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Abstract. We establish local continuity of solutions to the G-Laplace equation involving
measures, i.e.,

−div
(

g(|∇u|)
|∇u| ∇u

)
= µ,

where µ is a nonnegative Radon measure satisfying µ(Br(x0)) ≤ Crm for any ball
Br(x0) ⊂⊂ Ω with r ≤ 1 and m > n − 1 − δ ≥ 0. The function g is supposed to
be nonnegative and C1-continuous on [0,+∞), satisfying g(0) = 0 and

δ ≤ tg′(t)
g(t)

≤ g0, ∀t > 0

with positive constants δ and g0, which generalizes the structural conditions of
Ladyzhenskaya–Ural’tseva for an elliptic operator.
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1 Introduction

Let Ω be an open bounded domain of Rn(n ≥ 2), and µ a nonnegative Radon measure in
Ω with µ(Br(x0)) ≤ Crm for some constant C > 0 whenever Br(x0) ⊂⊂ Ω. We consider the
equation

−∆Gu = −div
(

g(|∇u|)
|∇u| ∇u

)
= µ in D′(Ω), (1.1)

where g is a nonnegative C1-function on [0,+∞), satisfying g(0) = 0 and the following struc-
tural condition

0 < δ ≤ tg′(t)
g(t)

≤ g0, ∀ t > 0, δ, g0 are positive constants. (1.2)
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The structural condition of g was introduced by Tolksdorf in 1983 [14], which is a natural
generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations
(see [10]). The conditions of g imply that the operator ∆G includes not only the p-Laplace
operator ∆p where g(t) = tp−1 and δ = g0 = p− 1, but also the case of a variable exponent
p = p(t) > 0:

−∆Gu = −div (|∇u|p(|∇u|)−2∇u),

corresponding to set g(t) = tp(t)−1, for which (1.2) holds if δ ≤ t(ln t)p′(t) + p(t)− 1 ≤ g0 for
all t > 0. Another typical example of g is g(t) = tplog(at + b) with p, a, b > 0 where in this
case δ = p and g0 = p + 1. More examples can be found in [2, 3, 6, 17] etc.

Let G(t) =
∫ t

0 g(s)ds. Under assumption (1.2), G is an increasing, C2-continuous and
convex function, which is an N-function satisfying ∆2-condition (see [1]). Thus our class of
operators will be considered in the setting of Orlicz spaces. We recall the definitions of Orlicz
and Orlicz–Sobolev spaces together with their respective norms (see [1])

LG(Ω) = {u ∈ L1(Ω);
∫

Ω
G(|u(x)|)dx < +∞},

‖u‖LG(Ω) = inf
{

k > 0;
∫

Ω
G
(
|u(x)|

k

)
dx ≤ 1

}
,

W1,G(Ω) = {u ∈ LG(Ω); |∇u| ∈ LG(Ω)},
‖u‖W1,G(Ω) = ‖u‖LG(Ω) + ‖∇u‖LG(Ω).

Under the assumption (1.2), W1,G(Ω) is a reflexive and separable Banach space (see [1]).
We shall call a solution of (1.1) any function u ∈W1,G

loc (Ω) that satisfies∫
Ω

g(|∇u|)
|∇u| ∇u · ∇ϕdx =

∫
Ω

ϕdµ ∀ϕ ∈ D(Ω).

If µ ≡ 0 in a domain D ⊂ Ω, we say that u is G-harmonic in D.
We now introduce regularities of related elliptic equations involving measures. In 1994,

Kilpeläinen considered the situation of the p-Laplacian and proved that if µ satisfies µ(Br) ≤
Crn−p+α(p−1) for some positive constants C and α ∈ (0, 1], then any solution to the p-Laplace
equation

−∆pu = −div (|∇u|p−2∇u) = µ (1.3)

is C0,β
loc -continuous for each β ∈ (0, α) (see [7]). This result was improved by Kilpeläinen and

Zhong in 2002, showing that every solution of (1.3) is in fact Hölder continuous with the
same exponent α as the one in the assumption µ(Br) ≤ Crn−p+α(p−1) (see [8]). In 2010, the
p-Laplace problem (1.3) was extended by Lyaghfouri to the case with variable exponents, i.e.,
considering

−div (|∇u|p(x)−2∇u) = µ. (1.4)

