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1 Introduction

In recent years studying local and global regularity of the solutions of elliptic and parabolic
differential equations with discontinuous coefficients is of great interest. In the case of smooth
coefficients higher order elliptic equations studying in [1, 2, 13, 20, 34, 36]. They received the
solvability of the Dirichlet problem, boundary estimates of the solutions and regularity of
solutions. For parabolic operators these questions are studied in [4, 15, 19, 35].

However, the task is complicated by discontinuous coefficients. In general, with arbitrary
discontinuous coefficients as Lp theory so strong solvability not true (see, [9–11]).

In particular, if we consider nondivergent elliptic equations of second order at aij(x) ∈
W1

n(Ω) and the differences between the largest and lowest eigenvalues {aij} are small enough,
that is the condition of Cordes is satisfied, then Lu ∈ L2(Ω) and u ∈ W2

2 (Ω). This result is
extended to W2

p(Ω) for p ∈ (2− ε, 2 + ε) with small enough ε.
In recent years Sarason introduced the VMO class of functions of vanishing mean oscil-

lation, as tending to zero mean oscillation allowed to study local and global properties of
second order elliptic equations. Chiarenza, Franciosi, Frasca and Longo [10, 11] show that if
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aij ∈ VMO ∩ L∞(Ω) and Lu ∈ Lp(Ω), then u ∈ W2
2 (Ω), for p ∈ (1, ∞). They also proved

the solvability of Dirichlet problem in W2
p(Ω) ∩

◦
W1

p(Ω). This result is extended to quasilinear
equations with VMO coefficients in [18].

As a consequence, Hölder property of the solutions and their gradients for sufficiently
small p are obtained. On the other hand, for small p with Lu ∈ Lp,λ(Ω) also takes place Hölder
properties of solutions. There is a question of studying the properties of regularity of an
operator L in Morrey spaces with VMO coefficients. In [6] Caffarelli proved that the solution
from W2

p(Ω) belongs to C1+α
loc (Ω) if the function f is in Morrey Lloc

n,nα(Ω) with α ∈ (0, 1). These
conditions may be relaxed at f ∈ Lloc

p,λ(Ω), p < n, λ > 0. In [17] inner regularity of second
order derivatives from W2

p(Ω) is proved. Moreover D2u ∈ Lloc
p,λ(Ω) at f ∈ Lloc

p,λ(Ω) is shown if
aij ∈ VMO∩ L∞(Ω).

Guliyev and Softova studied the global regularity of solution to nondivergence elliptic
equations with VMO coefficients [27] in generalized Morrey space. These authors also con-
sidered parabolic operators with discontinuous coefficients [28]. Guliyev and Gadjiev [26]
considered the second order elliptic equations in generalized Morrey spaces.

In fact, the better inclusion between the Morrey and the Hölder spaces permits to obtain
regularity of the solutions to different elliptic and parabolic boundary problems. For the
properties and applications of the classical Morrey spaces, we refer the readers to [6,17,22,23,
33] and references therein.

The boundedness of the Hardy–Littlewood maximal operator in the Morrey spaces that al-
lows us to prove continuity of fractional and classical Calderón–Zygmund operators in these
spaces [7, 8]. Recall that the integral operators of that kind appear in the representation for-
mulas of the solutions of elliptic, parabolic equations and systems. Thus the continuity of the
Calderón–Zygmund integrals implies regularity of the solutions in the corresponding spaces.

For more recent results on boundedness and continuity of singular integral operators in
generalized Morrey and new function spaces and their application in the differential equations
theory see [5, 9, 14, 16, 18, 21, 26, 38–40] and the references therein.

Guliyev and Gadjiev considered higher order elliptic equations in generalized Morrey
spaces in [29]. The solvability of Dirichlet boundary value problems for the higher order
uniformly elliptic equations in generalized Morrey spaces is proved, see also [32], and the
references in [29].

Our goal in these paper is to show the continuity of sublinear integral operators generated
by Calderón–Zygmund operator and their commutators with BMO functions in generalized
Morrey spaces. These obtained estimates are used to study regularity of the solution of Dirich-
let problem for higher order linear uniformly elliptic operators.

2 Definition and statement of the problem

In this paper the following notations will be used: Rn
+ = {x ∈ Rn : x = (x′, xn), x′ ∈

Rn−1, xn > 0}, Sn−1 is the unit sphere in Rn, Ω ⊂ Rn is a domain and Ωr = Ω ∩ Br(x),
x ∈ Ω, where Br = B(x0, r) = {x ∈ Rn : |x − x0| < r}, Bc

r = Rn \ Br, B+
r = B+(x0, r) =

B(x0, r)∩{xn > 0}. Diu = ∂u
∂xi

, Du = (D1u, . . . , Dnu) means the gradient of u, Dαu = ∂|α|u
∂xα1

1 ···∂xαn
n

,

where |α| = ∑n
k=1 αk. The letter C are used for various positive constants and may change from

one occurrence to another.
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The domain Ω ⊂ Rn supposed to be bounded with ∂Ω ∈ C1,1. Although this condition
can be relaxed and task to consider in nonsmooth domains.

