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EXISTENCE RESULTS FOR SECOND ORDER CONVEX

SWEEPING PROCESSES IN p-UNIFORMLY SMOOTH AND

q-UNIFORMLY CONVEX BANACH SPACES

MESSAOUD BOUNKHEL

Abstract. In a previous work the authors proved under a complex assump-
tion on the set-valued mapping, the existence of Lipschitz solutions for second
order convex sweeping processes in p-uniformly smooth and q-uniformly con-
vex Banach spaces. In the present work we prove the same result, under a
condition on the distance function to the images of the set-valued mapping.

Our assumption is much simpler than the one used in the former paper.

1. Introduction

In [5], the authors studied the following extensions of convex sweeping processes
from Hilbert spaces H to reflexive smooth Banach spaces X :

(SSP) Find T > 0, x∗ : [0, T ] → J(cl(ν0)) and u∗ : [0, T ] → X∗ such that














u∗(0) = J(u0), J
∗(u∗(t)) ∈ K(J∗(x∗(t))), for all t ∈ [0, T ];

x∗(t) = J(x0) +

∫ t

0

u∗(s)ds, for all t ∈ [0, T ];

(u∗)′(t) ∈ −N(K(J∗(x∗(t))); J∗(u∗(t))) a.e. on [0, T ],

where x0 ∈ X , u0 ∈ K(x0), ν0 := J∗(ν∗0 ), ν∗0 be an open neighborhood of J(x0) in
X∗, K : cl(ν0)⇉X be a set-valued mapping taking nonempty closed convex values
in X , and J : X → X∗ is the duality mapping defined from X into X∗ (see Section
2 for the definitions). The mapping x∗ is called a solution of (SSP)
Clearly, (SSP) coincides with the well known second order convex sweeping process
studied in many works (see for instance [4, 7, 10] and the reference therein) in the
Hilbert space setting in which J is the identity mapping. The authors in [5] proved
the following theorem.

Theorem 1.1. Let p, q > 1, X be a separable Banach space which is p-uniformly
convex and q-uniformly smooth, and let K : cl(ν0)⇉X be a set-valued mapping
taking nonempty closed convex values in X and satisfying: for any x, x′ ∈ cl(ν0)
and any ϕ,ϕ′ ∈ X∗,

(1.1) |(dV
K(x′))

q−1

q (ϕ′) − (dV
K(x))

q−1

q (ϕ)| ≤ λ‖J(x′) − J(x)‖ + γ‖ϕ′ − ϕ‖.

Assume that J(K(x)) ⊂ L, for some convex compact set L ∈ X∗. Then (SSP) has
at least one Lipschitz solution.
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They proved the existence of solutions under (1.1) the Lipschitz behavior of

the function (x, ψ) 7→ (dV
K(J∗(x)))

q−1

q (ψ) defined on X∗ × X∗, where dV
S (ψ) :=

infx∈S V (ψ, x) and V (ϕ, x) = ‖ϕ‖2 − 2〈ϕ, x〉 + ‖x‖2. In this paper we prove the

previous theorem under the Lipschitz continuity of the function x 7→ d
q

p

K(x)(u), ∀u ∈

X , (with constant depending on u see Theorem 3.1), which is defined on X and is

easier to handle with, than the function (y, ψ) 7→ (dV
K(J∗(y)))

q−1

q (ψ) used in (1.1).

Also, in the case of Banach spaces (not necessarily Hilbert) the Lipschitz assumption
(3.1) is much easier to be checked than (1.1).
Before proving our main result in Theorem 3.1, we recall from [5] some needed
concepts and results and for more details we refer the reader to [5] and the references
therein.

2. Preliminaries.

Let X be a Banach space with topological dual space X∗. We denote by dS the
usual distance function to S, i.e., dS(x) := infu∈S ‖x − u‖. Let S be a nonempty
closed convex set of X and x̄ be a point in S. The convex normal cone of S at x̄ is
defined by (see for instance [11])

(2.1) N(S; x̄) = {ϕ ∈ X∗ : 〈ϕ, x− x̄〉 ≤ 0 for all x ∈ S}.

The normalized duality mapping J : X⇉X∗ is defined by

J(x) = {j(x) ∈ X∗ : 〈j(x), x〉 = ‖x‖2 = ‖j(x)‖2}.

