Lu0 = λ0Tu0 it follows z0 = λ0TGz0, where u0 = Gz0.
The operator TG is compact and positive with respect to the cone of nonnegative functions in
L2(∆, ρ). Therefore its spectral radius r(TG) is eigenvalue, associated with a positive eigen-
vector. This eigenvalue is simple and it is greater than modulo of others eigenvalues. From
Theorem 1.2 it is clear, that r(TG) = 1/λ0, and z0 is mentioned eigenvector. The vector
u0 = Gz0 is positive with respect to Cm.

In the case of λ0 ≤ 0, the equation Lu = λ0u can be written as L0u + µTu − Qu =

(µ + λ0)Tu. It is easy to show that for small positive mu the Green’s function of the operator
L0 + µT remains positive (in the sense of the same cone (1.11)). Other statements of Theo-
rem 1.3 remain valid for this operator. Therefore, in the case of µ + λ0 > 0, the eigenfunction
u0 is positive with respect to Cm.

3 Lemmas. Properties of the space and of operators

Lemma 3.1. Under condition
∫ l

0 ρ(x) dx < ∞ the problem L0u = f , B(u) = 0 is uniquely solvable
in DL0 for any f ∈ L2(∆, ρ).

Proof. Product f ρ is integrable on ∆, because
( ∫ l

0 f ρ dx
)2 ≤

∫ l
0 f 2ρ dx

∫ l
0 ρ dx. By sequential

integration, we see that the equation (−1)mu(2m) = ρ f under condition B(u) = 0 has unique
solution in AC2m−1 (see definition of DL0).

3.1 Euler equation

The following two statements are obtained by integration by parts.

Lemma 3.2. Let u(2m−1) be absolutely continuous on [0, l]. Then

∫ l

0
u(m)v(m) dx =

m

∑
i=1

(−1)i−1u(m+i−1)v(m−i)
∣∣∣∣l
0
+ (−1)m

∫ l

0
u(2m)v dx. (3.1)

Lemma 3.3. Let ϕ be Lebesgue integrable on [0, l], and the function v has absolutely continuous
derivative v(m−1). Then∫ l

0
ϕv dx =

m−1

∑
i=0

(−1)iF(m−1−i)v(i)
∣∣∣∣l
0
+ (−1)(m)

∫ l

0
F(x)v(m) dx, (3.2)

where F(m) = ϕ.

Let f ∈ L2(∆, ρ), u ∈W be the solution of the equation in variational form∫ l

0
u(m)v(m) dx =

∫ l

0
f vρ dx (∀v ∈W) (3.3)

and F(m) = ϕ = f ρ. From (3.3), (3.2) it follows (since v ∈W it satisfies (1.2))

∫ l

0

(
u(m) − (−1)mF

)
v(m) dx =

m−1

∑
i=0

(−1)iF(m−1−i)v(i)
∣∣∣∣l
0
. (3.4)
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Lemma 3.4 (Euler equation). Let f ∈ L2(∆, ρ) and u ∈ W be solution to (3.3). Then u ∈ AC2m−1

and is solution to the BVP (−1)mu(2m) = ρ f , (1.2), (1.3).

Proof. The product f ρ is integrable on ∆, since
( ∫ l

0 f ρ dx
)2 ≤

∫ l
0 f 2ρ dx

∫ l
0 ρ dx. In equality

(3.4) we can assume that F(m−1−i)(l) = 0, i = 0, . . . , m− 1. Then
∫ l

0

(
u(m) − (−1)mF

)
z dx = 0

for all z = v(m) ∈ L2(∆). Thus, u(m) − (−1)mF = 0. This implies existence u(2m) and equality
(−1)mu(2m) = f ρ. From (3.1) and (3.3) it follows

m

∑
i=1

(−1)i−1u(m+i−1)v(m−i)
∣∣∣∣l
0
= 0

for any v ∈W. From here it follows (1.3).

3.2 Space W . Boundedness and compactness of T

Lemma 3.5. The space W with inner product [u, v] is Hilbert one.

Proof. W and L2(∆) are related by y = u(m) and

u(x) =
∫ x

0

(x− s)m−1

(m− 1)!
y(s) ds (3.5)

(u ∈ W, z ∈ L2(∆)). Moreover, these relations preserve scalar products. Therefore (3.5) is
isomorphism.

Lemma 3.6. The operator T acts from W to L2(∆, ρ) and is bounded.