Definition 2.1. Let ϕ : Rn × R+ → R+ be a measurable function and 1 ≤ p < ∞. The
generalized Morrey space Mp,ϕ(Rn) consists of all f ∈ Lloc

p (Rn) such that

‖ f ‖Mp,ϕ(Rn) = sup
x∈Rn,r>0

ϕ−1(x, r)
(

r−n
∫

B(x,r)
| f (y)|pdy

) 1
p

< ∞.

For any bounded domain Ω we define Mp,ϕ(Ω) taking f ∈ Lp(Ω) and Ωr instead of B(x, r)
in the norm above.

The generalized Sobolev–Morrey space W2m
p,ϕ(Ω) consists of all Sobolev functions u ∈

W2m
p (Ω) with distributional derivatives Dαu ∈ Mp,ϕ(Ω), endowed with the norm

‖u‖W2m
p,ϕ(Ω) = ∑

0≤|α|≤2m
‖Dαu‖Mp,ϕ(Ω).

The space W2m
p,ϕ(Ω) ∩

◦
Wm

p consists of all functions u ∈ W2m
p (Ω) ∩

◦
Wm

p with Dαu ∈ Mp,ϕ(Ω)

and is endowed by the same norm. Recall that
◦

Wm
p is the closure of C∞

0 (Ω) with respect to the
norm in Wm

p .
Let a be a locally integrable function on Rn, then we shall define the commutators gener-

ated by an operator T and a as follows

Ta f (x) = [a, T] f (x) = T(a f )(x)− a(x)T( f )(x).

Definition 2.2. Let Ω be an open set in Rn and a(·) ∈ L1
loc(Ω). We say that a(·) ∈ BMO

(bounded mean oscillation) if

‖a‖∗ = sup
x∈Ω,ρ>0

1
|Ω(x, ρ)|

∫
Ω(x,ρ)

|a(y)− aΩ(x,ρ)|dy < ∞,

where aQ = 1
|Q|
∫

Q a(y)dy is the mean integral of a(·). The quantity ‖a‖∗ is a norm in BMO of
function a(·) and BMO is a Banach space.

We say that a(·) ∈ VMO(Ω) (vanishing mean oscillation) if a ∈ BMO(Ω) and r > 0 define

η(r) = sup
x∈Ω,ρ≤r

1
|Ω(x, ρ)|

∫
Ω(x,ρ)

|a(y)− aΩ(x,ρ)|dy < ∞,

and
lim
r→0

η(r) = lim
r→0

sup
x∈Ω,ρ≤r

1
|Ω(x, ρ)|

∫
Ω(x,ρ)

|a(y)− aΩ(x,ρ)|dy = 0.

The quantity η(r) is called VMO-modulus of a.

We consider the boundary value Dirichlet problem for higher order nondivergence uni-
formly elliptic equations with VMO coefficients in generalized Morrey spaces as follows

Lu(x) := ∑
|α|,|β|≤2m

aαβ(x)DαDβu(x) = f (x) in Ω,

∂ju(x)
∂nj = g(x), on ∂Ω

(2.1)

j = 0, . . . , m− 1. The conditions for coefficients aαβ(·) and right hand we give later.
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3 Auxiliary results and interior estimate

In this section we present some results concerning continuity of sublinear operators generated
by Calderón–Zygmund singular integrals. We also give continuity of commutators generated
by sublinear operators and BMO functions in Mp,ϕ(Rn).

Lemma 3.1. Let ϕ : Rn×R+ → R+ be measurable function and 1 < p < ∞. There exists a constant
C such that for any x ∈ Rn and for all t > 0

∫ ∞

r

ess sup
t<s<∞

ϕ(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ(x, r). (3.1)

If T is a Calderón-Zygmund operator, then T is bounded in Mp,ϕ(Rn) for any f ∈ Mp,ϕ(Rn):

‖T f ‖Mp,ϕ(Rn) ≤ C ‖ f ‖Mp,ϕ(Rn) (3.2)

with constant C is independent of f .

This result is obtained in [3]. The following Corollary is obtained from this lemma and its
proof is similar to the proof in Theorem 2.11 in [27].

Corollary 3.2. Let Ω be an open set in Rn and C be a constant. Then for any x ∈ Ω and for all t > 0
we have ∫ ∞

r

ess sup
t<s<∞

ϕ(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ(x, r), 1 < p < ∞.

If T is a Calderón-Zygmund operator, then T is bounded in Mp,ϕ(Ω) for any f ∈ Mp,ϕ(Ω), i.e.,

‖T f ‖Mp,ϕ(Ω) ≤ C ‖ f ‖Mp,ϕ(Ω) (3.3)

with constant C is independent of f .

Lemma 3.3. Let a ∈ BMO(Rn) and the function ϕ satisfy the condition

∫ ∞

r

(
1 + log

t
r

) ess sup
t<s<∞

ϕ(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ(x, r), 1 < p < ∞. (3.4)

where C is independent of x and r. If the linear operator T satisfies the condition

|T f (x)| ≤ C
∫

Rn

| f (y)|
|x− y|n dy, x ∈ supp f (3.5)

for any f ∈ L1(R
n) with compact support and [a, T] is bounded on Lp(Rn), then the operator [a, T] is

bounded on Mp,ϕ(Rn).

This result is obtained in [3, 24, 25]. From these lemmas and [18] we have the following.