Many properties of the normalized duality mapping J have been studied. For the
details, one may see the books [1, 14, 15]. Let V : X∗ ×X → R be defined by

V (ϕ, x) = ‖ϕ‖2 − 2〈ϕ, x〉 + ‖x‖2, for any ϕ ∈ X∗ and x ∈ X.

Based on the functional V , a set πS(ϕ) of generalized projections of ϕ ∈ X∗ onto
S is defined as follows (see [2]).

Definition 2.1. Let S be a nonempty subset of X and ϕ ∈ X∗. If there exists a
point x̄ ∈ S satisfying

V (ϕ, x̄) = inf
x∈S

V (ϕ, x),

then x̄ is called a generalized projection of ϕ onto S. The set of all such points is
denoted by πS(ϕ). When the space X is not reflexive πS(ϕ) may be empty for some
elements ϕ ∈ X∗ even when S is closed and convex (see Example 1.4. in [12]).

The following proposition is needed in the proof of the main theorem. For its
proof we refer the reader to [13].

Proposition 2.2. For a nonempty closed convex subset S of a reflexive smooth
Banach space X and u ∈ S, the following assertions are equivalent:

i) x̄ ∈ S is a projection of u onto S, that is x̄ ∈ PS(u);
ii) 〈J(u − x̄), x− x̄〉 ≤ 0 for all x ∈ S;
iii) J(u − x̄) ∈ N(S; x̄).

EJQTDE, 2012 No. 27, p. 2



Assume now that X is p-uniformly convex and q-uniformly smooth Banach space
(for their definitions we refer the reader to the reference [5] and the references
therein) and let S be closed nonempty set in X . Recall the definition of the function
dV

S : X∗ → [0,∞[, given by dV
S (ϕ) = infx∈S V (ϕ, x). Clearly, in Hilbert spaces dV

S

coincide with d2
S . We need the two following lemma proved in [5] respectively.

Lemma 2.3. Let p, q > 1, X be a p-uniformly convex and q-uniformly smooth
Banach space, and let S be a bounded set. Then there exist two constants α > 0
and β > 0 so that α‖x− y‖p ≤ V (J(x), y) ≤ β‖x− y‖q, for all x, y ∈ S.

Proposition 2.4. If S is a bounded set in X, then dV
S (ϕ) ≤ β(dS(J∗(ϕ)))q, where β

depends on the bound of S and on ϕ. As a consequence, for sets S1 and S2 in X and
X∗ bounded by l1 and l2 respectively, we have dV

S (ϕ) ≤ β(dS(J∗(ϕ)))q , for all ϕ ∈
S2, where β depends on l1 and l2.

The following lemma is taken from [1].

Proposition 2.5. Let p ≥ 2, q > 1 and let X be a p-uniformly convex and q-
uniformly smooth Banach space. The duality mapping J : X → X∗ is Lipschitz on
bounded sets, that is,

‖J(x) − J(y)‖ ≤ C(R)‖x− y‖, for all ‖x‖ ≤ R, ‖y‖ ≤ R.

Here C(R) := 32Lc22(q − 1)−1 and c2 = max{1, R} and 1 < L < 1.7.

Let us mention that the Lipschitz continuity on bounded sets of the duality
mapping J∗ on X∗, is not ensured in general by Proposition 2.5 because X∗ is
p′-uniformly convex and q′-uniformly smooth Banach space with p′ = p

p−1 ,q′ = q
q−1

and by the fact that p′ ∈ [1, 2] whenever p ≥ 2. However, J∗ is uniformly continuous
on bounded sets.
The following proposition summarizes two important results proved respectively in
[12, 6]

Proposition 2.6. Let X be a reflexive Banach space with dual space X∗ and S be
a nonempty, closed and convex subset of X. The following properties hold:

(π1) πS(ϕ) 6= ∅, for any ϕ ∈ X∗;
(π2) If X is also smooth, then ϕ ∈ N(S, x̄), if and only if, ∃α > 0 so that x̄ ∈

πS(J(x̄) + αϕ).

We end this section with the following lemma needed in our proofs (for the proof
we refer the reader for instance to [9]).

Lemma 2.7. Let X be a reflexive Banach space and let C : I → X be a set-valued
mapping with nonempty closed convex values. Then the functional I : v 7→ I(v) :=
∫ T

0 δ∗
C(t)(v(t))dt from X∗ to R is weakly lower semi-continuous in the following

sense: for any (vn) a sequence of mappings vn : I → X∗ such that vn → v∗ in the
weak star topology of L∞(I,X∗), we have

∫ T

0

δ∗C(t)(v∗(t))dt ≤ lim inf
n

∫ T

0

δ∗C(t)(vn(t))dt.