Under certain assumptions on the function p(x) and the assumption µ(Br)≤ Crn−p(x)+α(p(x)−1)

for some positive constants C and α ∈ (0, 1], the author proved that any bounded solution of
(1.4) is C0,α

loc-continuous with the same exponent α (see [11]).
When focusing on the problem governed by G-Laplacian, if µ(Br(x0)) ≤ Crm with m ∈

[n − 1, n), Challal and Lyaghfouri proved that any solution of (1.1) is C0,α
loc-continuous with
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α = m−n+1+δ
1+g0

(see [3]). Particularly, if m = n− 1, any bounded solution is C0,α
loc-continuous with

any α ∈
(
0, δ

g0

)
(see Theorem 3.3 in [3]). In 2011, these regularities were improved by Challal

and Lyaghfouri in [5], showing that any local bounded solution of (1.1) is C0,α
loc-continuous

with any α ∈
(
0, m−n+1+δ

g0

)
provided m > n − 1 − δ. Note that under the assumption of

non-decreasing monotonicity on g(t)
t , Zheng, Feng and Zhang obtained local C1,α-continuity

of solutions for m > n and local Hölder continuity with a small exponent for some m < n in
2015 (see [15]).

In this paper, we continue the work of Challal, Lyaghfouri and Zheng et al. by improving
the regularity of solutions of the equation (1.1). Particularly, we prove the C0,α

loc-continuity of
solutions with any α ∈ (0, 1) if m = n− 1. More precisely, for any m > n− 1− δ and without
any monotonicity assumption on g(t)

t , we have the following results.

Theorem 1.1. Assume that µ satisfies (1.1) with m > n− 1− δ ≥ 0. For any local bounded solution
u ∈W1,G

loc (Ω) of (1.1), we have the following regularities:

(i) If m > n, then u ∈ C1,α
loc(Ω) with any α ∈ (0, min{ σ

1+g0
, m−n

2(1+g0)
}), where σ is the same as in

Lemma 2.5.

(ii) If m ∈ [n− 1, n), then u ∈ C0,α
loc(Ω) with any α∈ (0, 1).

(ii) If n− 1− δ < m < n− 1, then u ∈ C0,α
loc(Ω) with any α ∈ (0, m−n+1+δ

δ ).

Remark 1.2. In [7], the author proved for the p-Laplacian problem that u ∈ C0,α
loc(Ω) with any

α ∈ (0, 1) provided m = n− 1. In this paper we not only improve the results of [3,5] and [15],
but also extend the problem in [7] to general equations governed by a large class of degenerate
and singular elliptic operators.

Throughout this paper, without special states, by BR and Br we denote the balls contained
in Ω with the same center. Moreover, Br ⊂⊂ BR ⊂⊂ Ω and ‖u‖L∞(BR) ≤ M for some constant
M > 0. (u)r =

1
|Br |
∫

Br
udx be the average value of u on the ball Br.

2 Preliminary

In this section, we state some auxiliary results which will be used throughout this paper. We
begin with some properties of the function G.

Lemma 2.1 ([13, Lemma 2.1, Remark 2.1]). The function G has the following properties:

(G1) G is convex and C2-continuous.

(G2)
tg(t)
1+g0

≤ G(t) ≤ tg(t), ∀t ≥ 0.

(G3) min{sδ+1, sg0+1} G(t)
1+g0

≤ G(st) ≤ (1 + g0)max{sδ+1, sg0+1}G(t), ∀s, t ≥ 0.

(G4) G(a + b) ≤ 2g0(1 + g0)(G(a) + G(b)), ∀a, b ≥ 0.

For much more properties of G and problems governed by the operator ∆G, please see
[2–6, 13, 15, 16, 18, 19] etc.
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Lemma 2.2 ([9, Lemma 2.7]). Let φ(s) be a non-negative and non-decreasing function. Suppose that

φ(r) ≤ C1

( r
R

)α
φ(R) + C1Rβ,

for all r ≤ R ≤ R0, with positive constants α, β and C1. Then, for any τ < min{α, β}, there exists a
constant C2 = C2(C1, α, β, τ) such that for any r ≤ R ≤ R0 we have

φ(r) ≤ C2rτ.

The following lemmas are some properties of G-harmonic functions.