Corollary 3.4. Let the function ϕ(·) satisfy the condition (3.4) and a ∈ BMO(Rn). If T is a Calderón–
Zygmund operator, then there exist a constant C = C(n, p, ϕ), such that for any f ∈ Mp,ϕ(Rn) and
1 < p < ∞,

‖[a, T]‖Mp,ϕ(Rn) ≤ C ‖a‖∗‖ f ‖Mp,ϕ(Rn). (3.6)
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As in [6] we have the local version of Corollary 3.4.

Corollary 3.5. Let the function ϕ(·) satisfy the condition (3.4). Suppose that Ω ⊂ Rn is an open set
and a(·) ∈ VMO(Ω). If T is a Calderón–Zygmund operator, then for any ε > 0 there exists a positive
number ρ0 = ρ0(ε, η) such that for any ball Br(0) with radius r ∈ (0, ρ0), Ω(0, r) 6= ∅ and for any
f ∈ Mp,ϕ(Ω(0, r))

‖[a, T]‖Mp,ϕ(Ω(0,r) ≤ C ε ‖ f ‖Mp,ϕ(Ω(0,r), (3.7)

where C = C(n, p, ϕ) is independent of ε, f , r.

These type of results are also valid for different generalized Morrey spaces Mp,ϕ1(Ω) and
Mp,ϕ2(Ω). If p = 1, then the operator T is bounded from M1,ϕ1(R

n) to WM1,ϕ1(R
n). For

example, we give the following results.

Lemma 3.6. Let a ∈ BMO(Rn) and (ϕ1, ϕ2) satisfy

∫ ∞

r

(
1 + ln

t
r

) ess sup
t<s<∞

ϕ1(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ2(x, r), 1 < p < ∞, (3.8)

where C does not depend on x and r. Suppose Ta is a sublinear operator satisfying (3.5) and bounded
on Lp(Rn). Then the operator Ta = [a, T] is bounded from Mp,ϕ1 to Mp,ϕ2 , i.e.,

‖Ta f ‖Mp,ϕ2 (R
n) ≤ C ‖a‖∗‖ f ‖Mp,ϕ1 (R

n)

with constant C is independent of f .

Besides that, BMO and VMO classes contain also discontinuous functions and the follow-
ing example shows the inclusion W1

n(R
n) ⊂ VMO ⊂ BMO.

Example 3.7. fα(x) = | log |x||α ∈ VMO for any α ∈ (0, 1); fα ∈ W1
n(R

n) for α ∈ (0, 1− 1
n ),

fα /∈W1
n(R

n) for α ∈ [1− 1
n , 1); f (x) = | log |x|| ∈ BMO \VMO; sin fα(x) ∈ VMO∩ L∞(Rn).

Now using boundedness of Calderón–Zygmund integral operators in generalized Morrey
spaces we will get internal estimates for solutions of the problem (2.1) with coefficients from
VMO spaces.

Let Ω be an open bounded domain in Rn, n ≥ 3. We suppose that non-smooth boundary
of Ω is Reifenberg flat (see Reifenberg [37]). It means that ∂Ω is well approximated by hyper-
planes at each point and at each scale. This kind of regularity of the boundary mean also that
the boundary has no inner or outer cusps.

Let coefficients aαβ, |α|, |β| ≤ m be symmetric and satisfy the conditions uniform ellipticity,
essential boundedness of the coefficients aαβ ∈ L∞(Ω) and regularity aαβ ∈ VMO(Ω).

Let f ∈ Mp,ϕ(Ω), 1 < p < ∞ and ϕ(·) : Ω ×R+ → R+ be measurable, and satisfy the
condition ∫ ∞

r

(
1 + ln

t
r

) ess sup
t<s<∞

ϕ(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ(x, r), (3.9)

where C does not depend on x,r.
From [2, 10, 17, 30] we have interior representation, such that if u ∈

◦
W2m

p

Dαu(x) = P.V.
∫

B
DαΓ(x, x− y)

 ∑
|α|,|β|≤m

(aαβ(x)− aαβ(y))Dαu(y) + Lu(y)

 dy

+ Lu(x)
∫
|y|=1

DβΓ(x, y)yjdδy (3.10)
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for a.e. x ∈ B ⊂ Ω, where B is a ball, |α| = |β| = m, and Γ(x, t) is the fundamental solution of
L. Note that, Γ(x, t) can be repsentated in the form

Γ(x, t) =
1

(n− 2)ωn(det aαβ)
1
2

(
n

∑
i,j=1

Aαβ(x)titj

) 2−n
2

,

for a.e. x ∈ B and ∀t ∈ Rn\{0}, where (Aαβ)n×n is inverse matrix for {aαβ}n×n.

Theorem 3.8 (Interior estimate). Let Ω be a bounded domain in Rn, 1 < p < ∞ and the function
ϕ(·) satisfy (3.9), aαβ ∈ VMO(Ω), |α|, |β| ≤ m, and

M = max
i,j=1,n

sup
t∈Rn
‖Γ(·, t)‖L∞(Ω) < ∞.

