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Abstract. In this paper, we study the following Kirchhoff type problem

−
(

a + b
∫

R3
K(x)|∇u|2dx

)
div(K(x)∇u) = λK(x)|x|β|u|q−2u + K(x)|u|4u, x ∈ R3,

where K(x) = exp(|x|α/4) with α ≥ 2, β = (α − 2)(6 − q)/4 and the parameters
a, b, λ > 0. When 6− 4

α < q < 6, we obtain a positive ground state solution for any
λ > 0. When 2 < q < 4, we obtain a positive solution for λ > 0 small enough. In the
proof we use variational methods.

Keywords: Kirchhoff type equation, critical nonlinearity, variational methods.

2010 Mathematics Subject Classification: 35B33, 35J75.

1 Introduction

In this paper, we consider the existence of positive solutions for the following Kirchhoff type
problem

−
(

a + b
∫

R3
K(x)|∇u|2dx

)
div(K(x)∇u) = λK(x)|x|β|u|q−2u + K(x)|u|4u, x ∈ R3, (1.1)

where K(x) = exp(|x|α/4) with α ≥ 2, β = (α− 2)(6− q)/4 and the parameters a, b, λ > 0.
It is well known that Kirchhoff type problems are presented by Kirchhoff in [9] as an

extension of the classical d’Alembert wave equation for free vibrations of elastic strings. When
K(x) ≡ 1, the general Kirchhoff type problem involving critical exponent

−
(

a + b
∫

R3
|∇u|2dx

)
∆u = f (x, u) + u5, x ∈ R3, (1.2)

has been studied by many researchers. Under different assumptions on f (x, u), some inter-
esting studies for (1.2) can be found in [12–14, 23, 25]. There are also several existence results
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for (1.2) on a bounded domain Ω ⊂ R3. For this case, we refer the interested readers to
[4, 10, 11, 16, 22].

On the other hand, as pointed out in [3, 8], one of the motivations for studying problem
(1.1) due to the fact that, for α = q = 2, a = 1, b = 0 and λ = 1/5, (1.1) arises naturally when
one seeks self-similar solutions of the form

w(t, x) = t−1/5u(xt−1/2)

to the evolution equation

wt − ∆w = |w|4w on (0, ∞)×R3.

For more detailed description, see [3, 8].
In [5], Furtado et al. concerned the following equation

− div(K(x)∇u) = λK(x)|x|γ|u|q−2u + K(x)|u|2∗−2u, x ∈ RN , (1.3)

where 2∗ = 2N/(N − 2), N ≥ 3, γ = (α− 2) (2
∗−q)

(2∗−2) and 2 < q < 2∗. In that article, the authors
obtained the existence of a positive solution for (1.3) by using Mountain Pass Theorem. In
particular, when N = 3, they proved that there is a positive solution for large value of λ if
2 < q ≤ 6− 4

α , and no restriction on λ if 6− 4
α < q < 6.

Subsequently, Furtado et al. [6] studied the number of solutions for the following problem

− div
(
K(x)∇u

)
= K(x) f (u) + λK(x)|u|2∗−2u, x ∈ RN , (1.4)

where f (u) is superlinear and subcritical. More precisely, for any given k ∈ N, the authors
shown that there exists λ∗ = λ∗(k) > 0 such that (1.4) has at least k pairs of solutions for
λ ∈

(
0, λ∗(k)

)
. But they can not give any information about the sign of these solutions.

Recently, we investigated the following Kirchhoff type of problem with concave-convex
nonlinearities and critical exponent (see [21])

−
(

a + ε
∫

R3
K(x)|∇u|2dx

)
div(K(x)∇u) = λK(x) f (x)|u|q−2u + K(x)|u|4u, x ∈ R3,

where 1 < q < 2, and ε > 0 is small enough. Under some conditions on f (x), we gave the
existence of two positive solutions and obtained uniform lower estimates for extremal values
for the problem. For more results of related problem, please see [2,7,17–20] and the references
therein.

From these results above, we do not see any existence of positive solutions for problem
(1.1) in the case of 2 < q < 6, the term

∫
K(x)|∇u|2dx and critical nonlinearity, hence it is

natural to ask what the case would be. Our aim of this paper is to show how variational
methods can be employed to establish some existence of positive solutions for the Kirchhoff
type problem (1.1).

In order to state our main results, let H denote the Hilbert space obtained as the completion
of C∞

0 (R3) with respect to the norm

‖u‖ =
( ∫

R3
K(x)|∇u|2dx

)1/2

.

Define the weighted Lebesgue spaces for each q ∈ [2, 6]

Lq
K(R

3) =

{
u measurable in R3 :

∫
R3

K(x)|x|β|u|qdx < ∞
}
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with the norm

‖u‖q =

( ∫
R3

K(x)|x|β|u|qdx
)1/q

.

