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Abstract. This paper is concerned with the global behavior of components of positive
radial solutions for the quasilinear elliptic problem with indefinite weight

div(ϕp(∇u)) + λh(x) f (u) = 0, in B,

u = 0, on ∂B,

where ϕp(s) = |s|p−2s, B is the unit open ball of RN with N ≥ 1, 1 < p < ∞, λ > 0
is a parameter, f ∈ C([0, ∞), [0, ∞)) and h ∈ C(B̄) is a sign-changing function. We
manage to determine the intervals of λ in which the above problem has one, two or
three positive radial solutions by using the directions of a bifurcation.
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1 Introduction

In this paper, we investigate the existence of three positive radial solutions for the N-dimen-
sional p-Laplacian problem

div(ϕp(∇u)) + λh(x) f (u) = 0, in B,

u = 0, on ∂B,
(1.1)

where ϕp(s) = |s|p−2s, B is the unit open ball of RN(N ≥ 1), 1 < p < ∞, λ > 0 is a parameter,
f ∈ C([0, ∞), [0, ∞)), f (0) = 0, f (s) > 0 for s > 0, and h is a sign-changing function satisfying

H(B) = {h ∈ C(B̄) is radially symmetric | h(x) > 0, x ∈ Ω and h(x) ≤ 0, x ∈ B̄\Ω}

with the annular domain Ω = {x ∈ RN : r1 < |x| < r2} ⊂ B for some 0 < r1 < r2 < 1.
A radial solution of (1.1) can be considered as a solution of the problem

(rN−1ϕp(u′))′ + λrN−1h(r) f (u) = 0, r ∈ I,

u′(0) = 0 = u(1),
(1.2)
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where r = |x| with x ∈ B, h ∈ H(I) with I = (0, 1), and

H(I) = {h ∈ C( Ī) | h(r) > 0, r ∈ (r1, r2) and h(r) ≤ 0, r ∈ Ī\(r1, r2)} .

It is known that the existence of three positive solutions for one-dimensional p-Laplacian
problem with indefinite weight

(ϕp(u′(x)))′ + λh(x) f (u(x)) = 0, x ∈ I,

u(0) = 0 = u(1)
(1.3)

was mainly studied by three positive solutions theorem in Amann [1] based on the method of
lower and upper solutions. Notice that even they established the basic three positive solutions
theorem for the indefinite weight case, they could only apply it for a positive weight case.
This implies that it is difficult to construct upper and lower solutions for the indefinite weight.
Variational approach [3, 16] can also be applied to get three solutions, however, this method
does not guarantee positivity or nontriviality of all solutions at most cases.

To overcome the difficulties mentioned above, very recently, Sim and Tanaka [17] em-
ployed a bifurcation technique to show the existence of three positive solutions for the one-
dimensional p-Laplacian problem (1.3) with h ∈ H(I), see [17, Theorem 1.1] for more details.

Up to our knowledge, the existence of three positive radial solutions have never been
established for N-dimensional p-Laplacian problem (1.1) (or (1.2)) with indefinite weight h
on the unit ball of RN . For example, Dai, Han and Ma [4]only showed the existence of one
positive radial solution of (1.1) (or (1.2)) with indefinite weight. So it is the main purpose
of this paper to obtain a similar result to Sim and Tanaka [17] for (1.1) (or (1.2)) with h ∈
H(B). Indeed, problem with indefinite weight arises from the selection-migration model in
population genetics. In this model, h(r) changes sign corresponding to the fact that an allele
A1 holds an advantage over a rival allele A2 at same points and is at a disadvantage at others;
the parameter λ corresponds to the reciprocal of diffusion, for detail, see [8].

For other results on the study of positive solutions of N-dimensional p-Laplacian problem
(1.1) or (1.2) we refer the reader to [4–7, 9–11]. It is worth noting that Dai, Han and Ma
[4] studied the unilateral global bifurcation phenomena for (1.2) with indefinite weight and
constructed the eigenvalue theory of the following problem with indefinite weight

(rN−1ϕp(u′))′ + λrN−1h(r)ϕp(u) = 0, r ∈ I,

u′(0) = 0 = u(1).
(1.4)

Let µ1 be the first positive eigenvalue of (1.4). Then from the variational characterization of
µ1, it follows that

µ1 = sup
{

µ > 0 | µ
∫

B
h(x)|φ(x)|pdx≤

∫
B
|∇φ|pdx, for φ ∈ C∞

r,c(B) and
∫

B
h(x)|φ(x)|pdx > 0

}
,

where C∞
r,c(B) = {φ ∈ C∞

c (B) | φ is radially symmetric}. For the spectrum of the p-Laplacian
operator with indefinite weight we refer the reader to [2, 14].

