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Abstract. The standard methods of applying iterative techniques do not apply when
the nonlinear term is neither monotonic (corresponding to an increasing or decreasing
operator) nor Lipschitz (corresponding to a condensing operator). However, by apply-
ing the Layered Compression–Expansion Theorem in conjunction with an alternative
inversion technique, we show how one can apply monotonicity techniques to a right
focal boundary value problem.
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1 Introduction

In the Layered Compression–Expansion Fixed Point Theorem [1] it was shown that, if the
operator T = R + S and one could find r∗ and s∗ such that

R(r∗ + s∗) = r∗ and S(r∗ + s∗) = s∗,

then x∗ = r∗ + s∗ is a fixed point of T, since

Tx∗ = Rx∗ + Sx∗ = R(r∗ + s∗) + S(r∗ + s∗) = r∗ + s∗ = x∗.

To find a solution of a right focal boundary value problem, we will use this fixed point result,
in conjunction with a variation of an alternative inversion technique presented by Avery–
Peterson [2, 3] and Burton–Zhang [4, 5] which converts fixed point problems of the form

x(t) =
∫ 1

0
G(t, s) f (x(s)) ds

into fixed point problems of the form

u(t) = f
(∫ 1

0
G(t, s) u(s) ds

)
.
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In particular, we will apply these modern techniques to the boundary value problem

x′′(t) + f+(x(t)) + f−(x(t)) = 0, t ∈ (0, 1),

x(0) = 0 = x′(1),

where f+ : R→ [0, ∞) is a strictly increasing, differentiable function and f− : R→ [0, ∞) is a
strictly decreasing, differentiable function to arrive at a fixed point problem of the form

u(t) = f+

(∫ 1

0
G(t, s)

(
u(s) + f−

(
f−1
+ (u(s))

))
ds
)

which one can solve by iteration under suitable conditions. In our main results section we
show how to convert the differential equation into a fixed point problem of this form and
conclude with an example.

2 Main results

Let f+ : R → [0, ∞) be a strictly increasing, differentiable function and f− : R → [0, ∞)

be a strictly decreasing, differentiable function and consider the right focal boundary value
problem

x′′(t) + f+(x(t)) + f−(x(t)) = 0, t ∈ (0, 1), (2.1)

x(0) = 0 = x′(1). (2.2)

If we let x = r + s then the right focal boundary value problem (2.1), (2.2) becomes the
equivalent boundary value problem

r′′(t) + f+(r(t) + s(t)) + s′′(t) + f−(r(t) + s(t)) = 0, t ∈ (0, 1), (2.3)

r(0) + s(0) = 0 = r′(1) + s′(1). (2.4)

Any solution of the system of boundary value problems

r′′(t) + f+(r(t) + s(t)) = 0, s′′(t) + f−(r(t) + s(t)) = 0, t ∈ (0, 1), (2.5)

r(0) = 0 = r′(1), s(0) = 0 = s′(1) (2.6)

corresponds to a solution of (2.3), (2.4) which corresponds to a solution of the original focal
boundary value problem (2.1), (2.2). If we let

u(t) = −r′′(t) and v(t) = −s′′(t),

then

r(t) =
∫ 1

0
G(t, τ)u(τ)dτ (2.7)

and

s(t) =
∫ 1

0
G(t, τ)v(τ)dτ; (2.8)

here,
G(t, τ) = min{t, τ}, (t, τ) ∈ [0, 1]× [0, 1], (2.9)
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is the Green’s function for the right focal boundary value problem. Substituting for r, r′′, s and
s′′ in (2.5), (2.6) we arrive at the equivalent fixed point formulation given by

u(t) = f+

(∫ 1

0
G(t, τ)(u(τ) + v(τ))dτ

)
, t ∈ [0, 1] (2.10)

v(t) = f−

(∫ 1

0
G(t, τ)(u(τ) + v(τ))dτ

)
, t ∈ [0, 1]. (2.11)

Since the functions f− and f+ are assumed to be strictly monotonic, the system (2.10), (2.11)
is equivalent to

u(t) = f+

(∫ 1

0
G(t, τ)

(
u(τ) + f−( f−1

+ (u(τ))
)

dτ

)
, t ∈ [0, 1] (2.12)

v(t) = f−( f−1
+ (u(t)), t ∈ [0, 1]. (2.13)

Let E = C[0, 1], P be the subset of nonnegative elements of E, and for u ∈ E define

‖u‖ = max
t∈[0,1]

|u(t)|.