By [5, Proposition 2.1], we have that the embedding H ↪→ Lq
K(R

3) is continuous for 2 ≤ q ≤ 6,
and compact for 2 ≤ q < 6. This enables us to define for each q ∈ [2, 6]

Sq = inf
{ ∫

R3
K(x)|∇u|2dx : u ∈ H,

∫
R3

K(x)|x|β|u|qdx = 1
}

. (1.5)

In particular, when q = 6, we put S = S6 for simplicity. It is worth mentioning that this
constant is equal to the best constant of the embedding D1,2(R3) ↪→ L6(R3), see [2].

By the above embedding, it is easy to see the following functional associated to (1.1)

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − λ

q

∫
R3

K(x)|x|β|u|qdx− 1
6

∫
R3

K(x)|u|6dx

is well defined on H and I ∈ C1(H, R). It is commonly known that there exists a one to one
correspondence between the critical points of I and the weak solutions of (1.1). Here, we say
u ∈ H is a weak solution of (1.1), if for any φ ∈ H, there holds(

a + b‖u‖2) ∫
R3

K(x)∇u∇φdx− λ
∫

R3
K(x)|x|β|u|q−2uφdx−

∫
R3

K(x)|u|4uφdx = 0.

Additionally, we say a nontrivial solution u ∈ H to (1.1) is a ground state solution, if I(u) ≤
I(v) for any nontrivial solution v ∈ H to (1.1).

Our main results for (1.1) are the following theorems.

Theorem 1.1. Assume that a, b > 0, α ≥ 2 and 6− 4
α < q < 6. Then for any λ > 0, problem (1.1)

has at least a positive ground state solution.

Theorem 1.2. Assume that a, b > 0, α ≥ 2 and 2 < q < 4. Then there exists λ∗ > 0 such that for
any λ ∈ (0, λ∗), problem (1.1) has at least a positive solution.

Kirchhoff type problems are often treated as nonlocal in view of the presence of the term∫
K(x)|∇u|2dx which implies that equation (1.1) is no longer a pointwise identity. And so,

the methods employed in [5] cannot be used here. For Theorem 1.1, motivated by [23] (see
also [15]), we shall use Nehari Manifold method to prove the existence of a positive ground
state solution for problem (1.1). For Theorem 1.2, we cannot proceed as in proof of Theorem
1.1 since 2 < q < 4. We also remark that the method used in [5] by letting λ sufficiently large
do not apply here, due to the appearance of the term

∫
K(x)|∇u|2dx. On the contrary, we

overcome this difficulty by letting λ small enough, which is inspired by [12].
This paper is organized as follows. In the next section, we give some notations and pre-

liminaries. Then we prove Theorem 1.1 in Section 3, and Theorem 1.2 in Section 4.

2 Notations and preliminaries

Throughout this paper, we write
∫

u instead of
∫

R3 u(x)dx. Br(x) denotes a ball centered at x
with radius r > 0. Let→ denote strong convergence. Let ⇀ denote weak convergence. O(εt)

denotes |O(εt)|/εt ≤ C as ε → 0, and o(εt) denotes |o(εt)|/εt → 0 as ε → 0. All limitations
hold as n → ∞ unless otherwise stated. C and Ci denote various positive constants whose
values may vary from line to line.
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Lemma 2.1. Let a, b > 0 and 2 < q < 6, then the functional I satisfies the mountain-pass geometry:

(i) There exist ρ, θ > 0 such that I(u) ≥ θ > 0 for any ‖u‖ = ρ.

(ii) There exists e ∈ H with ‖e‖ > ρ such that I(e) < 0.

Proof. (i) By (1.5), we have that

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − λ

q

∫
K(x)|x|β|u|q − 1

6

∫
K(x)|u|6

≥ a
2
‖u‖2 − λ

q
S−q/2

q ‖u‖q − 1
6

S−3‖u‖6.

Therefore, since 2 < q < 6, it follows that there are ρ, θ > 0 such that I(u) ≥ θ > 0 for any
‖u‖ = ρ.

(ii) Let u ∈ H \ {0}. Thus, we have for 2 < q < 6

lim
t→+∞

I(tu) = lim
t→+∞

[
a
2

t2‖u‖2 +
b
4

t4‖u‖4 − λ

q
tq
∫

K(x)|x|β|u|q − 1
6

t6
∫

K(x)|u|6
]
= −∞.

Thus, there exists e := tu such that ‖e‖ > ρ and I(e) < 0.

3 Positive ground state solution for 6 − 4
α < q < 6

In this section, we will employ Nehari method to prove the existence of a positive ground state
solution of the considered problem for 6− 4

α < q < 6. And, suppose that the assumptions of
Theorem 1.1 hold throughout this section.

Define the Nehari manifold

Λ = {u ∈ H \ {0} : G(u) = 0},

where
G(u) = 〈I′(u), u〉 = a‖u‖2 + b‖u‖4 − λ

∫
K(x)|x|β|u|q −

∫
K(x)|u|6.

Let
c∗ = inf

u∈Λ
I(u) (3.1)

be the infimum of I on the Nehari manifold.