Lemma 2.3 ([13, Theorem 2.3]). Assume u ∈W1,G
loc (Ω). Let h be a weak solution of

∆Gh = 0 in BR, h− u ∈W1,G
0 (BR),

then∫
BR

(G(|∇u|)− G(|∇h|))dx ≥ C
( ∫

A2

G(|∇u−∇h|)dx +
∫

A1

g(|∇u|)
|∇u| |∇u−∇h|2dx

)
,

where A1 = {x ∈ BR; |∇u −∇h| ≤ 2|∇u|}, A2 = {x ∈ BR; |∇u −∇h| > 2|∇u|}, and C =

C(δ, g0) > 0.

Lemma 2.4 ([13, Lemma 2.7]). Let h ∈ W1,G(BR) be a weak solution of ∆Gh = 0 in BR. Then
h ∈ C1,α

loc(BR). Moreover, for every λ ∈ (0, n), there exists C = C(λ,n,δ,g0) > 0 such that∫
Br

G(|∇h|)dx ≤ Crλ, ∀r ∈ (0, R].

Proof. Indeed, we have (see [10, p. 345])∫
Br

G(|∇h|)dx ≤ C
(

r
R

)n ∫
BR

G(|∇h|)dx

≤ C
(

r
R

)n ∫
BR

G(|∇h|)dx + CRn, ∀r ∈ (0, R].

Then for any λ ∈ (0, n), we obtain by Lemma 2.3∫
Br

G(|∇h|)dx ≤ Crλ, ∀r ∈ (0, R],

which completes the proof.

Lemma 2.5 (Comparison with G-harmonic functions [15, Lemma 3.1]). Assume u ∈W1,G(BR).
Let h ∈ W1,G(BR) be a weak solution of ∆Gh = 0 in BR. Then there exist σ ∈ (0, 1) and C =

C(n, δ, g0) > 0 such that∫
Br

G(|∇u−(∇u)r|)dx ≤ C
(

r
R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx + C
∫

BR

G(|∇u−∇h|)dx, ∀r ∈ (0, R].

Lemma 2.6. Assume u ∈W1,G
loc (Ω). Let BR ⊂⊂ Ω and h ∈W1,G(BR) be a weak solution of

∆Gh = 0 in BR, h− u ∈W1,G
0 (BR).

Then for any λ ∈ (0, n), there exists C = C(λ, n, δ, g0, ‖u‖L∞(BR)) > 0 such that∫
BR

G(|∇u−∇h|)dx ≤ CRm + CR
m+λ

2 .
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Proof. Firstly, convexity of G gives∫
BR

(G(|∇u|)−G(|∇h|))dx ≤
∫

BR

g(|∇u|)
|∇u| ∇u(∇u−∇h)dx

=
∫

BR

(u− h)dµ (2.1)

≤ Cµ(BR)

≤ CRm, (2.2)

where we used the boundedness of u which forces h to be bounded too.
Let A1 and A2 be defined as in Lemma 2.3. By Lemma 2.3, there exists a constant C =

C(δ, g0) > 0 such that∫
BR

(G(|∇u|)− G(|∇h|))dx ≥ C
∫

A2

G(|∇u−∇h|)dx (2.3)

and ∫
BR

(G(|∇u|)− G(|∇h|))dx ≥ C
∫

A1

g(|∇u|)
|∇u| |∇u−∇h|2dx. (2.4)

By (G2), G(t)
t is increasing in t > 0. It follows from (G2), (G3), (2.2), (2.3), (2.4), Lemma 2.3 and