EJQTDE, 2012 No. 27, p. 3



3. Main result.

Now, we are ready to prove the main result in the following theorem.

Theorem 3.1. Instead of (1.1) in Theorem 1.1, assume that

(3.1) |d
q

p

K(x′)(u) − d
q

p

K(x)(u)| ≤ λ(u)‖x′ − x‖, for all u ∈ X,

with λ : X → [0,∞) is bounded on bounded sets. Then (SSP ) has at least one
Lipschitz solution.

Proof. We give the proof in four steps.
Step 1. Construction of approximants. Let µ > 0 such that J(x0)+µB∗ ⊂ ν∗0
and let l > 0 such that L ⊂ lB∗. Let T ∈ (0, µ

l
) and put I := [0, T ]. For each n ∈ N ,

we consider the partition of I given by In,i := [tn,i, tn,i+1), for all i = 0, . . . , n− 1,

with tn,i = iµn, µn := T
n
, and In,n := {T }.

For every n ∈ N we define the following approximating mappings on each interval
In,i as follows

(3.2)







u∗n(t) := J(un,i), un(t) = J∗(u∗n(t)) = un,i,

x∗n(t) = J(x0) +

∫ t

0

u∗n(s)ds, xn(t) = J∗(x∗n(t)),

where un,0 = u0 and for all i = 0, . . . , n− 1 the point un,i+1 is given by

(3.3) un,i+1 = πK(xn(tn,i+1))(J(un,i)).

As

x∗n(tn,1) = J(x0) +

∫ tn,1

0

u∗n(s)ds ⊂ J(x0) + ltn,1B∗ ⊂ J(x0) + µB∗ ⊂ ν∗0 ,

so
xn(tn,1) = J∗(x∗n(tn,1)) ⊂ J∗(ν∗0 ) = ν0,

and as K has nonempty closed convex values, by Proposition 2.6 one can choose
a point un,1 ∈ πK(xn(tn,1))(J(un,0)). Similarly, we can define, by induction, all the
points (un,i)i

Let us define θn(t) := tn,i, and ρn(t) := tn,i+1 if t ∈ In,i. Then, the definition of
xn(·) and un(·) yield for all t ∈ I,

(3.4) un(t) ∈ K(xn(θn(t))) ⊂ lB.

So, the mappings x∗n(·) are Lipschitz with ratio l and they are also equibounded,
with ‖x∗n‖∞ ≤ ‖x0‖ + lT . Hence the mappings xn(·) are continuous.

Observe also that for all n ∈ N and t ∈ I one has

(3.5) xn(t) ∈ ν0.

Indeed, the definition of xn(·) and un(·) ensure that, for all t ∈ I,

x∗n(t) = J(x0) +

∫ t

0

u∗n(s)ds ⊂ J(x0) + ltB∗ ⊂ J(x0) + µB∗ ⊂ ν∗0 ,

and so
xn(t) = J∗(x∗n(t)) ⊂ J∗(ν∗0 ) = ν0,
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and hence K(xn(t)) is well defined for all t ∈ I.

Now we define the piecewise affine approximants from I to X∗ as follows

(3.6) v∗n(t) := J(un,i) + µ−1
n (t− tn,i)(J(un,i+1) − J(un,i)), if t ∈ In,i.

Define the mapping v from I to X by

(3.7) vn(t) = J∗(v∗n(t)), for all t ∈ I.

Observe that v∗n(θn(t)) = J(un,i) and vn(θn(t)) = un,i, for all i = 0, . . . , n and so
by (3.3),(3.5), and (3.6) one has

vn(θn(t)) ∈ K(xn(tn,i)) = K(xn(θn(t))) ⊂ lB.