Lemma 3.1. For any u ∈ Λ, there are δ, σ > 0 such that ‖u‖ ≥ δ and 〈G′(u), u〉 ≤ −σ.

Proof. For any u ∈ Λ,

0 = 〈I′(u), u〉

= a‖u‖2 + b‖u‖4 − λ
∫

K(x)|x|β|u|q −
∫

K(x)|u|6

≥ a‖u‖2 − λS−q/2
q ‖u‖q − S−3‖u‖6.
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From q > 6− 4
α and α ≥ 2, we have q > 4 and hence, there exists some δ > 0 such that

‖u‖ ≥ δ. Furthermore,

〈G′(u), u〉 = 2a‖u‖2 + 4b‖u‖4 − qλ
∫

K(x)|x|β|u|q − 6
∫

K(x)|u|6

= (2a− qa)‖u‖2 + (4b− qb)‖u‖4 − (6− q)
∫

K(x)|u|6

< (2a− qa)‖u‖2

< −(qa− 2a)δ2 < 0.

Set σ = (qa− 2a)δ2, this finishes the proof.

Lemma 3.2. The functional I is coercive and bounded from below on Λ.

Proof. For u ∈ Λ, it follows from Lemma 3.1 and 6− 4
α < q < 6 that

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − λ

q

∫
K(x)|x|β|u|q − 1

6

∫
K(x)|u|6

=

(
a
2
− a

q

)
‖u‖2 +

(
b
4
− b

q

)
‖u‖4 +

(
1
q
− 1

6

) ∫
K(x)|u|6

≥
(

a
2
− a

q

)
‖u‖2

≥
(

a
2
− a

q

)
δ2 > 0.

Thus, the coercivity and lower boundedness of I hold. The proof of Lemma 3.2 is completed.

Lemma 3.3. Given u ∈ Λ, there exist ρu > 0 and a continuous function gρu : Bρu(0) → R+ defined
for w ∈ H, w ∈ Bρu(0) such that

gρu(0) = 1, gρu(w)(u− w) ∈ Λ

and

〈g′ρu
(0), φ〉 =

(2a + 4b‖u‖2)
∫

K(x)∇u∇φ− qλ
∫

K(x)|x|β|u|q−2uφ− 6
∫

K(x)|u|4uφ

a‖u‖2 + 3b‖u‖4 − λ(q− 1)
∫

K(x)|x|β|u|q − 5
∫

K(x)|u|6
.

Proof. Fix u ∈ Λ and define F : R+ × H → R as below

F(t, w) = at‖u− w‖2 + bt3‖u− w‖4 − λtq−1
∫

K(x)|x|β|u− w|q − t5
∫

K(x)|u− w|6.

Since u ∈ Λ, we have F(1, 0) = 0. Moreover, using Lemma 3.1, we also have for 6− 4
α < q < 6

Ft(1, 0) = a‖u‖2 + 3b‖u‖4 − λ(q− 1)
∫

K(x)|x|β|u|q − 5
∫

K(x)|u|6

= a(2− q)‖u‖2 + b(4− q)‖u‖4 − (6− q)
∫

K(x)|u|6

< a(2− q)‖u‖2

≤ a(2− q)δ2 < 0.
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Using the implicit function theorem for F at the point (1, 0), we can conclude that there exists
ρu > 0 satisfying for w ∈ H, ‖w‖ < ρu, the equation F(t, w) = 0 has a unique continuous
solution t = gρu(w) > 0 with gρu(0) = 1. Since F(gρu(w), w) = 0 for w ∈ H, ‖w‖ < ρu, we get

agρu(w)‖u− w‖2 + bg3
ρu
(w)‖u− w‖4 − λgq−1

ρu (w)‖u− w‖q
q − g5

ρu
(w)‖u− w‖6

6

=
a‖gρu(w)(u− w)‖2 + b‖gρu(w)(u− w)‖4 − λ‖gρu(w)(u− w)‖q

q − ‖gρu(w)(u− w)‖6
6

gρu(w)

= 0,

that is,
gρu(w)(u− w) ∈ Λ, for all w ∈ H, ‖w‖ < ρu.

Furthermore, we have for all φ ∈ H, r > 0

F(1, 0 + rφ)− F(1, 0)

= a‖u− rφ‖2 + b‖u− rφ‖4 − λ
∫

K(x)|x|β|u− rφ|q −
∫

K(x)|u− rφ|6

− a‖u‖2 − b‖u‖4 + λ
∫

K(x)|x|β|u|q +
∫

K(x)|u|6

= − a
∫

K(x)
(
2r∇u∇φ− r2|∇φ|2

)
− b

[
2
∫

K(x)|∇u|2
∫

K(x)
(
2r∇u∇φ− r2|∇φ|2

)
−
( ∫

K(x)
(
2r∇u∇φ− r2|∇φ|2

))2
]

− λ
∫

K(x)|x|β
(
|u− rφ|q − |u|q

)
−
∫

K(x)
(
|u− rφ|6 − |u|6

)
and consequently

〈Fw, φ〉|t=1,w=0

= lim
r→0

F(1, 0 + rφ)− F(1, 0)
r

= − (2a + 4b‖u‖2)
∫

K(x)∇u∇φ + qλ
∫

K(x)|x|β|u|q−2uφ + 6
∫

K(x)|u|4uφ.