We turn now to a more detailed statement of our assumptions and main conclusions.
Throughout the paper we shall assume, without further comment, the following hypotheses
concerning the function f :

(H1) f : [0, ∞)→ [0, ∞) is continuous, f (0) = 0, f (s) > 0 for all s > 0;
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(H2) there exist α > 0, f0 > 0 and f1 > 0 such that lims→0+
f (s)− f0sp−1

ϕp+α(s)
= − f1;

(H3) f∞ := lims→∞
f (s)

ϕp(s)
= 0;

(H4) there exists s0 > 0 such that

min
s∈[s0, 2s0]

f (s)
ϕp(s)

≥ f0

µ1h0

(
2
(
ν2(p)− ν1(p)

)
r2 − r1

)p

,

where h0 = minr∈[ 3r1+r2
4 , r1+3r2

4 ]
h(r), ν1(p) and ν2(p) are the first two zeros of the initial

value problem

(rN−1ϕp(u′))′ + rN−1ϕp(u) = 0, r > 0,

u(0) = 1, u′(0) = 0.
(1.5)

It is well known [15] that (1.5) has a unique solution Φ defined on [0, ∞), which is oscilla-
tory. Let

0 < ν1(p) < ν2(p) < · · · < νn(p) < · · ·

be the zeros of Φ. These zeros are simple and νn(p)→ +∞ as n→ +∞.
Note that (H2) implies

lim
s→0+

f (s)
ϕp(s)

= f0. (1.6)

Combining this with (H3), we can deduce that there exists f ∗ > 0 satisfying

f (s) ≤ f ∗sp−1, s ≥ 0. (1.7)

Let Y = C[0, 1] with the norm ‖u‖∞ = maxr∈[0,1] u(r) and X = {u ∈ C1[0, 1] : u′(0) = 0 =

u(1)} be a Banach space under the norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}. Let P := {u ∈ X : u >

0 on [0, 1)} and R+ = [0,+∞).

To wit, our principal result can now be stated.

Theorem 1.1. Assume (H1)–(H4) hold. Let h ∈ H(I). Then the pair ( µ1
f0

, 0) is a bifurcation point of
problem (1.2), and there is an unbounded continuum C of the set of positive solutions of problem (1.2)
in R× X bifurcating from ( µ1

f0
, 0) such that C ⊆

(
(R+ × P)∪ {( µ1

f0
, 0)}

)
and limλ→+∞ ‖uλ‖ = +∞

for (λ, uλ) ∈ C \ {( µ1
f0

, 0)}. Moreover, there exist (λ∗, uλ∗) and (λ∗, uλ∗) ∈ C which satisfy 0 < λ∗ <
µ1
f0
< λ∗ and ‖uλ∗‖ < ‖uλ∗‖, such that the continuum C grows to the right from the bifurcation point

( µ1
f0

, 0), to the left at (λ∗, uλ∗) and to the right at (λ∗, uλ∗).

From Theorem 1.1, we can easily derive the following corollary, which gives the ranges of
parameter guaranteeing problem (1.2) has one, two or three positive solutions (see Figure 1).

Corollary 1.2. Assume (H1)–(H4) hold. Let h ∈ H(I). Then there exist λ∗ ∈ (0, µ1
f0
) and λ∗ > µ1

f0
such that

(i) (1.2) has at least one positive solution if λ = λ∗;

(ii) (1.2) has at least two positive solutions if λ∗ < λ ≤ µ1
f0

;
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(iii) (1.2) has at least three positive solutions if µ1
f0
< λ < λ∗;

(iv) (1.2) has at least two positive solutions if λ = λ∗;

(v) (1.2) has at least one positive solution if λ > λ∗.

Remark 1.3. Note that (H2) has been used in [17] studying the one-dimensional p-Laplacian
with a sign-changing weight. Indeed, under (H2) there is an unbounded continuum C which
is bifurcating from µ1

f0
. Conditions (H1)–(H3) and h ∈ H(I) push the direction of continuum

C to the right near u = 0. Moreover, it follows from (H3) and (H4) that the nonlinearity is
superlinear at some point and is sublinear near ∞, which make continuum C turn to the left
at some point and to the right near λ = ∞. Nevertheless, assumptions (H2) and (H4) are
technical and need to be further improved.

Remark 1.4. Let us consider the nonlinear function

f (s) = sp−1[s2 − 4s + 5]a−
s
m , s ≥ 0,

where a > 1, m > ln a. It is not difficult to prove that f satisfies (H1), (H2) and (H3) with

α = 1, f0 = 5, f1 = 4 +
5 ln a

m
.

Let g(s) := f (s)
sp−1 . We can easily verify that g is increasing on(

2 ln a + m−
√

m2 − (ln a)2

ln a
,

2 ln a + m +
√

m2 − (ln a)2

ln a

)
,

and is decreasing on
( 2 ln a+m+

√
m2−(ln a)2

ln a , ∞
)
. Consequently,

min
s∈[2+ m

ln a , 2(2+ m
ln a )]

f (s)
sp−1 = min

{
g
(

2 +
m

ln a

)
, g
(

4 +
2m
ln a

)}
→ ∞, m→ ∞

and so (H4) is satisfied. Then f satisfies all of the conditions in Theorem 1.1.

