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Abstract. We consider the following equation

−y′′ + r (x) y′ + q (x) y = f (x),

where the intermediate coefficient r is not controlled by q and it is can be strong oscil-
late. We give the conditions of well-posedness in Lp (−∞, +∞) of this equation. For
the solution y, we obtained the following maximal regularity estimate:∥∥y′′

∥∥
p +

∥∥ry′
∥∥

p + ‖qy‖p ≤ C ‖ f ‖p ,

where ‖ · ‖p is the norm of Lp (−∞, +∞).

Keywords: differential equation, unbounded coefficients, well-posedness, maximal reg-
ularity, separability.
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1 Introduction and main theorem

Let C(2)
0 (R) be the set of all twice continuously differentiable functions with compact support.

We study the following differential equation:

L0y = −y′′ + r (x) y′ + q (x) y = f (x), (1.1)

where x ∈ R = (−∞, +∞) and f ∈ Lp(R), 1 < p < +∞. We assume that r, q are, respectively,
continuously differentiable and continuous functions. We denote by L the closure in Lp(R) of

the differential operator L0 defined on the set C(2)
0 (R). We call that y ∈ Lp(R) is a solution of

the equation (1.1), if y ∈ D(L) and Ly = f .
Everywhere, in this paper, by C, C−, C+, Cj, C̃j (j = 0, 1, 2, . . . ) etc., we will denote the

positive constants, which, generally speaking, are different in the different places.
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The purpose of this work is to find some conditions for the coefficients r and q such that
for any f ∈ Lp(R) there exists a unique solution y of the equation (1.1) and the following
estimate holds: ∥∥ y′′

∥∥
p +

∥∥ ry′
∥∥

p + ‖ qy ‖p ≤ C ‖ Ly ‖p , (1.2)

where ‖ · ‖p is the norm in Lp(R).
As in [4] and [2], if the estimate (1.2) holds, then we call that the solution y of the equation

(1.1) is maximally Lp-regular, and call (1.2) is an maximal Lp-regularity estimate. If (1.2) holds,
then the operator L is said to be separable in Lp(R) (see [7]).

The maximal regularity is an important tool in the theory of linear and nonlinear differen-
tial equations. For example, from the estimate (1.2) we obtain the following:

a) under mild assumptions on r and q, we obtain the optimal smoothness of a solution and
some information about the behavior of y and y′ at infinity;

b) we give the domain of the operator L, so that we can use the embedding theory of the
weighted function spaces for study of spectrum of the operator L and the approximate
characteristics of a solution y of the equation (1.1) (see [19, 20]);

c) we reduce the study of the singular nonlinear second order differential equations via a
fixed point argument to the linear equation (1.1) (see [2, 13, 20]).

Moreover, the maximal Lp-regularity estimate (1.2) and the closed smoothness properties
of L are useful for the study of the following evolutionary problem:

ut = Lu + F(x, t), u(0, x) = φ(x)

(see [4, 16, 18] and the references therein).
The equation (1.1) and its multidimensional generalization

lu = −∆u +
N

∑
j=1

rj(x)uxj + q(x)u = F(x) (x ∈ RN), (1.3)

with unbounded coefficients have used in stochastic analysis, biology and financial mathe-
matics (see [5, 9, 11]). For this reason, interest in these equations has considerably grown in
recent years. A number of researches of (1.3) were devoted to the case that the coefficients rj
(j = 1, N) are controlled by q (see [3, 6, 17, 24]). Without the dominating potential q, the case
that rj grow at most as |x|ln(1 + |x|) were considered in [10, 14, 15, 23].

In the present work, we study the equation (1.1) in assumption that the coefficient r can
quickly grow and fluctuate, and it does not depend on q. We find conditions, which provides
the correct solvability of (1.1) and the fulfillment of the maximal Lp-regularity estimate (1.2).
In [20–22] the equation (1.1) was investigated in the case that r is a weakly oscillating function.

Let 0 ≤ ε < 1, 1 < p < ∞, and p′ = p/(p− 1). For continuous functions g and h 6= 0, we
denote

αg, h, ε (t) = ‖g‖Lp(0,t) ‖1/h‖Lp′ ((1−ε)t,+∞) (t > 0)

and
βg,h, ε (τ) = ‖g‖Lp(τ,0) ‖1/h‖Lp′ (−∞, (1+ε)τ) (τ < 0) .