Proof. Let y = u(m). The affirmation follows from the estimate

(Tu, Tu) =
∫ l

0

(∫ x

0

(x− s)m−1

(m− 1)!
y(s) ds

)2

ρ(x) dx

≤
∫ l

0
ρ(x)dx

∫ x

0

(
(x− s)m−1

(m− 1)!

)2

ds
∫ x

0
y(s)2 ds

≤ [u, u]
∫ l

0
ρ(x) dx

∫ x

0

(
(x− s)m−1

(m− 1)!

)2

ds. (3.6)

Lemma 3.7. The range T(W) is dense in L2(∆, ρ).

Proof. Suppose the closure T(W) does not coincide with L2(∆, ρ). Then there exists h ∈
L2(∆, ρ), orthogonal to T(W), that is

(∀u ∈W)
∫ l

0
h(x)u(x)ρ(x) dx = 0.

Integrating by parts obtain∫ l

0
huρ dx =

m

∑
k=1

(−1)k−1H(m−k)u(k−1)
∣∣∣∣l
0
+ (−1)(m)

∫ l

0
H(x)u(m)(x) dx, (3.7)

where H(m) = hρ. Letting H(m−k)(l) = 0, k = 1, . . . , m, obtain

0 =
∫ l

0
H(x)u(m)(x) dx.

Since u(m) runs through all the space L2(∆), H ≡ 0. So h ≡ 0.
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Lemma 3.8. The operator T is compact one.

Proof. Even in the non-singular case, it is worth to use the general Gelfand’s criterium of
compactness scheme. Namely, in the Banach space E the set A is relatively compact if and
only if for any sequence fn of continuous linear functionals, converging to zero for any z ∈ E,
convergence on the set A will be uniform.

We are interested in the set Ω = {Tu : ‖u‖W ≤ 1}. Here ‖u‖W =
√
[u, u].

Let fn(z)→ 0, ∀z ∈ L2(∆, ρ). Using the substitute (3.5) obtain

fn(Tu)2 =

(∫ l

0
dx ρ(x) fn(x)

∫ x

0

(x− s)m−1

(m− 1)!
y(s) ds

)2

=

(∫ l

0
y(s) ds

∫ l

s

(x− s)m−1

(m− 1)!
fn(x)ρ(x) dx

)2

≤
∫ l

0
y(s)2 ds

∫ l

0
ϕn(s)2 ds,

where

ϕn(s) =
∫ l

s

(x− s)m−1

(m− 1)!
fn(x)ρ(x) dx.

Since
∫ l

0 y(s)2 dx = [u, u] ≤ 1 it is sufficient to show
∫ l

0 ϕn(s)2 ds → 0. This ensures uniform
convergence. Since ϕn(s) = fn(gs), where

gs(x) =


0, if x < s
(x− s)m−1

(m− 1)!
, if x ≥ s,

and the sequence fn converges on the element gs, pointwise convergence ϕn(s) → 0 for each
s ∈ ∆ is valid. To apply the Lebesgue theorem, we note that

ϕn(s)2 ≤
∫ l

0
gs(x)2ρ(x) dx

∫ l

0
fn(x)2ρ(x) dx,

and the first factor on the right side is a bounded function of s, and the second is a bounded
sequence.

3.3 The second part of the operator

Lemma 3.9. The operator Q : W → L2(∆, ρ) is bounded.

Proof. Let u ∈W, y = u(m). Since q/ρ ∈ L2(∆, ρ), the assertion follows from the inequalities

u(x)2 =

(∫ x

0

(x− s)m−1

(m− 1)!
y(s) ds

)2

≤
∫ x

0

(x− s)2m−2

(m− 1)!2
ds
∫ x

0
y(s)2 ds ≤ C2[u, u],

|Qu(x)| ≤ 1
ρ(x)

∫ l

0
|u(s)| q(x, ds) ≤ C

√
[u, u]

q(x)
ρ(x)

and

(Qu, Qu) ≤ C2[u, u]
∫

∆

(
q(x)
ρ(x)

)2

ρ(x) dx.
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3.4 Semi-boundedness from below and representation of the form

Consider first the special case when 〈u, u〉 = [u, u] −
∫ l

0 q(x)u(x)2 dx, and q/ρ ∈ L2(∆, ρ).
Let M > 0 and E := {x : q(x)/ρ(x) > M}. From relation (3.5), which can be written as
u(x) =

∫ l
0 H(x, s)y(s) ds, it follows

∫
E

qu2 dx ≤ (max H)2
∫

E
q(x)

(∫ l

0
|y(s)| ds

)2

dx

≤ (max H)2
∫

E
q(x)

∫ l

0
|y(s)|2 ds

∫ l

0
1 ds dx = (max H)2 · [u, u] · l ·

∫
E

q(x) dx.