Now, we check that the mappings v∗n are equi-Lipschitz. Let us first find an upper
bound estimate for the expression ‖J(un,i+1)−J(un,i)‖. Clearly, the sequence (un

i )
is bounded by l. Consequently, λ(un

i ) is bounded for any i, n. Let λ̄ be its bound,
that is, λ(un

i ) ≤ λ̄, for any i, n. Now, sinceX is q-uniformly smooth and p-uniformly
convex and the sequence (un

i ) is bounded by l, there exists some constants α and
β depending on l such that

α‖un,i+1 − un,i‖
p ≤ V (J(un,i), un,i+1) ≤ β‖un,i+1 − un,i‖

q,

and so by the construction of the sequence un
i and Proposition 2.4 we get

α‖un,i+1 − un,i‖
p ≤ dV

K(xn(tn,i+1))
(J(un,i)) ≤ βd

q

K(xn(tn,i+1))
(un,i)

and so by the Lipschitz property in (3.1) we obtain

(
α

β
)

1
p ‖un,i+1 − un,i‖ ≤ d

q

p

K(xn(tn,i+1))
(un,i) − d

q

p

K(xn(tn,i))
(un,i)

≤ λ(un,i)|xn(tn,i+1) − xn(tn,i)| ≤ λ̄l|tn,i+1 − tn,i| ≤ lλ̄µn,

and so

‖un,i+1 − un,i‖ ≤ λ̂µn,

where λ̂ = l(β
α
)

1
p λ̄. Using now the Lipschitz property of the duality mapping J in

Proposition 2.5, we can write

(3.8) ‖J(un,i+1) − J(un,i)‖ ≤ C(l)‖un,i+1 − un,i‖ ≤ C(l)λ̂µn.

So, for any t, t′ ∈ In,i one has

‖v∗n(t′) − v∗n(t)‖ = µ−1
n |t′ − t|‖J(un,i+1) − J(un,i)‖ ≤ C(l)λ̂|t′ − t|.

This inequality, with the continuity of v∗n on (tn,i)i, shows that the mappings v∗n are

equi-Lipschitz on all I with ratio δ := C(l)λ̂ and hence the mappings vn = J∗(v∗n)
are uniformly continuous on I because v∗n is bounded and J∗ is uniformly continuous
on bounded sets. By the definition of u∗n(·) and v∗n(·) one has

‖v∗n(t) − u∗n(t)‖ ≤ µ−1
n |t− tn,i|‖J(un,i+1) − J(un,i)‖ ≤ δµn,

and hence

(3.9) ‖v∗n − u∗n‖∞ → 0.
EJQTDE, 2012 No. 27, p. 5



The definition of vn(·) given by (3.7) and the relation (3.3) yield

(3.10) vn(θn(t)) ∈ K(xn(θn(t))), for all t ∈ In,i, (i = 0, . . . , n− 1),

and by the definition of v∗n(·), one has for a.e. t ∈ In,i

(3.11) (v∗n)′(t) = µ−1
n (J(un,i+1) − J(un,i)).

So, by the characterization of the convex normal cones stated in Proposition 2.6,
we get for a.e. t ∈ I

(3.12) (v∗n)′(t) ∈ −N(K(xn(ρn(t))); vn(ρn(t))).

Indeed, by construction

un,i+1 ∈ πK(xn(tn,i+1))(J(un,i))

= πK(xn(tn,i+1))(J(un,i+1) − [J(un,i+1) − J(un,i)])

⇔ J(un,i+1) − J(un,i) ∈ −N(K(xn(tn,i+1));un,i+1)

⇔ µ−1
n (J(un,i+1) − J(un,i)) ∈ −N(K(xn(ρn(t))); vn(ρn(t))).

and hence (3.12) holds.
Step 2. Uniform convergence of the sequences xn(·) and vn(·). Since
µ−1

n (t− tn,i) ≤ 1, for all t ∈ In,i and J(un,i+1), J(un,i) ∈ L, and L is a convex set
in X∗ one gets for all t ∈ I,

v∗n(t) = J(un,i) + µ−1
n (t− tn,i)[J(un,i+1) − J(un,i)]

=

(

1 −
t− tn,i

µn

)

J(un,i) +
t− tn,i

µn

J(un,i+1) ∈ L.

Thus for every t ∈ I, the set {v∗n(t) : n ∈ N} is relatively compact in X∗. On the
other hand, it is clear by (3.8) and (3.11) that

‖(v∗n)′(t)‖ ≤ δ.(3.13)

Therefore, this estimate and Theorem 0.3.4 in [3] ensure the existence of a Lipschitz
mapping u∗ : I → X∗ such that:

• (v∗n) converges uniformly to u∗ on I.

Clearly, we have the weak star convergence of ((v∗n)′) to some limit ω in L∞(I,X∗)
and easily, we can check that ω = (u∗)′ a.e. on I. Indeed, the weak star convergence
of ((v∗n)′) to ω in L∞(I,X∗) ensures for any t ∈ I and any y ∈ L1(I,X)

lim
n
〈(v∗n)′ − ω, y〉L∞(I,X∗),L1(I,X) = 0,

that is,

lim
n

∫ T

0

〈(v∗n)′(s) − ω(s), y(s)〉X∗,Xds = 0.