Thus,

〈g′ρu
(0), φ〉 = −〈Fw, φ〉

Ft

∣∣∣∣
t=1,w=0

=
(2a + 4b‖u‖2)

∫
K(x)∇u∇φ− qλ

∫
K(x)|x|β|u|q−2uφ− 6

∫
K(x)|u|4uφ

a‖u‖2 + 3b‖u‖4 − λ(q− 1)
∫

K(x)|x|β|u|q − 5
∫

K(x)|u|6
.

This completes the proof of Lemma 3.3.

Lemma 3.4. For any u ∈ H \ {0}, there exists a unique t(u) > 0 satisfying t(u)u ∈ Λ and
I(t(u)u) = maxt>0 I(tu).

Proof. The proof is similar to [24, Lemma 4.1], and is omitted here.

Lemma 3.5. c∗ < c1 := abS3

4 + b3S6

24 + (b2S4+4aS)3/2

24 .
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Proof. Let ϕ(x) ∈ C∞
0 (R3) be a cut-off function satisfying ϕ(x) ≡ 1 in Bη(0), ϕ(x) ≡ 0 outside

B2η(0) and 0 ≤ ϕ ≤ 1. Define

uε(x) = K−1/2ϕ(x)
(

1
ε + |x|2

)1/2

,

and set

vε(x) =
uε(x)
‖uε‖6

.

According to [2], we have that

‖vε‖2 =
∫

K(x)|∇vε|2 = S + O(ε1/2) + O(εα/2) (3.2)

and
‖uε‖6

6 =
∫

K(x)|uε|6 = ε−3/2 A0 + O(1), with A0 =
∫ 1

(1 + |x|2)3 . (3.3)

Then, we obtain the following estimate

‖uε‖q
6 =

(
ε−3/2A0 + O(1)

)q/6
= Aq/6

0 ε−q/4 + O
(

ε−(q−6)/4
)

. (3.4)

In addition, we also have∫
K(x)|x|β|uε|q =

∫
B2η(0)

K(x)|x|βK(x)−q/2 ϕq(x)
(ε + |x|2)q/2

≥ C
∫

B2η(0)

|x|β ϕq(x)
(ε + |x|2)q/2

= C
( ∫

B2η(0)

|x|β
(ε + |x|2)q/2 +

∫
B2η(0)

|x|β (ϕq(x)− 1)
(ε + |x|2)q/2

)
= C

(
ε

β
2−

q
2+

3
2

∫
B2η/

√
ε(0)

|x|β
(1 + |x|2)q/2 +

∫
B2η(0)

|x|β (ϕq(x)− 1)
(ε + |x|2)q/2

)
= O

(
ε

β
2−

q
2+

3
2

)
+ O(1),

whenever 6α
2+α < q < 6. This and (3.4) imply that for 6α

2+α < q < 6 and ε small enough, we
have ∫

K(x)|x|β|vε|q =
∫

K(x)|x|βuq
ε

‖uε‖q
6

≥
O
(

ε
β
2−

q
2+

3
2

)
+ O(1)

Aq/6
0 ε−q/4 + O

(
ε−(q−6)/4

)
= O

(
ε

β
2−

q
4+

3
2

)
+ O

(
εq/4

)
.

(3.5)

By Lemma 3.4 and the definition of c∗, it is easy to see that Lemma 3.5 follows if we can show
that

sup
t>0

I(tvε) <
abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
.
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To this goal, let

g(t) = I(tvε) =
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 − λ

q
tq
∫

K(x)|x|βvq
ε −

t6

6
, t ≥ 0

and

g1(t) =
a
2

t2‖vε‖2 +
b
4

t4‖vε‖4 − t6

6
, t ≥ 0.

Note that ‖vε‖6 = 1. Thus, by Lemma 3.4, we know that g(t) has a unique maximum point
tε := t(vε) > 0. We claim that tε ≥ C0 > 0 for some positive constant C0 and any ε > 0.
Otherwise, there is some sequence εn → 0 satisfying tεn → 0 and g(tεn) = supt>0 I(tvεn).
Then, by Lemma 2.1 and the continuity of I, we conclude that

0 < θ ≤ c∗ ≤ lim
n→∞

I(tεn vεn) = 0

which is a contradiction. Hence, the claim holds.
By (3.2), we also have that

sup
t>0

g1(t) =
ab‖vε‖6

4
+

b3‖vε‖12

24
+

(
b2‖vε‖8 + 4a‖vε‖2)3/2

24

=
abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
+ O(ε1/2).