Then there exists a positive constant C(n, p, ϕ, M) such that for any Ω′ ⊂ Ω′′ ⊂ Ω and u ∈
◦

W2m
p (Ω)

we have DαDβu ∈ Mp,ϕ(Ω′), |α|, |β| ≤ m and

‖DαDβu‖Mp,ϕ(Ω′) ≤ C
(
‖Lu‖Mp,ϕ(Ω′) + ‖u‖Mp,ϕ(Ω′)

)
. (3.11)

Proof. We take an arbitrary point x ∈ supp u and a ball Br(x) ⊂ Ω′, and choose a point
x0 ∈ Br(x). Fix the coefficients of L in x0. Consider the operator L0 = aαβ(x0)Dα. These
operator have the constant coefficients. We know that a solution ϑ ∈ C∞

0 (Br(xx0)) of L0ϑ =

(L0 − L)ϑ + Lϑ can be presented as Newtonian type potential

ϑ(x) =
∫

Br

Γ0(x− y) [(L0 − L)ϑ(y) + Lϑ(y)] dy,

where Γ0(x− y) = Γ(x0, x− y) is the fundamental solution of L0. Taking DαDβϑ and unfreez-
ing the coefficients we get for all |α|, |β| ≤ m by (3.10)

DαDβϑ(x) = P.V.
∫

Br

DαDβΓ(x, x− y)
[
(aαβ(x)− aαβ(y))DαDβu(y) + Lϑ(y)

]
+ Lϑ(x)

∫
Sn

DβΓ(x, y)yidσy

= R(Lϑ)(x) + [aαβ, R]DαDβϑ(x) + Lϑ(x)
∫

Sn−1
DβΓ(x, y)yidδy. (3.12)

The known properties of the fundamental solution imply that DαDβΓ(x, ξ) are variable
Calderón–Zygmund kernels. The formula (3.12) holds for any ϑ ∈ W2m

p (Br) ∩
◦

Wm
p (Br) be-

cause of the approximation properties of the Sobolev functions with C∞
0 functions. For each

ε > 0 there exists r0(ε) such that for any r < r0(ε)

‖DαDβϑ‖Mp,ϕ(B+
r ) ≤ C

(
ε‖DαDβϑ‖Mp,ϕ(B+

r ) + ‖Lϑ‖Mp,ϕ(B+
r )

)
.

Choosing ε small enough we can move the norm of DαDβϑ on the left-hand side that gives

‖DαDβϑ‖Mp,ϕ(B+
r ) ≤ C ‖Lϑ‖Mp,ϕ(B+

r ) (3.13)

with constant independent of ϑ.
Define a cut-off function η(x) such that for θ ∈ (0, 1), θ′ = θ(3−θ)

2 > 0 and |α| ≤ m we have

η(x) =

{
1, x ∈ Bθr,

0, x 6∈ Bθr,
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η(x) ∈ C∞
0 (Br), |Dαη| ≤ C [θ(1− θ)r]−α.

Applying (3.13) to ϑ(x) = η(x)u(x) ∈W2m
p (Br) ∩

◦
Wm

p (Br) we get

‖DαDβϑ‖Mp,ϕ(Bθr) ≤ C ‖Lϑ‖Mp,ϕ(Bθ′r)

≤ C

(
‖Lϑ‖Mp,ϕ(B′θr)

+
‖Du‖Mp,ϕ(Bθ′r)

θ(1− θ)r
+
‖u‖Mp,ϕ(Bθ′r)

[θ(1− θ)r]2

)
with constant independent of ϑ.

Define the weighted semi-norm

Θα = sup
0<θ<1

[θ(1− θ)r]−α‖Dαu‖Mp,ϕ(Bθr), |α| ≤ 2m.

Because of the choice of θ′ we have θ(1− θ) ≤ 2θ′(1− θ′). Thus, after standard transformations
and taking the supremum with respect to θ ∈ (0, 1) the last inequality can be rewritten as

Θ2m ≤ C (r2‖Lu‖Mp,ϕ(Br) + Θm + Θ0). (3.14)

Now we use following interpolation inequality

Θm ≤ εΘ2m +
C
ε

Θ0 for any ε ∈ (0, 2m).

Indeed, by simple scaling arguments we get in Mp,ϕ(Rn) an interpolation inequality analogous
to [12, Theorem 7.28]

‖Dαu‖Mp,ϕ(Br) ≤ δ‖DαDβϑ‖Mp,ϕ(Br) +
C
δ
‖u‖Mp,ϕ , δ ∈ (0, r).

We can always find some ε0 ∈ (0, 1) such that

Θm ≤ 2[Θ0(1−Θ0)r]‖Dαu‖Mp,ϕ(BΘ0r)

≤ 2[Θ0(1−Θ0)r]
(

δ‖DαDβϑ‖Mp,ϕ(Bε0r) +
C
δ
‖u‖Mp,ϕ(Bε0r)

)
.

The assertion follows choosing δ = ε
2 [ε0(1− ε0)r] < ε0r for any ε ∈ (0, 2m). Interpolating Θ1

in (3.14) we obtain

r2

4
‖DαDβu‖Mp,ϕ(B r

2
) ≤ Θ2 ≤ C (r2‖Lu‖Mp,ϕ(Br) + ‖u‖Mp,ϕ(Br))

and hence the Caccioppoli type estimate

‖DαDβu‖Mp,ϕ(B r
2
) ≤ C

(
‖Lu‖Mp,ϕ(Br) +

1
r2 ‖u‖Mp,ϕ(Br)

)
. (3.15)

Let ϑ = {ϑij}n
i,j=1 ∈ [Mp,ω(Br)]n

2
be arbitrary function matrix. Define the operators

Sijαβ(ϑij)(x) = [aαβ, R]ϑij(x), i, j = 1, n, |α|, |β ≤ m.