Let

γg, h, ε = max
(

sup
t>0

αg, h, ε (t) , sup
τ<0

βg, h, ε (τ)

)
.
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If v(x) is a continuous function, we define

v∗ (x) = inf
d>0

{
d−1 : d−p+1 ≥

∫
∆d(x)

|v (t)|p dt
}

, x ∈ R,

where ∆d (x) = (x− d, x + d) (see [19]). The main result of this paper is the following.

Theorem 1.1. Assume that 1 < p < ∞. Let r be a continuously differentiable function, q be a
continuous function and the following conditions hold:

a) r ≥ 1 and γ1, p√r, 0 < ∞;

b) If x, η ∈ R satisfy |x− η| ≤ k(η)
r(η) , then

C−1 ≤ r (x)
r (η)

≤ C,

where k (η) is a continuous function satisfies k (η) ≥ 4 and lim|η|→+∞ k (η) = +∞;

c) γq, r∗, 0 < ∞.

Then for any f ∈ Lp (R) there exists a unique solution y of the equation (1.1). Moreover, for y the
following estimate holds: ∥∥y′′

∥∥
p +

∥∥ry′
∥∥

p + ‖qy‖p ≤ C ‖ f ‖p . (1.4)

Remark 1.2. We will prove Theorem 1.1 in the assumption r(x) ≥ 1. The case r(x) ≤ −1 can
easily be reduced to the case r(x) ≥ 1 by replacing of the variable x.

Remark 1.3. Conditions of Theorem 1.1 are close to the necessary.

i) If γ
1, p
√
|r|, 0

= ∞ in the condition a) and q = 0, then the equation (1.1) has not a solu-

tion from Lp(R). Using the well-known weighted Hardy inequality (see Theorem 5 in
Chapter 3 of [19]) one easily prove it;

ii) If performed a) and b), as well as the estimate (1.4), then for a wide class of coefficients
q and r (for example, they may be power functions) holds the condition c). This fact
follows from Theorem 6.3 in [1] (in the case n = 2 and k = 1).

Example 1.4. The following equation:

− y′′ −
(

15 + 9x2 + e
√

1+x2
cos2 x11

)
y′ + x7y = f (x), f ∈ Lp(R), (1.5)

satisfies the conditions of Theorem 1.1, hence, the equation (1.5) is uniquely solvable, and for
the solution y of (1.5), the following maximal regularity estimate holds:

∥∥y′′
∥∥

p +
∥∥∥(15 + 9x2 + e

√
1+x2

cos2 x11
)

y′
∥∥∥

p
+
∥∥x7y

∥∥
p ≤ C ‖ f ‖p .
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2 Weighted integral inequalities

We denote by C(2)
0 [0,+∞) (resp. C(2)

0 (−∞, 0]) the set of all twice continuously differentiable
in [0,+∞) (resp. (−∞, 0]) functions with compact support. The following Lemma 2.1 and
Lemma 2.2 are special cases of Theorem 6.1 and Theorem 6.3 in [1], respectively.

Lemma 2.1. Let
sup
t>0

αg,h∗, ε(t) < ∞ (2.1)

for some ε ∈ (0, 1). Then for any y ∈ C(2)
0 [0,+∞),(∫ +∞

0
|g (t) y (t)|p dt

) 1
p

≤ C+

(∫ +∞

0

[∣∣y′′ (t)∣∣p + ∣∣h (t) y′ (t)
∣∣p] dt

) 1
p

(2.2)

and C+ ≤ C1 supt>0 αg,h∗, ε(t). Conversely, if (2.2) holds with some C+, then supt>0 αg,h∗, 0(t) < ∞
and

C+ ≥ C0 sup
t>0

αg,h∗,0(t). (2.3)

Lemma 2.2. Let for some ε ∈ (0, 1) the condition (2.1) and at least one of the following relationships
(2.4) and (2.5):

sup
x>0

∫ x

(1−ε)x
|h∗ (t)|−p′ dt

(∫ +∞

x
|h∗ (η)|−p′ dη

)−1

< ∞, (2.4)

sup
x>0

(∫ x

0
|g(η)|pdη

)−1 ∫ (1+ε)x

x
|g(t)|pdt < ∞, g(t) 6= 0 (t ∈ [0, +∞)) (2.5)

be fulfilled. Then the inequality (2.2) holds for any y ∈ C(2)
0 [0,+∞) if and only if

sup
t>0

αg, h∗, 0(t) < ∞,

and for a constant C+ in (2.2) the following estimates hold:

C2 sup
t>0

αg, h∗, 0(t) ≤ C+ ≤ C3 sup
t>0

αg, h∗, 0(t).