(3.6)

Obviously, we have 6− 4
α > 6α

2+α provided α ≥ 2. Furthermore, by using (3.5) and (3.6), we
obtain for 6− 4

α < q < 6 and ε small enough

sup
t>0

I(tvε) = I(tεvε)

= g1(tε)−
λ

q
tq
ε

∫
K(x)|x|βvq

ε

≤ sup
t>0

g1(t)−
λ

q
Cq

0

∫
K(x)|x|βvq

ε

≤ abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
+ O(ε1/2)−O

(
ε

β
2−

q
4+

3
2

)
+ O

(
ε

q
4

)
<

abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
.

This completes the proof.

Lemma 3.6. Let {un} ⊂ Λ be a (PS)c∗ sequence for I with c∗ < c1, where c1 is given in Lemma 3.5.
Then {un} has a convergent subsequence.

Proof. Let {un} ⊂ Λ be a (PS)c∗ sequence for I, namely

lim
n→∞

I(un) = c∗ and lim
n→∞

I′(un) = 0. (3.7)

Firstly, we show that ‖un‖ is bounded. By (3.7), we have that for q > 4

c∗ + 1 + o(1)‖un‖ ≥ I(un)−
1
4
〈I′(un), un〉

=
a
4
‖un‖2 −

(
λ

q
− λ

4

) ∫
K(x)|x|β|un|q −

(
1
6
− 1

4

) ∫
K(x)|un|6

≥ a
4
‖un‖2
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which implies that ‖un‖ is bounded. Up to a subsequence (still denoted by {un}), we may
assume that

un ⇀ u∗ in H,

un → u∗ in Lr
K(R

3), 2 ≤ r < 6,

un → u∗ a.e. on R3

and
‖un‖2 → ι2.

Since un ∈ Λ, it then follows from Lemma 3.1 that ι2 > 0.
Secondly, we prove that u∗ 6≡ 0. If not, we have u∗ ≡ 0 and so

∫
K(x)|x|β|un|q = o(1). On

the other hand, by (3.7) and the boundedness of {un}, we have

o(1) = 〈I′(un), un〉 = a‖un‖2 + b‖un‖4 − λ
∫

K(x)|x|β|un|q −
∫

K(x)|un|6

and thus from (1.5),

a‖un‖2 + b‖un‖4 =
∫

K(x)|un|6 + o(1) ≤ S−3‖un‖6 + o(1). (3.8)

Letting n→ ∞ in (3.8), we have

ι2 ≥ bS3 +
√

b2S6 + 4aS3

2
.

Consequently,

c∗ = lim
n→∞

I(un)

= lim
n→∞

[ a
2
‖un‖2 +

b
4
‖un‖4 − λ

q

∫
K(x)|x|β|un|q −

1
6

∫
K(x)|un|6

]
= lim

n→∞

[ a
3
‖un‖2 +

b
12
‖un‖4 − λ

6− q
6q

∫
K(x)|x|β|un|q

]
=

a
3

ι2 +
b

12
ι4

≥ c1

in contradiction to the assumption c∗ < c1.
Finally, we claim that ‖un‖2 → ‖u∗‖2. Indeed, if to the contrary, it follows from Fatou

Lemma that
ι2 > ‖u∗‖2. (3.9)

Since I′(un)→ 0, we also have for all v ∈ H

o(1) =
(
a + b‖un‖2) ∫ K(x)∇un∇v− λ

∫
K(x)|x|β|un|q−2unv−

∫
K(x)|un|4unv.

Then, passing to the limit as n→ ∞, we get

0 =
(
a + bι2

) ∫
K(x)∇u∗∇v− λ

∫
K(x)|x|β|u∗|q−2u∗v−

∫
K(x)|u∗|4u∗v.
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Taking v = u∗ in the above equation, we obtain

0 =
(
a + bι2

)
‖u∗‖2 − λ

∫
K(x)|x|β|u∗|q −

∫
K(x)|u∗|6.

This together with (3.9) imply that 〈I′(u∗), u∗〉 < 0. By Lemma 3.4, then it is easy to see that
there exists t0 ∈ (0, 1) such that 〈I′(t0u∗), t0u∗〉 = 0. Therefore,

c∗ ≤ sup
t>0

I(tu∗)

= I(t0u∗)

= I(t0u∗)−
1
4
〈I′(t0u∗), t0u∗〉

=
a
4

t2
0‖u∗‖2 +

(
1
4
− 1

q

)
tq
0

∫
K(x)|x|β|u∗|q +

1
12

t6
0

∫
K(x)|u∗|6

<
a
4
‖u∗‖2 +

(
1
4
− 1

q

) ∫
K(x)|x|β|u∗|q +

1
12

∫
K(x)|u∗|6

≤ lim inf
n→∞

[
a
4
‖un‖2 +

(
1
4
− 1

q

) ∫
K(x)|x|β|un|q +

1
12

∫
K(x)|un|6

]
= lim inf

n→∞

[
I(un)−

1
4
〈I′(un), un〉

]
= c∗

a contradiction. Hence, ‖un‖ → ‖u∗‖. This and the weak convergence of {un} in H implies
that un → u∗ in H, and Lemma 3.6 is proved.