2.4 that ∫
A1

G(|∇u−∇h|)dx =
∫

A1

G(|∇u−∇h|)
|∇u−∇h| (|∇u−∇h|)dx

≤
∫

A1

G(2|∇u|)
2|∇u| |∇u−∇h|dx

≤ C
∫

A1

G(|∇u|)
|∇u| |∇u−∇h|dx

≤ C
(∫

A1

G(|∇u|)
|∇u|2 |∇u−∇h|2dx

)1
2
(∫

A1

G(|∇u|)dx
)1

2

≤ C
(∫

A1

g(|∇u|)|∇u|
|∇u|2 |∇u−∇h|2dx

)1
2
(∫

A1

G(|∇u|)dx
)1

2

= C
(∫

A1

g(|∇u|)
|∇u| |∇u−∇h|2dx

)1
2
(∫

BR

G(|∇u|)dx
)1

2

≤ C
( ∫

BR

(G(|∇u|)− G(|∇h|))dx
)1

2
(∫

BR

G(|∇u|)dx
)1

2

= C
( ∫

BR

(G(|∇u|)− G(|∇h|))dx
)1

2

·
(∫

BR

(G(|∇u|)− G(|∇h|) + G(|∇h|))dx
)1

2

≤ C
∫

BR

(G(|∇u|)− G(|∇h|))dx

+ C
( ∫

BR

(G(|∇u|)− G(|∇h|))dx
)1

2
(∫

BR

G(|∇h|)dx
)1

2

,

≤ CRm + CR
m+λ

2 , (2.5)



6 Y. Zhang and J. Zheng

where in the last inequality but one we used (a + b)γ ≤ aγ + bγ for any a ≥ 0, b ≥ 0 and
γ ∈ (0, 1). By (2.2), (2.3) and (2.5), we have∫

BR

G(|∇u−∇h|)dx =
∫

A2

G(|∇u−∇h|)dx +
∫

A1

G(|∇u−∇h|)dx

≤ C
∫

BR

(G(|∇u|)−G(|∇h|))dx + CRm + CR
m+λ

2

≤ CRm + CR
m+λ

2 .

3 Proof of Theorem 1.1

Proof of Theorem 1.1. Let h be a G-harmonic function in BR that agrees with u on the boundary,
i.e.,

div
g(|∇h|)
|∇h| ∇h = 0 in BR and h− u ∈W1,G

0 (BR).

By Lemma 2.5 and Lemma 2.6, for any r ≤ R there holds

∫
Br

G(|∇u− (∇u)r|)dx ≤ C
(

r
R

)n+σ ∫
BR

G(|∇u− (∇u)R|)dx + C
∫

BR

G(|∇u−∇h|)dx

≤ C
(

r
R

)n+σ ∫
BR

G(|∇u− (∇u)R|)dx + CRm + CR
m+λ

2 ,

where λ is an arbitrary constant in (0, n).

(i) If m > n, then we have

∫
Br

G(|∇u−(∇u)r|)dx ≤ C
(

r
R

)n+σ∫
BR

G(|∇u−(∇u)R|)dx + CR
m+λ

2 .

Since m > n and λ is an arbitrary constant in (0, n), one may choose λ satisfying m+λ
2 > n. In

view of Lemma 2.2, we conclude that for any τ < min{σ, m+λ
2 − n} there holds∫

Br

G(|∇u− (∇u)r|)dx ≤ Crn+τ, ∀ r ≤ R. (3.1)

Now we claim that ∫
Br

|∇u− (∇u)r|dx ≤ Crn+ τ
1+g0 , ∀ r ≤ R. (3.2)

Indeed, for r satisfying r−n
∫

Br
|∇u− (∇u)r|dx ≤ r

τ
1+g0 , (3.2) holds with C = 1. Now for

r satisfying r−n
∫

Br
|∇u− (∇u)r|dx > r

τ
1+g0 , we infer from the increasing monotonicity of G(t)

t
in t > 0,

G
(
r−n

∫
Br
|∇u− (∇u)r|dx

)
r−n

∫
Br
|∇u− (∇u)r|dx

≥
G
(
r

τ
1+g0
)

r
τ

1+g0

.
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It follows from (G2) and (G3)∫
Br

|∇u− (∇u)r|dx ≤ rn+ τ
1+g0

G
(
r

τ
1+g0
)G
(

r−n
∫

Br

|∇u− (∇u)r|dx
)

≤ Crn+ τ
1+g0

rτG(1)
G
(

r−n
∫

Br

|∇u− (∇u)r|dx
)

≤ Crn+ τ
1+g0

rτg(1)
G
(

r−n
∫

Br

|∇u− (∇u)r|dx
)

. (3.3)

Note that convexity of G and (3.1) imply that

G
(

1
|Br|

∫
Br

|∇u− (∇u)r|dx
)
≤ 1
|Br|

∫
Br

G(|∇u− (∇u)r|)dx ≤ Crτ. (3.4)

By (G3), (3.3) and (3.4), one may get∫
Br

|∇u− (∇u)r|dx ≤ Crn+ τ
1+g0 ,

where C depends only on g(1), g0 and the volume of the unit ball. Now we have proven that

(3.2) holds for any r ≤ R. Thus u ∈ C
1, τ

1+g0
loc (Ω) by Campanato’s embedding theorem. Due to

the arbitrariness of λ ∈ (0, n), τ > 0 can be arbitrary with τ < min{σ, m−n
2 }, which guarantees

that Theorem 1.1 (i) holds true.