Using Lemma 2.1 and Lemma 2.2, we prove the following Lemma 2.3 and Lemma 2.4,
respectively.

Lemma 2.3. Assume that for some ε ∈ (0, 1)

sup
τ<0

βg,h∗, ε(τ) < ∞. (2.6)

Then for any y ∈ C(2)
0 (−∞, 0] the following inequality holds:(∫ 0

−∞
|g (t) y (t)|p dt

) 1
p

≤ C−

(∫ 0

−∞

[∣∣y′′ (t)∣∣p + ∣∣h (t) y′ (t)
∣∣p] dt

) 1
p

, (2.7)

where C− ≤ C̃1 supτ<0 βg,h∗, ε(τ). Conversely, if (2.7) holds for some C−, then supτ<0 βg,h∗, 0(τ) <

∞ and
C− ≥ C̃0 sup

τ<0
βg,h∗, 0(τ). (2.8)
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Lemma 2.4. Let for some ε ∈ (0, 1) the condition (2.6) be fulfilled and at least one of the following
relationships (2.9) and (2.10) holds:

sup
x<0

∫ x

(1+ε)x
|h∗ (t)|−p′ dt

(∫ x

−∞
|h∗ (η)|−p′ dη

)−1

< ∞, (2.9)

sup
x<0

∫ x

(1+ε)x
|g(t)|pdt

(∫ 0

x
|g(η)|pdη

)−1

< ∞, (2.10)

where g(η) 6= 0 for each η ∈ (−∞, 0]. Then the inequality (2.7) holds for any y ∈ C(2)
0 (−∞, 0] if

and only if
sup
τ<0

βg,h∗, 0(τ) < ∞,

and for a constant C− in (2.7) the following estimates hold:

C̃2 sup
τ<0

βg,h∗, 0(τ) ≤ C− ≤ C̃3 sup
τ<0

βg,h∗, 0(τ).

Lemma 2.5. Assume that for some ε ∈ (0, 1),

γg,h∗, ε < ∞.

Then for any y ∈ C(2)
0 (R), the following inequality holds:(∫ +∞

−∞
|g (t) y (t)|p dt

)1/p

≤ C
(∫ +∞

−∞

[∣∣y′′ (t)∣∣p + ∣∣h (t) y′ (t)
∣∣p] dt

)1/p

,

where
C4 min

[
αg,h∗, 0, βg,h∗, 0

]
≤ C ≤ C5γg,h∗, ε. (2.11)

Proof. Let y ∈ C(2)
0 (R). By Lemmas 2.1 and 2.3 and estimates (2.2) and (2.7), we have

‖g (t) y (t)‖p = ‖g (t) y (t)‖Lp(−∞,0) + ‖g (t) y (t)‖Lp(0,+∞)

≤ C−

(∫ 0

−∞

[∣∣y′′(t)∣∣p + ∣∣h (t) y′(t)
∣∣p] dt

)1/p

+ C+

(∫ +∞

0

[∣∣y′′(t)∣∣p + ∣∣h (t) y′(t)
∣∣p] dt

)1/p

≤ C̃1 (ε) sup
τ<0

βg, h∗, ε(τ)
(∥∥y′′

∥∥
Lp(−∞,0) +

∥∥hy′
∥∥

Lp(−∞,0)

)
+ C1 (ε) sup

t>0
αg , h∗, ε(t)

(∥∥y′′
∥∥

Lp(0,+∞)
+
∥∥hy′

∥∥
Lp(0,+∞)

)
≤ C

(∥∥y′′
∥∥

p +
∥∥hy′

∥∥
p

)
,

where C = max{C̃1 (ε) supτ<0 βg, h∗, ε(τ), C1 (ε) supt>0 αg, h∗, ε(t)}. This implies the right-hand
side of (2.11). Left-hand side of these inequalities follows from (2.3) and (2.8).