Lemma 3.7. For any λ > 0, there exists a sequence {un} ⊂ Λ such that:

un ≥ 0, I(un)→ c∗ and I ′(un)→ 0.

Proof. In view of Lemma 3.2, we can apply Ekeland variational principle to construct a mini-
mizing sequence {un} ⊂ Λ satisfying the following properties:

(i) I(un)→ c∗,

(ii) I(z) ≥ I(un)− 1
n‖un − z‖ for all z ∈ Λ.

Since I(|u|) = I(u), we can assume that un ≥ 0 on R3. Let 0 < ρ < ρn ≡ ρun , gn ≡ gun , where
ρun and gun are defined according to Lemma 3.3. Let vρ = ρu with ‖u‖ = 1. Fix n and let
zρ = gn(vρ)(un − vρ). Since zρ ∈ Λ, by the property (ii), one gets

I(zρ)− I(un) ≥ −
1
n
‖zρ − un‖.

It then follows from the definition of Fréchet derivative that

〈I′(un), zρ − un〉+ o(‖zρ − un‖) ≥ −
1
n
‖zρ − un‖.

Thus,

〈I′(un),−vρ +
(

gn(vρ)− 1
)
(un − vρ)〉 ≥ −

1
n
‖zρ − un‖+ o(‖zρ − un‖)
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which implies

−ρ〈I′(un), u〉+
(

gn(vρ)− 1
)
〈I′(un), un − vρ〉 ≥ −

1
n
‖zρ − un‖+ o(‖zρ − un‖).

Therefore,

〈I′(un), u〉 ≤ 1
n
‖zρ − un‖

ρ
+

o(‖zρ − un‖)
ρ

+
gn(vρ)− 1

ρ
〈I′(un), un − vρ〉. (3.10)

From ‖u‖ = 1, Lemma 3.3 and the boundedness of {un}, it follows that

lim
ρ→0

|gn(vρ)− 1|
ρ

= lim
ρ→0

|gn(0 + ρu)− gn(0)|
ρ

= 〈g′n(0), u〉
≤ ‖g′n(0)‖
≤ C1.

Note that

‖zρ − un‖ = ‖gn(vρ)(un − vρ)− (un − vρ)− vρ‖
= ‖

(
gn(vρ)− 1

)
(un − vρ)− vρ‖

≤ |gn(vρ)− 1| · ‖un − vρ‖+ ‖vρ‖
= |gn(vρ)− 1|C2 + ρ.

Furthermore, for fixed n, since 〈I′(un), un〉 = 0 and (un − vρ)→ un as ρ→ 0, by letting ρ→ 0
in (3.10) we can deduce that

〈I′(un), u〉 ≤ C
n

,

which shows that I′(un)→ 0. This finishes the proof of Lemma 3.7.

With the previous preparations, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.7, we see that there exists a minimizing sequence {un} ⊂ Λ
satisfying un ≥ 0, I(un) → c∗ and I′(un) → 0 for any λ > 0. It then follows from Lemma 3.6
that un → u∗, I(u∗) = c∗ and u∗ ≥ 0 is a weak solution of (1.1). By standard elliptic regularity
argument and the strong maximum principle we have that u∗ > 0. This and the definition of
c∗ imply that u∗ is a positive ground state solution of (1.1) and the proof is complete.

4 Positive solution for 2 < q < 4

In this section, we apply Mountain Pass Theorem to obtain the existence of a positive solution
for problem (1.1) when 2 < q < 4.

Define
c̃∗ := inf

γ∈Γ
max
t∈[0,1]

I (γ(t)) (4.1)

where
Γ := {γ ∈ C ([0, 1], H) : γ(0) = 0 and I (γ(1)) < 0}.
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Lemma 4.1. Assume 2 < q < 4. Then there exists λ∗ > 0 satisfying for all λ ∈ (0, λ∗)

c̃∗ < c1 − D0λ
4

4−q

where c1 given in Lemma 3.5 and D0 = 4−q
4

( 3q
b

) q
4−q
[ (6−q)

6q S−q/2
q

] 4
4−q .

Proof. We first recall that

uε(x) = K−1/2ϕ(x)
(

1
ε + |x|2

)1/2

. (4.2)

According to [5], we have that

‖uε‖2 =
∫

K(x)|∇uε|2 = ε−1/2A1 + O(1), with A1 =
∫ |x|2

(1 + |x|2)3 . (4.3)

Let
h(t) =

a
2

t2‖uε‖2 +
b
4

t4‖uε‖4 − 1
6

t6
∫

K(x)|uε|6, t ≥ 0

By (3.3), (4.3) and the fact A1A−1/3
0 = S (see [1]), we have that for ε > 0 small enough

sup
t>0

h(t) =
ab‖uε‖6

4‖uε‖6
6
+

b3‖uε‖12

24‖uε‖12
6

+

(
b2‖uε‖8 + 4a‖uε‖2‖uε‖6

6
)3/2

24‖uε‖12
6

=
ab
4

(
A1 + O(ε1/2)

)3

A0 + O(ε3/2)
+

b3

24

(
A1 + O(ε1/2)

)6

(A0 + O(ε3/2))
2

+
1
24

[
b2 (A1 + O(ε1/2)

)4
+ 4a

(
A1 + O(ε1/2)

) (
A0 + O(ε3/2)

)]3/2

(A0 + O(ε3/2))
2

=
abA3

1A−1
0

4
+

b3A6
1A−2

0
24

+

(
b2A4

1A−4/3
0 + 4aA1A−1/3

0

)3/2

24
+ O(ε1/2) + O(ε3/2)

=
abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
+ O(ε1/2).