(ii) If m ∈ [n− 1, n], we only prove for m = n− 1 due to the fact that µ(Br) ≤ Crm ≤ Crn−1

with small r. By (G4), Lemma 2.4 and Lemma 2.6, we get∫
Br

G(|∇u|)dx ≤ C
∫

Br

G(|∇u−∇h|)dx + C
∫

Br

G(|∇h|)dx

≤ Crm + Cr
m+λ

2 + Crλ

≤ Crm,

where in the last inequality we let n > λ > n− 1 = m.
We claim that for any r ≤ R < 1 with BR ⊂⊂ Ω and some positive constant C independent

of r, there holds ∫
Br

|∇u|dx ≤ Crn−1+α0 , (3.5)

with some α0 ∈ (0, 1).
Indeed, for r ≤ R satisfying

r−n+1−α0

∫
Br

|∇u|dx ≤ 1, (3.6)

(3.5) holds with C = 1. For r ≤ R satisfying

r−n+1−α0

∫
Br

|∇u|dx ≥ 1,

due to the increasing monotonicity of F(t) = G(t)− G(1)t in t ≥ 1, it follows

G
(

r−n+1−α0

∫
Br

|∇u|dx
)
≥ G(1) · r−n+1−α0

∫
Br

|∇u|dx.
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Then we have ∫
Br

|∇u|dx ≤ Crn−1+α0(r1−α0)1+δG
(

r−n
∫

Br

|∇u|dx
)

≤ Crn−1+α0 · (r1−α0)1+δ 1
|Br|

∫
Br

G(|∇u|)dx

≤ Crn−1+α0+(1−α0)(1+δ) · r−n · rm

= Crn−1+α0+(1−α0)(1+δ)+m−n. (3.7)

Combining (3.6) and (3.7), we may choose α0 = α0 + (1− α0)(1+ δ) +m− n, i.e., α0 = 1− n−m
1+δ

such that (3.5) holds for all r ≤ R.
For m = n− 1, we conclude that u ∈ C0,α0

loc (Ω) by Morrey Theorem (see page 30, [12]) with
α0 = δ

1+δ .
Note that infBr u ≤ infBr h (see the proof of Theorem 3.3 in [3]). Then by (2.1) and

Lemma 2.4, for λ larger than m + α0, we have∫
Br

G(|∇u|)dx ≤
∫

Br

(u− h)dµ +
∫

Br

G(|∇h|)dx

≤ (sup
Br

u− inf
Br

h)µ(Br) +
∫

Br

G(|∇h|)dx

≤ (sup
Br

u− inf
Br

u)µ(Br) +
∫

Br

G(|∇h|)dx

≤ C osc(u, Br)rm + Crλ

≤ Crα0+m + Crλ

≤ Crm+α0 ,

where osc(u, Br) = supBr
u− infBr u. Arguing as (3.5), we get u ∈ C0,α1

loc (Ω) with

α1 = 1− n− (m + α0)

1 + δ
=

δ

1 + δ
+

α0

1 + δ
.

Repeating this process, we get u ∈ C0,αk
loc (Ω) with

αk =
δ

1 + δ
+

αk−1

1 + δ
.

Finally, we have αk =
α0

(1+δ)k + δ ∑k
j=1

1
(1+δ)j , which leads to limk→∞ αk=1, and the result follows.

(iii) If n − 1 − δ < m < n − 1, checking the proof and repeating the process as above,
we may get α0 = 1− n−m

1+δ , α1 = 1+δ+m−n
1+δ + α0

1+δ , . . . , αk = 1+δ+m−n
1+δ + αk−1

1+δ . Finally, one has
u ∈ C0,α

loc(Ω) for any α ∈ (0, 1+δ+m−n
δ ).
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