Lemma 2.6. Assume that for some ε ∈ (0, 1) either relations (2.4) and (2.9), or (2.5) and (2.10) are
fulfilled. Then the inequality(∫ +∞

−∞
|g (t) y (t)|p dt

) 1
p

≤ C
(∫ +∞

−∞

[∣∣y′′ (t)∣∣p + ∣∣h (t) y′ (t)
∣∣p] dt

) 1
p

(2.12)
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holds for any y ∈ C(2)
0 (R) if and only if γg, h∗, 0 < ∞. Furthermore, for a constant C in (2.12) the

following estimates hold:
C6γg, h∗, 0 ≤ C ≤ C7γg, h∗, 0. (2.13)

Similarly to Lemma 2.5, using Lemma 2.2, Lemma 2.4 and the fact that the quantities
γg, h∗, ε and γg, h∗, 0 are equivalent to each other under the conditions of this lemma, we can
prove this lemma.

3 Auxiliary estimates for two-term differential operator

In this section, we will study the following two-term equation

l0y = −y′′ + r (x) y′ = F (x) , (3.1)

where F ∈ Lp (R) (1 < p < +∞). We denote by l the closure in Lp(R) of the differential

operator l0 defined on the set C(2)
0 (R). If y ∈ D (l) and ly = F, then we call that y is a solution

of the equation (3.1).

Lemma 3.1. Let r be continuously differentiable and

r(x) ≥ 1, γ1, p√r, 0 < ∞.

Then for any F ∈ Lp (R) (1 < p < +∞) there exists a unique solution y of the equation (3.1) and for
y the following estimate holds:∥∥ p

√
ry′
∥∥p

p + ‖y‖
p
p ≤

(
1 + Cpγ

p
1, p√r, 0

)
‖F‖p

p . (3.2)

Proof. Let β > −1, and y ∈ C(2)
0 (R). Integrating by parts, we have(

l0y, y′
[(

y′
)2
]β/2

)
=
∫

R
r
[(

y′
)2
]β/2+1

dx.

We take a number α > 0, then

∫
R

r
[(

y′
)2
]β/2+1

dx ≤
(∫

R
r−αp |l0y|p dx

)1/p (∫
R

rαp′ ∣∣y′∣∣(β+1)p′ dx
)1/p′

. (3.3)

We choose α and β such that (β + 1) p′ = β+ 2 and αp′ = 1, where p′ = p
p−1 . Then −αp = − p

p′

and (3.3) implies that ∥∥ p
√

ry′
∥∥p

p ≤
∥∥∥∥ 1

p′
√

r
l0y
∥∥∥∥p

p
. (3.4)

It is well known (see Theorem 5 in Chapter 3 of [19]) that for any y ∈ C(2)
0 [0, ∞) the following

inequality holds:
‖y‖p

Lp(0, ∞)
≤ Cp

0 α
p
1, p√r, 0

∥∥ p
√

ry′
∥∥p

Lp(0, ∞)
,

moreover 1 ≤ C0 ≤ p1/p (p′)1/p′ . From this, as in [21], we obtain for any y ∈ C(2)
0 (R)

‖y‖p
p ≤ Cpγ

p
1, p√r, 0

∥∥ p
√

ry′
∥∥p

p .

This inequality and (3.4) imply (3.2).
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Now, if y ∈ D(l), then there exists the sequence {yn}∞
n=1 ⊂ C(2)

0 (R) such that
‖yn − y ‖p → 0, ‖l0yn − ly ‖p → 0 as n → ∞. For yn (n ∈ N) the inequality (3.2) holds,

so the sequence
{

p
√

r (yn)
′}∞

n=1 is a Cauchy sequence in Lp(R). By virtue of completeness of
Lp(R) and closedness of the differentiation operation, it converges to p

√
ry′ ∈ Lp(R). So, (3.2)

holds for any solution of (3.1).
(3.2) implies the uniqueness of solution of the equation (3.1). Let us prove the existence of

solution. By inequality (3.2), the range R (l) of l is closed. Therefore, it is enough to prove that
R(l) = Lp(R). Indeed, let R(l) 6= Lp(R). Then there exists the non-zero element z ∈ Lp′ (R)

such that (ly, z) = 0 for any y ∈ C(2)
0 (R) (see [25]). Taking into account the equality

(ly, z) =
∫

R
y
(
− [z̄]

′′
− [r (x) z̄]

′)
dx,

we obtain
− z′′ − rz = C1. (3.5)

It is clear that z is a twice differentiable function. Let C1 6= 0. By properties of Lp (R)-norm,
without loss of generality we can assume that C1 = 1. Hence,

z′ + r(x)z = −1, x ∈ R.