Here 〈·, ·〉L∞(I,X∗),L1(I,X) denotes the dual pairing between the spaces L1(I,X) and
L∞(I,X∗), and 〈·, ·〉X∗,X denotes the dual pairing between the spaces X and X∗.
Fix now any t ∈ [0, T ] and define yk : I → X by yk ≡ ψ[0,t](·) · ek, where (ek) ⊂ X
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is a sequence separating points in X∗ (such sequences exist in reflexive separable
Banach spaces). Then for any k ∈ N we have

〈lim
n

∫ t

0

(v∗n)′(s)ds, ek〉X∗,X = 〈

∫ t

0

ω(s)ds, ek〉X∗,X .

This ensures

lim
n

∫ t

0

(v∗n)′(s)ds =

∫ t

0

ω(s)ds.

Consequently,

u∗(t) = lim
n
v∗n(t) = lim

n
[J(u0) +

∫ t

0

(v∗n)′(s)ds] = J(u0) +

∫ T

0

w(s)ds,

and since u∗ is absolutely continuous, we deduce that ω = (u∗)′ a.e. on I.

We define now the continuous mapping u : I → X by

(3.14) u(t) = J∗(u∗(t)), for all t ∈ I.

Then, it is clear that (vn) converges uniformly to u, because J∗ is uniformly con-
tinuous on bounded sets.

Now, we define the Lipschitz mapping x∗ : I → X by

(3.15) x∗(t) = J(x0) +

∫ t

0

u∗(s)ds, for all t ∈ I,

and the continuous mapping x : I → X is given by

(3.16) x(t) = J∗(x∗(t)), for all t ∈ I.

Then by the definition of x∗n one obtains for all t ∈ I,

‖x∗n(t) − x∗(t)‖ = ‖

∫ t

0

(u∗n(s) − u∗(s))ds‖ ≤ T ‖u∗n − u∗‖∞,

and by (3.9) we get

(3.17) ‖x∗n − x∗‖∞ ≤ T ‖u∗n − v∗n‖∞ + T ‖v∗n − u∗‖∞ → 0 as n→ ∞.

Hence (x∗n) converges uniformly to x∗ on I and so (xn) = (J∗(x∗n)) converges
uniformly to J∗(x∗) = x on I because J∗ is uniformly continuous on bounded sets.
This completes the second step.
Step 3. Existence of a solution. First observe that (x∗n ◦ θn), (x∗n ◦ ρn) and
(v∗n ◦ θn), (v∗n ◦ ρn) converge uniformly on I to x∗ and u∗ respectively. Recall now
that vn(ρn(t)) ∈ K(xn(ρn(t))), for all t ∈ I and n ∈ N. It follows then by our
assumptions that

d
p

q

K(x(t))(vn(ρn(t))) = d
p

q

K(x(t))(vn(ρn(t))) − d
p

q

K(xn(ρn(t)))(vn(ρn(t)))

≤ λ̄‖x(t) − xn(ρn(t))‖
≤ λ̄‖x(t) − xn(t)‖ + λ̄‖xn(t) − xn(ρn(t))‖
≤ λ̄‖J∗(x∗(t)) − j∗(x∗n(t))‖ + λ̄‖j∗(x∗n(t)) − j∗(x∗n(ρn(t)))‖.
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Hence, by the fact that ‖x∗n − x∗‖∞ → 0 and ‖x∗n(t) − x∗(ρn(t))‖ ≤ lµn → 0, and
the unifrom continuity of J∗, we obtain

dK(x(t))(vn(ρn(t))) → 0,

and so

dK(x(t))(u(t)) ≤ dK(x(t))(vn(ρn(t))) + ‖vn(ρn(t)) − u(t)‖

≤ dK(x(t))(vn(ρn(t))) + ‖vn(ρn(t)) − vn(t)‖ + ‖vn(t) − u(t)‖ → 0,

which ensures by the closedness of the values of K, that u(t) ∈ K(x(t)), for all
t ∈ I.