Thus P is a cone in the Banach space E and the norm is a monotonic norm on P. The proof
of our main result hinges on the existence of an equivalent norm which is monotone on P
which is a normality condition on our cone. See Theorem 1.1.1 of Nonlinear problems in abstract
cones [6] for a thorough discussion of normality as well as Theorem 2.1 for its application in
monotone iterative techniques.

Let u ∈ P, and define the operator

A : E→ E

by

(Au)(t) = f+

(∫ 1

0
G(t, τ)

(
u(τ) + f−( f−1

+ (u(τ))
)

dτ

)
, t ∈ [0, 1]. (2.14)

We are now ready to state and prove our main result which provides a new perspective to
the monotone iterative technique presented in Chapter 2 of the Monotone iterative techniques
for nonlinear differential equations [7] monograph due to the form of the nonlinear term ( f =

f+ + f−).

Theorem 2.1. Let G and A be given by (2.9) and (2.14), respectively. Suppose d > 0 with

f+

(
d + f−

(
f−1
+ (d)

)
2

)
≤ d,

and (
f−
(

f−1
+

))′
(z) ≤ −1

for all z ∈ (0, d). Also assume that
f+ : [0, d]→ [0, ∞)

is a strictly increasing, differentiable function and

f− : [0, d]→ [0, ∞)
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is a strictly decreasing, differentiable function. Then the sequence un defined recursively by

u0(t) ≡ d for all t ∈ [0, 1]

and
un+1 = Aun, for n ≥ 0

converges to a fixed point u∗ of the operator A and for v∗ = f−( f−1
+ (u∗)) we have that

x∗ = r∗ + s∗,

where

r∗(t) =
∫ 1

0
G(t, τ)u∗(τ)dτ and s∗(t) =

∫ 1

0
G(t, τ)v∗(τ)dτ,

is a solution of (2.1), (2.2).

Proof. Let d > 0 and suppose that

f+

(
d + f−

(
f−1
+ (d)

)
2

)
≤ d,(

f−
(

f−1
+

))′
(z) ≤ −1,

for all z ∈ (0, d) with
f+ : [0, d]→ [0, ∞)

being a strictly increasing, differentiable function and

f− : [0, d]→ [0, ∞)

being a strictly decreasing, differentiable function. It is a standard exercise by the Arzelà–
Ascoli Theorem to show that A in (2.14) is a completely continuous operator, using the prop-
erties of G in (2.9) and the continuity of f+, f− and f−1

+ . Let

Pd = {x ∈ P : ‖x‖ ≤ d}.

Claim: un is a decreasing sequence and un ∈ Pd.

We proceed by induction. Since f+ is an increasing function, for all t ∈ [0, 1], we have that

u1(t) = Au0(t)

= f+

(∫ 1

0
G(t, τ)

(
d + f−( f−1

+ (d)
)

dτ

)
= f+

(
t(2− t)

(
d + f−

(
f−1
+ (d)

))
2

)

≤ f+

(
d + f−

(
f−1
+ (d)

)
2

)
≤ d = u0(t).
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Hence u1 ≤ u0, and since the norm is monotonic we have that ‖u1‖ ≤ ‖u0‖ = d; consequently
u1 ∈ Pd.

For induction purposes, assume that um ≤ um−1 and um ∈ Pd for all m ≤ n. For every τ ∈ [0, 1]
since un(τ), un−1(τ) ∈ [0, d], by the Mean Value Theorem there is a z ∈ (0, d) such that

f−
(

f−1
+ (un(τ))

)
− f−

(
f−1
+ (un−1(τ))

)
=
(

f−
(

f−1
+

))′
(z)(un(τ)− un−1(τ)).