Then [
z (x) exp

∫ x

x0

r (t) dt
]′

= − exp
∫ x

x0

r (t) dt,

where x0 ∈ R. Consequently, z(x) exp
∫ x

x0
r(t)dt on (x0, ∞) is monotonously decreases func-

tion and
z (x− k) > exp k · z (x) (x ∈ (x0, +∞))

for each k > 0. Therefore there exists x1 ∈ R such, that z (x) ≤ θ < 0 for any x ∈ (x1, +∞).
So z /∈ Lp′(R).

If C1 = 0, then by (3.5),

z (x) = exp
[
−
∫ x

a
r (t) dt

]
,

therefore z /∈ Lp′(R). This is a contradiction.

Remark 3.2. Lemma 3.1 remains valid, if |r(x)| ≥ δ > 0.

Remark 3.3. Lemma 3.1 remains valid, if (3.1) is replaced by

l0,λy = −y′′ + (1 + λ)r (x) y′ = F,

where λ ≥ 0. In this case, instead of (3.2) we have the estimate∥∥(1 + λ)ry′
∥∥p

p + ‖y‖
p
p ≤ c0 ‖l0,λy‖p

p , (3.6)

where c0 depends on λ.

Lemma 3.4. Assume that λ ≥ 0 and r satisfies the conditions of Lemma 3.1. Let k(η) be a continuous
function such that k(η) ≥ 4 and lim|η|→+∞ k(η) = +∞. If for any (x, η) ∈

{
(x, η) : x, η ∈ R,

|x− η| ≤ k(η)
r(η)

}
, we have that

c−1 ≤ r (x)
r (η)

≤ c, (3.7)
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then for the solution y of the equation (3.1), the following estimate∥∥y′′
∥∥p

p +
∥∥ry′

∥∥p
p + ‖y‖

p
p ≤ C ‖ly‖p

p (3.8)

holds.

Proof. We consider the minimal closed operator lλy = −y′′ + (r + λ) y′ (λ ≥ 0) corresponding
to the equation (3.1). By Lemma 3.1 and Remark 3.3 we know that D(lλ) ⊆ W1

p (R), where
W1

p (R) is the Sobolev space with norm ‖y‖W1
p(R) =

(
‖y′‖p

p + ‖y‖
p
p
)1/p. If we denote y′ = z,

then lλy become the following form

θλz = −z′ + [r(x) + λ] z (z ∈ Lp (R)).

We choose two systems of concentric intervals
{

Ωj
}+∞

j=−∞ and
{

∆j
}+∞

j=−∞ with centers at

the points xj, and radius of ∆j does not exceed k(xj)

10 r(xj)
, as well as the sequence

{
φj(x)

}+∞
j=−∞

satisfying the following conditions a) and b):

a) ∆j =
(
aj, bj

)
, aj < bj, ∆j ⊂ Ωj ⊂ ∆j−1

⋃
∆j
⋃

∆j+1,
∣∣Ωj
∣∣ = 2

(
bj − aj

)
(j ∈ Z),

limj→+∞ aj = +∞, limj→−∞ bj = −∞, ∆j
⋂

∆k = ∅ (j 6= k),
⋃+∞

j=−∞ ∆j = R;

b) φj ∈ C∞
0
(
Ωj
)
, 0 ≤ φj (x) ≤ 1, φj (x) = 1 ∀x ∈ ∆j (j ∈ Z), ∑∞

j=−∞ φj (x) = 1,
supj∈Z maxx∈∆j

∣∣φ′j (x)
∣∣ ≤ M.

Sequences
{

Ωj
}+∞

j=−∞ ,
{

∆j
}+∞

j=−∞ and
{

φj(x)
}+∞

j=−∞ with such properties exist by virtue of our
assumptions with respect to r and results of [8].