Because of the VMO properties of aαβ’s we can choose r so small that

n

∑
i,j=1

∑
|α|,|β|≤m

‖Sijαβ‖ < 1. (3.16)
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Now for a given u ∈W2m
p (Br) ∩

◦
Wm

p (Br) with Lu ∈ Mp,ϕ(Br) we define

H(x) = RLu(x) + Lu(x)
∫

Sn−1
DβΓ(x, y)yidσy.

Corollary 3.5 implies that H ∈ Mp,ϕ(Br). Define the operator W as

Wϑ =

 ∑
|α|,|β|≤m

(
Sijαβϑ + H(x)

)
n

i,j=1

: [Mp,ϕ(Br)]
n2 → [Mp,ϕ(Br)]

n2
.

By virtue (3.16) the operator W is a contraction mapping and there exists a unique fixed point
ϑ̃ = {ϑ̃ij}n

i,j=1 ∈ [Mp,ϕ(Br)]n
2

of W such that Wϑ̃ = ϑ̃. On the other hand it follows from
the representation formula (3.12) that also DαDβu |α|, |β| ≤ m is a fixed point of W. Hence
DαDβu = ϑ̃, that is DαDβu ∈ Mp,ω(Br) and in addition (3.15) holds. The interior estimate
(3.11) follows from (3.15) by a finite covering of Ω′ with balls B r

2
, r < dis(Ω′, ∂Ω′′).

4 Sublinear operators generated by nonsingular integral operators

We are passing to boundary estimates. Firstly we give some results by sublinear operators
generated on nonsingular integral operators in the space Mp,ϕ(Rn

+).
In the beginning we consider a known result concerning the Hardy operator

Hg(r) =
1
r

∫ r

0
g(t)dt, 0 < r < ∞.

Lemma 4.1 ([27]). If

A = C sup
r>0

ω(r)
r

∫ r

0

dt
ess sup

0<s<t
ϑ(s)

< ∞, (4.1)

then the inequality
ess sup

r>0
ω(r)Hg(r) ≤ A ess sup

r>0
ϑ(r)g(r) (4.2)

holds for all non-negative and non-increasing g on (0, ∞).

For any x ∈ Rn
+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Let T̃ be a sublinear

operator such that for any function f ∈ L1(R
n
+) with a compact support the inequality

|T̃ f (x)| ≤ C
∫

Rn
+

| f (y)|
|x̃− y|n dy, (4.3)

holds, where constant C is independent of f .

Lemma 4.2. Suppose that f ∈ Lloc
p (Rn

+) and 1 ≤ p < ∞. Let∫ ∞

1
t−

n
p−1‖ f ‖Lp(B+(x0,t))dt < ∞ (4.4)

and T̃ be a sublinear operator satisfying (4.3).

1. If p > 1 and T̃ is bounded on Lp(Rn
+), then

‖T̃ f ‖Lp(B+(x0,t)) ≤ C r
n
p

∫ ∞

2r
t−

n
p−1‖ f ‖Lp(B+(x0,t))dt. (4.5)
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2. If p > 1 and T̃ is bounded from L1(R
n
+) on WL1(R

n
+), then

‖T̃ f ‖WL1(B+(x0,t)) ≤ C
∫ ∞

2r
t−n−1‖ f ‖L1(B+(x0,t))dt, (4.6)

where the constant C is independent of x0, r and f .

This lemma is proved in [27].

Lemma 4.3. Let 1 < p < ∞, ϕ1, ϕ2 : Rn ×R+ → R+ be measurable functions satisfying for any
x ∈ Rn and for any t > 0 ∫ ∞

r

ess sup
t<s<∞

ϕ1(x, s)s
n
p

t
n
p+1 dt ≤ C ϕ2(x, r) (4.7)

and T̃ be a sublinear operator satisfying (4.3).

1. If p > 1 and T̃ is bounded in Lp(Rn
+), then it is bounded from Mp,ϕ1(R

n
+) to Mp,ϕ2(R

n
+) and

‖T̃ f ‖Mp,ϕ2 (R
n
+)
≤ C ‖ f ‖Mp,ϕ1 (R

n
+)

. (4.8)

2. If p = 1 and T̃ is bounded in L1(R
n
+) to WL1(R

n
+), then it is bounded from M1,ϕ1(R

n
+) to

WM1,ϕ2(R
n
+) and

‖T̃ f ‖M1,ϕ2 (R
n
+)
≤ C ‖ f ‖WM1,ϕ1 (R

n
+)

with constant C is independent of f .

This lemma is proved in [27].

5 Commutators of sublinear operators generated by nonsingular in-
tegrals

Now we consider commutators of sublinear operators generated by nonsingular integrals in
the space Mp,ϕ(Rn

+).
For a function a ∈ BMO and sublinear operator T̃ satisfying (4.3) we define the commutator

as T̃a f = T̃[a, f ] = aT̃ f − T̃(a f ). Suppose that for any f ∈ L1(R
n
+) with compact support and

x 6∈ supp f the following inequality is valid

|T̃a f (x)| ≤ C
∫

Rn
+

|a(x)− a(y)| | f (y)||x− y|n dy, (5.1)

where the constant a is independent of f and x. Suppose also that T̃a is bounded in Lp(Rn
+),

p ∈ (1, ∞), and satisfy the following inequality

‖T̃a f ‖Lp(Rn
+)
≤ C ‖a‖∗‖ f ‖Lp(Rn

+)
,

where the constant C is independent of f . Our aim is to show boundedness of T̃a in Mp,ϕ(Rn
+).