Choose M so that
(max H)2l

∫
E

q(x) dx ≤ 1. (3.8)

Then
∫

E qu2 dx ≤ [u, u] and

[u, u]−
∫ l

0
qu2 dx ≥ −

∫
∆\E

qu2 dx ≥ −M
∫

∆
u2ρ(x) dx = −M(Tu, Tu).

This confirms the semi-boundedness in the case of∫
∆×∆

u(s)v(x) dξ =
∫

∆
quv dx.

The general case is reduced to that considered with the help of∫
∆×∆

u(s)u(x) dξ ≤ 1
2

∫
∆×∆

(
u(s)2 + u(x)2) dξ =

∫
∆×∆

u(x)2 dξ

=
∫ l

0
dx
∫ l

0
u(x)2q(x, ds) =

∫ l

0
u(x)2q(x) dx,

where q(x) = q(x, ∆). So, the following lemma is proved.

Lemma 3.10. The form 〈u, u〉 is semi-bounded from below

inf
u 6=0

〈u, u〉
(Tu, Tu)

≥ −M, (3.9)

where M is defined by (3.8).

Lemma 3.11 ([5]). Let (X,A) and (Y,B) be measurable spaces, µ be a measure on (X,A), K : X ×
B → [0, ∞] be kernel (i.e. for µ-almost all x ∈ X K(x, ·) is a measure on (Y,B), ∀B ∈ B K(·, B) is
µ-measurable on X). Then

1. The function ν defined on A×B by the equality

ν(E) =
∫

X
K(x, Ex)µ(dx), Ex = {y : (x, y) ∈ E},

is measure.

2. if f : X×Y → [−∞, ∞] is ν-measurable on X×Y, then∫
X×Y

f (x, y)dν =
∫

X

(∫
Y

f (x, y)K(x, dy)
)

µ(dx).
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From Lemma 3.11 we obtain the following lemma.

Lemma 3.12. Let f (x, y) be ξ-measurable function, where ξ is defined in Section 1.2. Then∫
∆×∆

f (x, s) dξ =
∫

∆
dx
∫

∆
f (x, s)q(x, ds). (3.10)

Corollary 3.13. From (3.10)

Q(u, v) =
∫

∆

(
ρ(x)−1

∫
∆

u(s)q(x, ds)
)

v(x)ρ(x) dx = (Qu, Tv). (3.11)

3.5 Lemmas for a de la Vallée-Poussin type theorem

To establish the statement about the differential inequality (as in [4]) we need the following
lemma, which is close to a similar statement in [13]. Let

E := {x : q(x, l) = q(x, 0+)}. (3.12)

Lemma 3.14. If z ≥ 0, z 6≡ 0, and y = QG0z, then y(x) = 0, if x ∈ E, and y(x) > 0, if x ∈ ∆ r E.

Proof. The function u = G0z > 0 on (0, l] (see the kernel of the Green operator (1.14)), u(0) = 0.
Therefore y(x) = (ρ(x))−1

∫ l
0 u(s)dsq(x, s) satisfies the required property.

It is known (Theorem 2.9), that the spectral radius r = r(QG0) = r(QT∗) is an eigenvalue of
both the QT∗ operator and the adjoint TQ∗. The eigenvectors of both operators corresponding
to this value are non-negative.

Lemma 3.15. The eigenfunction of the operator TQ∗, corresponding to the eigenvalue r = r(TQ∗), is
positive almost everywhere on [0, l].

Proof. Let TQ∗ϕ = rϕ, ϕ 6= 0. Suppose ϕ(s) = 0 on the set ∆ r E (E is defined in (3.12)). By
Lemma 3.14 for any z

(TQ∗ϕ, z) = (ϕ, QT∗z) =
∫

∆rE
ϕ(s)QT∗z(s)ρ(s) ds = 0,

and TQ∗ϕ ≡ 0. This contradicts TQ∗ϕ = rϕ 6= 0. Therefore ϕ(s) 6= 0 on the set E1 ⊂ ∆ r E of
positive measure. In this case for any z ≥6≡ 0

(TQ∗ϕ, z) = (ϕ, QT∗z) > 0.