We extend r(x) from ∆j to all of R so that it extensions rj(x) are continuously differentiable
and satisfy the following inequalities:

1
2

inf
t∈Ωj

r (t) ≤ rj (x) ≤ 2 sup
t∈Ωj

r (t) . (3.9)

By properties of r(x), this extension exists. We denote by θj, λ (j ∈ Z) the closure in Lp (R) of

the differential expression θj, λz = −z′ +
[
rj(x) + λ

]
z defined on C(2)

0 (R). It is easy to see that
rj(x) ≥ 1/2 (j ∈ Z) satisfy the conditions of Lemma 3.1. By Remark 3.2, the operators θj, λ are
boundedly invertible and for any z ∈ D

(
θj, λ

)
the following estimate is valid:

∥∥∥ p
√

rj + λ z
∥∥∥p

p
≤
∥∥∥∥∥ 1

p′
√

rj + λ
θj, λz

∥∥∥∥∥
p

p

.

By (3.9), we obtain

∥∥ ( rj + λ)z
∥∥p

p ≤ 2p sup
j∈Z

sup
t∈Ωj

[
rj(t) + λ

]p/p′
∥∥∥ p
√

rj + λ z
∥∥∥p

p

≤ 2p sup
j∈Z

sup
t∈Ωj

[
rj(t) + λ

]p/p′

 2p

inf
t∈Ωj

[
rj(t) + λ

]p/p′


 ∥∥θj, λz

∥∥p
p .
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The length of the interval Ωj does not exceed k(xj)

2r(xj)
, so, by condition (3.7), we have

∥∥ ( rj + λ)z
∥∥p

p ≤ 4p sup
j∈Z

sup
t, η∈Ωj

[
rj(t) + λ

rj(η) + λ

]p/p′ ∥∥θj, λz
∥∥p

p

≤ 4p(c + 1)p/p′ ∥∥θj, λz
∥∥p

p

(
z ∈ D

(
θj, λ

)
, j ∈ Z

)
.

(3.10)

Let χj be the characteristic function of ∆j. We introduce the following operators Mλ and Bλ:

Mλ f =
+∞

∑
j=−∞

φjθ
−1
j, λ

(
χj f
)

,

Bλ f = −
+∞

∑
j=−∞

φ′jθ
−1
j, λ

(
χj f
)

, f ∈ C∞
0 (R) .

Since the support of f is compact, the sums in these expressions contain only finitely many
terms. In ∆j the coefficients of θλ and θj, λ coincide. Consequently, by properties of ϕj (j ∈ Z),
we have

θλ (Mλ f ) =
+∞

∑
j=−∞

θλ

(
φjθ
−1
j, λ

(
χj f
))

=
+∞

∑
j=−∞

(−φj)
′θ−1

j, λ

(
χj f
)
+

+∞

∑
j=−∞

φjlλθ−1
j, λ

(
χj f
)

= f −
+∞

∑
j=−∞

φ′jθ
−1
j, λ

(
χj f
)
= (E + Bλ) f ,

(3.11)

where E is the identity operator. Now, we estimate the norm ‖Bλ f ‖p. Since the interval
Ωj (j ∈ Z) intersects only with Ωj−1 and Ωj+1, we obtain

‖Bλ f ‖p
p =

+∞

∑
j=−∞

∫
∆j

|Bλ f |p dx ≤
+∞

∑
j=−∞

∫
∆j

[
j+1

∑
k=j−1

∣∣φ′k (x)
∣∣ ∣∣∣θ−1

k, λ (χk f )
∣∣∣]p

dx

≤ 3p
+∞

∑
j=−∞

∫
∆j

j+1

∑
k=j−1

∣∣φ′k (x)
∣∣p ∣∣∣θ−1

k, λ

(
χj f
)∣∣∣p dx

≤ 9p Mp
+∞

∑
j=−∞

∫
R

∣∣∣θ−1
j, λ

(
χj f
)∣∣∣p dx.

By (3.10), ∥∥∥θ−1
k, λ f

∥∥∥
p
≤ 4(c + 1)1/p′

inf
x∈∆k

(rk (x) + λ)
‖ f ‖p ,

consequently

‖Bλ f ‖p ≤
72M(c + 1)1/p′

1 + 2λ
‖ f ‖p .