We recall properties of the BMO functions. The following lemma is proved by John–Nirenberg
in [31].
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Lemma 5.1. Let a ∈ BMO(Rn) and p ∈ (1, ∞). Then for any ball B the following inequality holds(
1
|B|

∫
B
|a(y)− aB|pdy

) 1
p

≤ C (p)‖a‖∗.

As a consequence of Lemma 5.1 we get the following corollary.

Corollary 5.2. If a ∈ BMO, then for all 0 < 2r < t the following inequality holds

|aBr − aBt | ≤ C ‖a‖∗ ln
t
r

, (5.2)

where the constant C is independent of a.

For the estimate of the commutator we use the following lemma in the proof of Theo-
rem 5.4.

Lemma 5.3 ([27]). Let T̃a be a bounded operator in Lp(Rn
+) satisfying (5.1) and 1 < p < ∞,

a ∈ BMO. Suppose that for f ∈ Lloc
p (Rn

+) and r > 0 the following holds

∫ ∞

t

(
1 + ln

t
r

)
t−

n
p−1‖ f ‖Lp(B+

t (x0,t))dt < ∞. (5.3)

Then we have
‖T̃a f ‖Lp(B+

r ) ≤ C ‖a‖∗r
n
p

∫ ∞

2r

(
1 + ln

t
r

)
‖ f ‖Lp(B+

t (x0,t))
dt

t
n
p+1 ,

where the constant C is independent of f .

Theorem 5.4. Let ϕ1, ϕ2 : Rn ×R+ → R+ be measurable functions satisfying (4.7) and 1 < p < ∞,
a ∈ BMO. Suppose T̃a is a sublinear operator bounded on Lp(Rn

+) and satisfying (5.1). Then T̃a is
bounded from Mp,ϕ1(R

n
+) to Mp,ϕ2(R

n
+) and

‖T̃a f ‖Mp,ϕ2 (R
n
+)
≤ C ‖a‖∗‖ f ‖Mp,ϕ1 (R

n
+)

, (5.4)

where the constant C is independent of f .

The proof of the Theorem 5.4 follows from Lemmas 4.2, 5.1 and 5.3.

6 Singular and nonsingular integral operators

Now we consider singular and nonsingular integral operators in the spaces Mp,ϕ. We deal
with Calderón–Zygmund type integrals and their commutators with BMO functions.

A measurable function K(x, ξ) : Rn×Rn\{0} → R is called a variable Calderón–Zygmund
kernel if

1. K(x, ξ) is a Calderón–Zygmund kernel for all x ∈ Rn:

1a K(x, ·) ∈ C∞(Rn\{0});
1b K(x, µξ) = µ−nK(x, ξ), ∀µ > 0;

1c
∫

Sn−1 K(x, ξ)dσξ = 0,
∫

Sn−1 |K(x, ξ)|dσξ < +∞.

2. max
|α|,|β|≤m

‖Dα
x Dβ

ξ K(x, ξ)‖L∞(Rn×Sn−1) = M < ∞
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and M is independent of x.
The singular integral

R f (x) = P.V.
∫

Rn
K(x, x− y) f (y)dy

and its commutators

[a, R] f (x) := P.V.
∫

Rn
K(x, x− y) f (y)[a(x)− a(y)]dy = a(x)R f (x)− R(a f )(x)

are bounded in Lp(Rn) (see [9]). Moreover

|K(x, ξ)| ≤ |ξ|−n|K(x,
ξ

|ξ| )| ≤ M|ξ|−n.

Then we have

|R f (x)| ≤ C
∫

Rn

| f (y)|
|x− y|n dy,

|[a, R] f (x)| ≤ C
∫

Rn

|a(x)− a(y)|| f (y)|
|x− y|n dy

where the constants C are independent of f .

Lemma 6.1. Let the function ϕ : Rn ×R+ → R+ satisfy the condition (3.9) and 1 < p < ∞. Then
for any f ∈ Mp,ϕ(Rn) and a ∈ BMO there exist constants depending on n, p, ϕ and the Kernel such
that

‖R f ‖Mp,ϕ(Rn) ≤ C ‖ f ‖Mp,ϕ(Rn),

‖[a, R] f ‖Mp,ϕ(Rn) ≤ C ‖a‖∗‖ f ‖Mp,ϕ(Rn)

where constants are independent of f .

The assertion of this lemma follows by (4.8) and (3.6).
For studying regularity properties of the solution of Dirichlet problem (2.1) we need some

additional local results.

Lemma 6.2. Let Ω ⊂ Rn be a bounded domain and a ∈ BMO(Ω). Suppose the function ϕ :
Rn ×R+ → R+ satisfy the condition (3.9) and f ∈ Mp,ϕ(Ω) with 1 < p < ∞. Then

‖R f ‖Mp,ϕ(Ω) ≤ C ‖ f ‖Mp,ϕ(Ω),

‖[a, R] f ‖Mp,ϕ(Ω) ≤ C ‖a‖∗‖ f ‖Mp,ϕ(Ω), (6.1)

where C = C(n, p, ϕ, Ω, K) is independent of f .