(4.4)

By the definition of c1 and D0, we may choose small λ1 such that for all λ ∈ (0, λ1),

c1 − D0λ
4

4−q > 0. (4.5)

Clearly, limt→0+ h(t) = 0 and hence, there exists t1 > 0 satisfying for all λ ∈ (0, λ1)

sup
0<t≤t1

I(tuε) < c1 − D0λ
4

4−q . (4.6)

We consider the case t > t1 next. Let ε < η2, then∫
K(x)|x|β|uε|q ≥

∫
Bη(0)

K(x)|x|βK(x)−q/2ϕq(x)
(ε + |x|2)q/2

≥ exp
((

1− q
2

)
ηα/4

) ∫
Bη(0)

|x|β
(ε + |x|2)q/2

≥ exp
((

1− q
2

)
ηα/4

) 1
(2η2)q/2

∫
Bη(0)
|x|β

= exp
((

1− q
2

)
ηα/4

) 4π

(2η2)q/2

∫ η

0
r2+βdr

=
4πη3+β−q

(3 + β)2q/2 exp
((

1− q
2

)
ηα/4

)
.

(4.7)
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By using (4.4) and (4.7), we have for all ε = λ
8

4−q ∈ (0, η) and t > t1

I(tuε) = h(t)− λ
tq

q

∫
K(x)|x|βuq

ε

≤ sup
t>0

h(t)− λ
tq
1
q

∫
K(x)|x|βuq

ε

≤ abS3

4
+

b3S6

24
+

(b2S4 + 4aS)3/2

24
+ O(ε1/2)

− λ
tq
1
q

4πη3+β−q

(3 + β)2q/2 exp
((

1− q
2

)
ηα/4

)
= c1 + O(λ

4
4−q )− λ

tq
1
q

4πη3+β−q

(3 + β)2q/2 exp
((

1− q
2

)
ηα/4

)
.

(4.8)

From q ∈ (2, 4), we have 4
4−q > 2. Thus, there exists λ2 > 0 sufficient small such that for all

λ ∈ (0, λ2)

O(λ
4

4−q )− λ
tq
1
q

4πη3+β−q

(3 + β)2q/2 exp
((

1− q
2

)
ηα/4

)
< −D0λ

4
4−q . (4.9)

Let λ∗ = min{λ1, λ2, η(4−q)/8} and ε = λ
8

4−q , then by (4.6), (4.8) and (4.9), we have that for all
λ ∈ (0, λ∗)

sup
t>0

I(tuε) < c1 − D0λ
4

4−q .

This completes the proof of Lemma 4.1.

Lemma 4.2. Let {ũn} ⊂ H be a (PS)c sequence for I with c < c1−D0λ
4

4−q , where c1 is defined as in
Lemma 3.5. Then {ũn} has a convergent subsequence.

Proof. Let {ũn} ⊂ H be a (PS)c sequence for I, that is

lim
n→∞

I(ũn) = c and lim
n→∞

I′(ũn) = 0. (4.10)

Firstly, we show that ‖ũn‖ is bounded. By (4.10), we have that

c + 1 + o(1)‖ũn‖ ≥ I(ũn)−
1
6
〈I′(ũn), ũn〉

=
a
3
‖ũn‖2 +

b
12
‖ũn‖4 − λ

6− q
6q

∫
K(x)|x|β|ũn|q

≥ a
3
‖ũn‖2 +

b
12
‖ũn‖4 − λ

6− q
6q

S−q/2
q ‖ũn‖q

which means that ‖ũn‖ is bounded as 2 < q < 4. After passing to a subsequence, we may
assume that

ũn ⇀ ũ∗ in H,

ũn → ũ∗ in Lr
K(R

3), 2 ≤ r < 6,

ũn → ũ∗ a.e. on R3.
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Write vn = ũn− ũ∗ and we claim that ‖vn‖ → 0. Otherwise, up to a subsequence (still denoted
by {vn}), we may suppose ‖vn‖ → l with l > 0. From (4.10), we have that 〈I′(ũn), ũ∗〉 = o(1)
and hence

0 = a‖ũ∗‖2 + b(l2 + ‖ũ∗‖2)‖ũ∗‖2 − λ
∫

K(x)|x|β|ũ∗|q −
∫

K(x)|ũ∗|6. (4.11)