Now, let us prove that the mapping x∗ is a solution of our problem (SSP). Using
the weak star convergence of ((v∗n)′) to (u∗)′ in L∞(I,X∗) and Lemma 2.7 we obtain

lim inf
n

∫ T

0

δ∗K(x(t))(−(v∗n)′(t))dt ≥

∫ T

0

δ∗K(x(t))(−(u∗)′(t))dt.

Again, we use the weak star convergence of (v∗n)′ to (u∗)′ in L∞(I,X∗) with the
uniform convergence of vn ◦ ρn to u to get

lim
n

∫ T

0

〈(v∗n)′(t), vn(ρn(t))〉 dt =

∫ T

0

〈(u∗)′(t), u(t)〉 dt.

Therefore,
∫ T

0

[

δ∗K(x(t))(−(u∗)′(t)) + 〈(u∗)′(t), u(t)〉
]

dt ≤

lim inf
n

∫ T

0

[

δ∗K(x(t))(−(v∗n)′(t)) + 〈(v∗n)′(t), vn(ρn(t))〉
]

dt.(3.18)

By (3.12) and the definition of the normal cone we have

〈−(v∗n)′(t); y − vn(ρn(t))〉 ≤ 0, ∀y ∈ K(xn(ρn(t))), a.e. t ∈ I.(3.19)

Fix any t in I for which (3.19) holds and let any v ∈ K(x(t)). By (3.1) we have

d
p

q

K(xn(ρn(t)))(v) = |d
p

q

K(xn(ρn(t)))(v) − d
p

q

K(x(t))(v)|

≤ λ̄‖xn(ρn(t)) − x(t)‖

≤ λ̄ [‖xn(ρn(t)) − xn(t)‖ + ‖xn(t) − x(t)‖]

≤ λ̄ [‖xn ◦ ρn − xn‖∞ + ‖xn − x‖∞] .(3.20)

Put λn :=
(

λ̄ [‖xn ◦ ρn − xn‖∞ + ‖xn − x‖∞]
)

q

p . Clearly λn → 0 as n→ ∞ by the
uniform convergence of the sequence (xn) to x. Thus,

dK(xn(ρn(t)))(v) ≤ λn,(3.21)

which ensures the existence of wn ∈ K(xn(ρn(t))) with ‖v − wn‖ ≤ λn. Hence by
(3.19) we have

〈−(v∗n)′(t);wn − vn(ρn(t))〉 ≤ 0(3.22)
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and so by using (3.13) we obtain

〈−(v∗n)′(t); v − vn(ρn(t))〉 = 〈−(v∗n)′(t);wn − vn(ρn(t))〉 + 〈−(v∗n)′(t); v − wn〉

≤ ‖(v∗n)′(t)‖‖v − wn‖ ≤ δλn.

Thus

〈−(v∗n)′(t); v〉 + 〈(v∗n)′(t); vn(ρn(t))〉 ≤ δλn, ∀v ∈ K(x(t)), a.e. t ∈ I.

Taking the supremum on v over K(x(t)) and integrating over I we get

∫ T

0

[

δ∗K(x(t))(−(v∗n)′(t)) + 〈(v∗n)′(t); vn(ρn(t))〉
]

dt ≤ δTλn.

Hence

lim inf
n

∫ T

0

[

δ∗K(x(t))(−(v∗n)′(t)) + 〈(v∗n)′(t); vn(ρn(t))〉
]

dt ≤ 0,

and so, combining with (3.18) we obtain

∫ T

0

[

δ∗K(x(t))(−(u∗)′(t)) + 〈(u∗)′(t), u(t)〉
]

dt ≤ 0,

that is,

∫ T

0

δ∗K(x(t))(−(u∗)′(t))dt ≤

∫ T

0

〈−(u∗)′(t), u(t)〉dt.

Since u(t) ∈ K(x(t)), the last inequality becomes equality and we write

∫ T

0

δ∗K(x(t))(−(u∗)′(t))dt =

∫ T

0

〈−(u∗)′(t), u(t)〉dt,

and hence for a.e. t ∈ I we have

δ∗K(x(t))(−(u∗)′(t)) = 〈−(u∗)′(t), u(t)〉,

that is,

〈−(u∗)′(t), w〉 ≤ 〈−(u∗)′(t), u(t)〉, ∀w ∈ K(x(t)), a.e. t ∈ I.

Thus,

(u∗)′(t) ∈ −N(K(J∗(x∗(t))); J∗(u∗(t))), a.e. on I,

that is, x∗ is a solution of (SSP) and so the proof of the theorem is complete. �
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