Lemma 6.3. Let the conditions of Lemma 6.1 be satisfied and a ∈ VMO(Rn
+) with VMO-modulus

γa. Then for any ε > 0 there exists a positive number ρ0 = ρ0(ε, γa) such that for any ball Br with a
radius r ∈ (0, ρ0) and all f ∈ Mp,ϕ(Br) the following inequality holds

‖[a, R] f ‖Mp,ϕ(B+
r ) ≤ C ε‖ f ‖Mp,ϕ(B+

r ) (6.2)

with C = C(n, p, ϕ, Ω, K) being independent of f .
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To obtain above estimates it is sufficient to extend K(x, ·) and f (·) as zero outside Ω. This
extension keeps its BMO norm or VMO modulus according to [10].

For any x, y ∈ Rn
+, x̃ = (x′,−xn) define the generalized reflection T (x, y) as

T (x, y) = x− 2xn
an

αβ(y)

ann
αβ(y)

,

T (x) = T (x, x) : Rn
+ → Rn

−,

where an
αβ is the last row of the coefficients matrix (aαβ)α,β. Then there exists a positive constant

C depending on n and Λ, such that

C−1 |x̃− y| ≤ |T (x)| ≤ C |x̃− y|, ∀ x, y ∈ Rn
+.

For any f ∈ Mp,ϕ(Rn
+) and a ∈ BMO(Rn

+) consider the nonsingular integral operators

R̃ f (x) =
∫

Rn
+

K(x, T (x)− y) f (y)dy,

[a, R̃] f (x) = a(x)R̃ f (x)− R̃(a f )(x).

The kernel K(x, T (x)− y) : Rn ×Rn
+ → R is not singular and verifies the conditions 1b and 2

from Calderón–Zygmund kernel. Moreover

|K(x, T (x)− y)| ≤ M|T (x)− y|−n ≤ C |x̃− y|−n

implies

|R̃ f (x)| ≤ C
∫

Rn
+

| f (y)|
|x̃− y|n dy,

|[a, R̃] f (x)| ≤ C
∫

Rn
+

|a(x)− a(y)|| f (y)|
|x̃− y|n dy,

where constant C is independent of f .
The following estimates are simple consequence of the previous results.

Lemma 6.4. Let ϕ be measurable function satisfying condition (6.1) and a ∈ BMO(Ω), p ∈ (1, ∞).
Then the operator R̃ f and [a, R̃] f are continuous in Mp,ϕ(Rn

+) and for all f ∈ Mp,ϕ(Rn
+) the following

holds

‖R̃ f ‖Mp,ϕ(Rn
+)
≤ C ‖ f ‖Mp,ϕ(Rn

+)
,

‖[a, R̃] f ‖Mp,ϕ(Rn
+)
≤ C ‖a‖∗‖ f ‖Mp,ϕ(Rn

+)
,

(6.3)

where constants C are dependent on known quantities only.

Lemma 6.5. Let ϕ be measurable function satisfying condition (6.1), a ∈ VMO(Rn
+) with VMO-

modulus γa and p ∈ (1, ∞). Then for any ε > 0 there exists a positive number ρ0 = ρ0(ε, γa) such
that for any ball B+

r with a radius r ∈ (0, ρ0) and all f ∈ Mp,ϕ(B+
r ) the following holds

‖[a, R̃] f ‖Mp,ϕ(B+
r ) ≤ C ε ‖ f ‖Mp,ϕ(B+

r ) (6.4)

where C is independent of ε, f and r.

The proof is as in [9].
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7 Boundary estimates of solutions

We formulate the problem (2.1) again. We consider the Dirichlet problem for linear nondiver-
gent equation of order 2m

Lu(x) = ∑
|α|,|β|≤m

aαβ(x)DαDβu(x) = f (x), x ∈ Ω,

u ∈W2m
p,ϕ(Ω) ∩

◦
Wm

p (Ω), p ∈ (1, ∞) (7.1)

subject to the following conditions: there exists a constant λ > 0 such that

λ−1|ξ|2m ≤ ∑
|α|,|β|≤m

aαβξαξβ ≤ λ|ξ|2m

aαβ(x) = aβα(x), |α|, |β| ≤ m,
(7.2)

i.e. the operator L has uniform ellipticity. The last assumption implies immediately essential
boundedness of the coefficients aαβ(x) ∈ L∞(Ω) and aαβ(x) ∈ VMO(Ω), f ∈ Mp,ϕ(Ω) with
1 < p < ∞, ϕ : Ω×R+ → R+ is measurable.

To prove a local boundary estimate for the norm DαDβu we define the space W2m,γ0
p (B+

r )

as a closure of Cγ0 = {u ∈ C∞
0 (B(x0, r)) : Dαu(x) = 0 for xn ≤ 0} with respect to the norm

of W2m
p .