We choose λ0 = 72M(c + 1)1/p′ . Then for any λ ≥ λ0 there exists the inverse operator
(E + Bλ)

−1, and the inequalities 2/3 ≤
∥∥ (E + Bλ)

−1 ∥∥
Lp→Lp

≤ 2 fulfilled. By (3.11),

θ−1
λ = Mλ (E + Bλ)

−1 , λ ≥ λ0. (3.12)
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We prove the estimate (3.8). By (3.12),
∥∥(r + λ)θ−1

λ

∥∥
p ≤ 2 ‖(r + λ)Mλ‖p (λ ≥ λ0), and

‖(r + λ)Mλ f ‖p
p =

+∞

∑
k=−∞

∫
∆k

∣∣∣∣∣ k+1

∑
j=k−1

(rj + λ)φjθ
−1
j, λ

(
χj f
)∣∣∣∣∣

p

dx

≤ 3p
+∞

∑
k=−∞

∫
∆k

k+1

∑
j=k−1

∣∣∣(rj + λ)φjθ
−1
j, λ

(
χj f
)∣∣∣p dx

≤ 9p
+∞

∑
k=−∞

∫
R

∣∣∣(rk + λ)φkθ−1
k, λ (χk f )

∣∣∣p dx.

Taking into account (3.10), we have

∥∥∥(r + λ)θ−1
λ f

∥∥∥p

p
≤ 2p9p4p(c + 1)p/p′

+∞

∑
k=−∞

∫
R
|χk f |p dx

= 72p(c + 1)p/p′ ‖ f ‖p
p .

Therefore, for any z ∈ D (θλ)∥∥z′
∥∥p

p ≤ ‖(r + λ) z‖p
p + ‖θλz‖p

p ≤
[
72p (c + 1)p/p′+1

]
‖θλz‖p

p ,

that implies∥∥z′
∥∥p

p + ‖(r + λ) z‖p
p ≤

[
2 · 72p (c + 1)p/p′ + 1

]
‖θλz‖p

p , z ∈ D (θλ) .

By (3.6), we obtain the desired estimate (3.8).

4 Proof of Theorem 1.1

In the equation (1.1) we assume that x = at, where a > 0. If we introduce the notations

ỹ (t) = y (at) , r̃ (t) = r (at) , q̃ (t) = q (at) , f̃ (t) = a2 f (at) (t ∈ R),

then (1.1) become the following form:

L̃ỹ = −ỹ′′ + ar̃ỹ′ + a2q̃ỹ = f̃ (t). (4.1)

We denote by la the closure of l0,a in Lp(R), where l0,a is the differential expression

l0,aỹ = −ỹ′′ + a r̃(t)ỹ′

defined on the set C(2)
0 (R). Note that a |r̃ (t)| ≥ a > 0. By Lemma 3.1, Lemma 3.4 and

Remark 3.2, the operator la is continuously invertible, moreover the following estimate holds:∥∥ỹ′′
∥∥

p +
∥∥a r̃ỹ′

∥∥
p ≤ Cla ‖laỹ‖p , ∀ỹ ∈ D (la) . (4.2)

By Theorem 6.3 in [1], taking into account the condition c) of Theorem 1.1, we have∥∥a2q̃ỹ
∥∥

p ≤ a2γq̃, r̃∗, 0Cla ‖laỹ‖p . (4.3)
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If we choose
a =

[
2γq̃, r̃∗, 0Cla

] − 1
2 ,

then, by (4.3), ∥∥a2q̃ỹ
∥∥

p ≤ θ ‖laỹ‖p (4.4)

holds, where θ ∈
(
0, 1

2

]
. From this inequality, and the well-known perturbation theorem

(for example, see Theorem 1.16 in Chapter 4 of [12]), it follows that there exists the inverse
operator

(
la + a2q̃E

)−1, as well as the equality R
(
la + a2q̃E

)
= Lp (R) fulfilled. So, denoting

t = a−1x, we obtain that for any f ∈ Lp(R) there exists a solution y of the equation (4.1) and
it is unique.

By estimates (4.2) and (4.4),

∥∥ỹ′′
∥∥

p +
∥∥a r̃ỹ′

∥∥
p +

∥∥a2q̃ỹ
∥∥

p ≤
(

1
2
+ Cla

)
‖laỹ‖p . (4.5)

Taking into account (4.4), we get

‖laỹ‖p ≤
∥∥(la + a2q̃E

)
ỹ
∥∥

p +
1
2
‖laỹ‖p . (4.6)

The estimates (4.5) and (4.6) imply

∥∥ỹ′′
∥∥

p +
∥∥a r̃ỹ′

∥∥
p +

∥∥a2q̃ỹ
∥∥

p ≤ C
∥∥ f̃
∥∥

p , C = 2
(

1
2
+ Cla

)
.

By replacing t = a−1x, we get the estimate (1.2). �
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