On the other hand, by 〈I′(ũn), ũn〉 = o(1), we can use Brézis–Lieb lemma to obtain

0 = a(‖vn‖2 + ‖ũ∗‖2) + b(‖vn‖4 + 2‖vn‖2‖ũ∗‖2 + ‖ũ∗‖4)

− λ
∫

K(x)|x|β|ũ∗|q −
∫

K(x)|vn|6 −
∫

K(x)|ũ∗|6 + o(1).
(4.12)

Combining (4.11) and (4.12), we obtain

o(1) = a‖vn‖2 + b‖vn‖4 + b‖vn‖2‖ũ∗‖2 −
∫

K(x)|vn|6 (4.13)

and so, from (1.5) it follows that

a‖vn‖2 + b‖vn‖4 + b‖vn‖2‖ũ∗‖2 =
∫

K(x)|vn|6 + o(1) ≤ S−3‖vn‖6 + o(1).

Taking the limit as n→ ∞, we obtain that

l2 ≥ bS3 +
√

b2S6 + 4(a + b‖u∗‖2)S3

2
≥ bS3 +

√
b2S6 + 4aS3

2
. (4.14)

By (4.11) and Hölder’s inequality, we obtain

I(ũ∗) =
a
2
‖ũ∗‖2 +

b
4
‖ũ∗‖4 − λ

q

∫
K(x)|x|β|ũ∗|q −

1
6

∫
K(x)|ũ∗|6

=
a
3
‖ũ∗‖2 +

b
12
‖ũ∗‖4 − λ

6− q
6q

∫
K(x)|x|β|ũ∗|q −

b
6

l2‖ũ∗‖2

≥ b
12
‖ũ∗‖4 − λ

6− q
6q

S−q/2
q ‖ũ∗‖q − b

6
l2‖ũ∗‖2.

For A := λ
6−q
6q S−q/2

q , define

ψ(t) =
b

12
t4 − Atq.

By easy calculation, it follows that ψ(t) achieves its minimum value at tmin =
( 3pA

b

)1/(4−q) and

ψ(tmin) = −
(

3q
b

) q
4−q 4− q

4
A

4
4−q .

Thus, we have

I(ũ∗) ≥ −
4− q

4

(
3q
b

) q
4−q
[
(6− q)

6q
S−q/2

q

] 4
4−q

λ
4

4−q − b
6

l2‖ũ∗‖2

= −D0λ
4

4−q − b
6

l2‖ũ∗‖2.

(4.15)
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Then, we can use (4.13)–(4.15) to obtain

c + o(1) = I(ũn)

=
a
2
‖ũn‖2 +

b
4
‖ũn‖4 − λ

q

∫
K(x)|x|β|ũn|q −

1
6

∫
K(x)|ũn|6

=
a
2
‖ũ∗‖2 +

b
4
‖ũ∗‖4 − λ

q

∫
K(x)|x|β|ũ∗|q −

1
6

∫
K(x)|ũ∗|6

+
a
2
‖vn‖2 +

b
4
‖vn‖4 +

b
2
‖vn‖2‖ũ∗‖2 − 1

6

∫
K(x)|vn|6 + o(1)

= I(ũ∗) +
a
2
‖vn‖2 +

b
4
‖vn‖4 +

b
2
‖vn‖2‖ũ∗‖2 − 1

6

∫
K(x)|vn|6 + o(1)

= I(ũ∗) +
a
3
‖vn‖2 +

b
12
‖vn‖4 +

b
3
‖vn‖2‖ũ∗‖2 + o(1)

≥ I(ũ∗) +
a
3

l2 +
b

12
l4 +

b
6

l2‖ũ∗‖2 + o(1)

≥ I(ũ∗) + c1 +
b
6

l2‖ũ∗‖2 + o(1)

≥ c1 − D0λ
4

4−q

which is a contradiction with our assumption c < c1 − D0λ
4

4−q . Thus, the claim follows, that
is, ũn → ũ∗ in H. This finishes the proof of Lemma 4.2.

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Using Lemma 2.1, we can apply Mountain Pass Theorem to obtain a
sequence {ũn} ⊂ Λ satisfying I(ũn) → c̃∗ and I′(ũn) → 0. It then follows from Lemmas 4.1
and 4.2 that there is λ∗ > 0 such that ũn → ũ∗ for all λ ∈ (0, λ∗), and ũ∗ is a weak solution of
(1.1). Furthermore, if we replace I by the following functional

Ĩ(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − λ

q

∫
R3

K(x)|x|β(u+)q − 1
6

∫
R3

K(x)(u+)6.

It is easy to see that all the above calculations can be repeated word for word. Then, we can
infer from 〈 Ĩ′(ũ∗), ũ−∗ 〉 = 0 that ũ−∗ = 0. In turn, we obtain ũ∗ ≥ 0. By standard elliptic
regularity argument and the strong maximum principle, we also have that ũ∗ > 0, that is, ũ∗
is a positive solution of (1.1). This completes the proof.
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