Theorem 7.1 (Boundary estimate). Suppose that u ∈ W2m,γ0
p (B+

r ) and Lu ∈ Mp,ϕ(B+
r ) with

1 < p < ∞ and ϕ satisfies (6.1). Then DαDβu(x) ∈ Mp,ϕ(B+
r ), |α|, |β| ≤ m and for each ε > 0 there

exists r0(ε) such that
‖DαDβu‖Mp.ϕ(B+

r ) ≤ C ‖Lu‖Mp.ϕ(B+
r ) (7.3)

for any r ∈ (0, r0).

Proof. For u ∈W2m,γ0
p (B+

r ) the boundary representation formula holds (see [29])

DαDβu(x) = P.V.
∫

B+
r

DαDβΓ(x, x− y)Lu(y)dy

+ P.V.
∫

B+
r

DαDβΓ(x, x− y)[aαβ(x)− aαβ(y)]DαDβu(y)dy

+ Lu(x)
∫

Sn−1
DαΓ(x, y)yidσy + Iα,β(x), (7.4)

∀ i = 1, n, |α|, |β| ≤ m, where we have set

Iα,β(x) =
∫

B+
r

DαDβ(x, T (x)− y)Lu(y)dy

+
∫

B+
r

DαDβ(x, T (x)− y)[aαβ(x)− aαβ(y)]DαDβu(y)dy,

|α|, |β| ≤ m− 1,

Iα,m(x) = Im,α(x)

=
∫

B+
r

DαDβ(x, T (x)− y)(DmT (x))`{[aαβ(x)− aαβ(y)]DαDβu(y) + Lu(y)}dy,

Imm(x) =
∫

B+
r

DαDβ(x, T (x)− y)(DmT (x))`(DmT (x))s

× {[aαβ(x)− aαβ(y)]DαDβu(y) + Lu(y)}dy,
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where DmT (x) = ((DmT (x))1, . . . , (DmT (x))n) = T (`n, x). Applying estimates (6.3), (6.4)
and taking into account the VMO properties of the coefficients aαβ’s, it is possible to choose r0

so small that
‖DαDβu‖Mp,ϕ(B+

r ) ≤ C ‖Lu‖Mp,ϕ(B+
r )

for each r < r0. For an arbitrary matrix function w = {wij}n
i,j=1 ∈ [Mp,ϕ(B+

r )]
n2

define

Sijαβ(wαβ)(x) = [aαβ, Bij]wαβ(x), i, j = 1, n, |α| ≤ m, |β| ≤ m,

S̃ijαβ(wαβ)(x) = [aαβ, B̃ij]wαβ(x), i, j = 1, n− 1, |α| ≤ m, |β| ≤ m,

S̃inαβ(wαβ)(x) = [aαβ, B̃ij]wαβ(DnT (x))`, i, j = 1, n, |α| ≤ m, |β| ≤ m,

S̃nnαβ(wαβ)(x) = [aαβ, B̃`s]wαβ(DnT (x))`(DnT (x))s, |α| ≤ m, |β| ≤ m.

From (6.2) and (6.4) we can take r so small that

n

∑
i,j=1

∑
|α|,|β|≤m

‖Sijαβ + S̃ijαβ‖ < 1. (7.5)

Now given u ∈W2m,γ0
p (B+

r ) with Lu ∈ Mp,ϕ(B+
r ) we set

H̃(x) = RLu(x) + R̃Lu(x) + R̃Lu(x)(DnT (x))`

+ R̃`sLu(x)(DnT (x))`(DnT (x))s + Lu(x)
∫

Sn−1
DαΓ(x, y)yidσy.

Then estimates (6.1) and (6.3) imply H̃ ∈ Mp,ϕ(B+
r ). Define the operator

Uw =

{
∑

|α|,|β|≤m

(
Sijαβ(wαβ) + S̃ijαβ(wαβ) + H̃ij(x)

)}n

i,j=1

.

By virtue of (7.5) it is a contraction mapping in [Mp,ϕ(B+
r )]

n2
and there is a unique fixed point

w̃ = {w̃αβ}n
|α|,|β|≤m such that Uw̃ = w̃. On the other hand, it follows from the representation

formula (7.4) that also DαDβu = {DαDβu}|α|,|β|≤m is a fixed point of U. Hence DαDβu = w̃,
DαDβu ∈ Mp,ω(B+

r ) and estimate (7.3) holds. Thus the theorem is proved.

Theorem 7.2. Let operator L in problem (7.1) be uniformly elliptic and aαβ ∈ VMO(Ω). Then for
any function f ∈ Mp,ϕ(Ω) the unique solution of the problem (7.1) has 2m derivatives in Mp,ϕ(Ω).
Moreover, ∥∥∥∥ ∑

|α|,|β|≤m
DαDβu

∥∥∥∥
Mp,ϕ(Ω)

≤ C
(
‖u‖Mp,ϕ(Ω) + ‖ f ‖Mp,ϕ(Ω)

)
(7.6)

with the constant C depends on known quantities.

Proof. Since Mp,ϕ(Ω) ⊂ Lp(Ω) the problem (7.1) is uniquely solvable in the Sobolev space
W2m

p (Ω)∩
◦

Wm
p (Ω) according to [2] and [11]. By local flattering of the boundary, covering with

semi-balls, taking a partition of unity subordinated to that covering and applying of estimate
(7.3) we get a boundary a priori estimate that unified with (3.11) ensures validity of (7.6).
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