It means that rϕ(s) = TQ∗ϕ(s) > 0 almost everywhere on ∆.

Remark 3.16. The function ϕ(s) ∈ ACm, since T is an embedding from W to L2(∆, ρ).

Corollary 3.17. Suppose there exists z ∈ L2(∆, ρ), z ≥ 0, satisfying the inequality z − QT∗z =

ψ ≥6≡ 0. Then r(QT∗) < 1.

Proof. Let r = r(QT∗) and rϕ = TQ∗ϕ. Then (ϕ, z) − (ϕ, QT∗z) = (ϕ, ψ) > 0. Since
(ϕ, QT∗z) = (TQ∗ϕ, z) = r(ϕ, z), 0 < (ϕ, ψ) = (1− r)(ϕ, z). So 1− r > 0.

Corollary 3.18 (Theorem about integral inequality). Suppose there exists a function v ∈ W,
v(x) > 0 on (0, l], such that v− G0Qv = g, Qg ≥6≡ 0. Then r(QG0) < 1.

Proof. Let z = Qv. Then z−QG0z = Qg. The assertion follows from Corollary 3.17.
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[12] S. M. Labovskiĭ, On the Sturm–Liouville problem for a linear singular functional-
differential equation, Russ. Math. 40(1996), 48–53; translation from Izv. Vyssh. Uchebn.
Zaved. Mat. 1996, No. 11, 50–56. MR1442139; Zbl 0909.34070

[13] S. Labovskiy, On spectral problem and positive solutions of a linear singular functional-
differential equation, Functional Differential Equations 20(2013), 179–200. Zbl 1318.34088

[14] N. Azbelev, U. Zubko, S. Labovskiy, Differential inequalities for equations with de-
layed argument, Differ. Uravn. 9(1973), 1931–1936. MR369852; Zbl 0289.34098 (Russian);
Zbl 0306.34086 (English)

https://doi.org/10.1007/978-94-017-1568-3
https://www.ams.org/mathscinet-getitem?mr=1619877
https://doi.org/10.1155/9789775945495
https://www.ams.org/mathscinet-getitem?mr=2319815
https://zbmath.org/?q=an:1202.34002
https://doi.org/10.1007/978-94-009-4586-9
https://www.ams.org/mathscinet-getitem?mr=1192782
https://zbmath.org/?q=an:0744.47017
https://zbmath.org/?q=an:55.0850.02
https://doi.org/10.1007/978-1-4614-6956-8
https://doi.org/10.1007/978-1-4614-6956-8
https://www.ams.org/mathscinet-getitem?mr=3098996
https://zbmath.org/?q=an:1292.28002
https://doi.org/10.2307/1997625
https://doi.org/10.2307/1997625
https://www.ams.org/mathscinet-getitem?mr=479377
https://zbmath.org/?q=an:0206.37801
https://www.ams.org/mathscinet-getitem?mr=1038527
https://zbmath.org/?q=an:0674.47036
https://www.ams.org/mathscinet-getitem?mr=0027128
https://zbmath.org/?q=an:0030.12902
https://zbmath.org/?q=an:0326.34085
https://zbmath.org/?q=an:0347.34052
https://www.ams.org/mathscinet-getitem?mr=742813
https://zbmath.org/?q=an:0601.34045
https://zbmath.org/?q=an:0593.34064
https://www.ams.org/mathscinet-getitem?mr=1442139
https://zbmath.org/?q=an:0909.34070
https://zbmath.org/?q=an:1318.34088
https://www.ams.org/mathscinet-getitem?mr=369852
https://zbmath.org/?q=an:0289.34098
https://zbmath.org/?q=an:0306.34086

	The problem, notation, results
	The problem
	Notation and assumptions
	Basic notation and assumptions
	The Green functions

	Results

	Boundary value and spectral problems. Variational method
	The main part of the differential operator
	General case
	Boundary value problem
	The spectral problem

	Proofs of theorems

	Lemmas. Properties of the space and of operators
	Euler equation
	Main space
	The second part of the operator
	Semi-boundedness from below and representation of the form
	Lemmas for a de la Vallée-Poussin type theorem