Since (
f−
(

f−1
+

))′
(z) ≤ −1

for all z ∈ (0, d), we have that

f−
(

f−1
+ (un(τ))

)
− f−

(
f−1
+ (un−1(τ))

)
≤−1(un(τ)−un−1(τ)) = un−1(τ)−un(τ).

It follows that

un(τ) + f−
(

f−1
+ (un(τ))

)
≤ un−1(τ) + f−

(
f−1
+ (un−1(τ))

)
,

and therefore ∫ 1

0
G(t, τ)

(
un(τ) + f−

(
f−1
+ (un(τ))

))
dτ

≤
∫ 1

0
G(t, τ)

(
un−1(τ) + f−

(
f−1
+ (un−1(τ))

))
dτ.

Since f+ is an increasing function, we have

f+

(∫ 1

0
G(t, τ)

(
un(τ) + f−

(
f−1
+ (un(τ))

))
dτ

)
≤ f+

(∫ 1

0
G(t, τ)

(
un−1(τ) + f−

(
f−1
+ (un−1(τ))

))
dτ

)
;

that is,
un+1 ≤ un,

and by the monotonicity of the norm we have that

‖un+1‖ ≤ ‖un‖ ≤ d.

Hence un+1 ∈ Pd. Therefore we have that

{un}∞
n=1

is a monotonic sequence in the bounded, closed subset Pd of the cone P.
Thus, since A in (2.14) is completely continuous with

un+1 = A(un),

there is a subsequence {unk}∞
k=1 with

unk → u∗ ∈ Pd.
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The norm is monotonic, thus we have that

un → u∗ ∈ Pd,

since for any k ∈N, when j ≥ nk we have

‖uj − u∗‖ ≤ ‖unk − u∗‖ since uj − u∗ ≤ unk − u∗.

Therefore u∗ is a fixed point of A, and for

v∗ = f−( f−1
+ (u∗))

we have a solution (u∗, v∗) for (2.10), (2.11). Hence, we have, using (2.7), (2.8), that

x∗ = r∗ + s∗,

where

r∗(t) =
∫ 1

0
G(t, τ)u∗(τ)dτ and s∗(t) =

∫ 1

0
G(t, τ)v∗(τ)dτ,

is a solution of our original focal boundary value problem (2.1), (2.2).

Example 2.2. The function f (x) = x
2 +
√

8e
√

8−
√

x has

f+(x) =
x
2

which is a strictly increasing, differentiable function and

f−(x) =
√

8e
√

8−
√

x

which is a strictly decreasing, differentiable function on (0, 4). Also

f−1
+ (x) = 2x,

and thus (for d = 4)

f+

(
4 + f−

(
f−1
+ (4)

)
2

)
=

(
1
2

)(
4 +
√

8e
√

8−
√

8

2

)
≤ 4

and (
f−
(

f−1
+

))′
(x) =

(
−
√

8e
√

8−
√

2x
√

2x

)
< −1

for all x ∈ (0, 4). Therefore, the sequence un, defined recursively by

u0(t) ≡ 4 for all t ∈ [0, 1]

and
un+1 = Aun, for n ≥ 0,

converges to a fixed point u∗ of the operator A and for

v∗ = f−( f−1
+ (u∗)) =

√
8e
√

8−
√

2u∗ ,

we have that
x∗ = r∗ + s∗,

where

r∗(t) =
∫ 1

0
G(t, τ)u∗(τ)dτ and s(t) =

∫ 1

0
G(t, τ)v∗(τ)dτ,

is a solution of (2.1), (2.2).
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Remark 2.3. While other methods can be applied easily and are straightforward to obtain
existence of solutions for Example 2.2, we chose it as an example illustrating the iteration of
the paper, but for which standard iteration techniques do not apply. Our goal has been to
expand the application of iteration for which computers can play a critical role.
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