The contents of this paper have been distributed as follows. In Section 2, we establish
a global bifurcation phenomena from the trivial branch with the rightward direction. In
Section 3, we show that the bifurcation curve grows to the left at some point under (H4)
condition. In Section 4, we get the second turn of the bifurcation curve which grows to right
near λ = ∞. Moreover, we give the proof of Theorem 1.1.

Figure 1.1: Bifurcation diagram of Theorem 1.1.
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2 Global bifurcation phenomena with the rightward direction

We firstly introduce the following important result, which is proved in [4, Theorem 3.1], see
also [5, Theorem 2.1] or [13] studying the semilinear problem.

Lemma 2.1 (See [4]). Let h ∈ H(I). Assume g : I ×R×R satisfies Carathéodory condition in the
first two variable, g(r, s, 0) ≡ 0 for (r, s) ∈ I ×R and

lim
s→0

g(r, s, λ)

ϕp(s)
= 0 (2.1)

uniformly for r ∈ I and λ on bounded sets. Then from each (λν
k , 0) bifurcates an unbounded continuum

Cν
k of solutions to problems

(rN−1ϕp(u′(r)))′ + λrN−1h(r)ϕp(u(r)) + rN−1g(r, u, λ) = 0, r ∈ I,

u′(0) = 0 = u(1),
(2.2)

with exactly k− 1 simple zeros, where λν
k is the eigenvalue of (1.4) and ν ∈ {−1, 1}. �

Now, we are ready to show the unbounded continuum C of positive solutions to problem
(1.2). Thanks to (1.6), there exists δ > 0 such that f (s) = f0ϕp(s) + ξ(s), s ∈ (0, δ), here
ξ ∈ C[0, ∞) and

lim
s→0+

ξ(s)
ϕp(s)

= 0. (2.3)

Let us consider the auxiliary problem

(rN−1ϕp(u′(r)))′ + λ f0rN−1h(r)ϕp(u(r)) + λrN−1h(r)ξ(u(r)) = 0, r ∈ I,

u′(0) = 0 = u(1)
(2.4)

as a bifurcation problem from the trivial solution u ≡ 0.

From Lemma 2.1, we can easily obtain the following result.

Lemma 2.2. Assume (H1)–(H3) hold. Let h ∈ H(I). Then from ( µ1
f0

, 0) there emanates an unbounded
continuum C of positive solutions to problem (2.4) (i.e. (1.2)) in R+ × X.

Remark 2.3. Let g(r, u, λ) = λh(r)ξ(u) and λ+
1 = µ1 is the first positive eigenvalue of (1.4).

Then Lemma 2.2 is an immediate consequence of Lemma 2.1. Moreover, by virtue of the
relationship between function limit and infinitesimal quantity, it follows from (1.6) that there
exists δ > 0 such that

f (s)
ϕp(s)

= f0 + α(s) for 0 < s < δ, (2.5)

where lims→0+ α(s) = 0, i.e. α(s) is the infinitesimal quantity when s → 0+. Consequently,
(2.5) implies that f (s) = f0ϕp(s) + ξ(s) for s ∈ (0, δ), where ξ(s) = α(s)ϕp(s) and satisfies
(2.3). For example, let us consider the nonlinear function f (s) = 2sp−1 + sp, obviously, f0 :=
2 = lims→0+

f (s)
ϕp(s)

and ξ(s) = sp.

Lemma 2.4. Let the hypotheses of Lemma 2.2 hold. Suppose {(λn, un)} ⊂ C is a sequence of positive
solutions to (1.2) which satisfies

‖un‖ → 0 and λn →
µ1

f0
as n→ ∞.

Then there exists a subsequence of {un}, again denoted by {un}, such that un
‖un‖ converges uniformly

to φ1 on [0, 1]. Here φ1 is the eigenfunction corresponding to µ1 satisfying ‖φ1‖ = 1.
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Proof. Put vn := un
‖un‖ . Then ‖vn‖ = 1, and hence ‖v′n‖∞ and ‖vn‖∞ are bounded. Applying

the Arzelà–Ascoli theorem, a subsequence of {vn} uniformly converges to a limit v. We again
denote by {vn} the subsequence. Observe that v′(0) = 0 = v(1) and ‖v‖ = 1. Now, from the
equation of (1.2) with λ = λn and u = un, we obtain

ϕp(u′n) = −λn

∫ r

0
h(t)

( t
r

)N−1
f (un)dt. (2.6)

Dividing the both sides of (2.6) by ‖un‖p−1, we get

ϕp(v′n) = −λn

∫ r

0
h(t)

( t
r

)N−1 f (un(t))
ϕp(un(t))

ϕp(vn(t))dt =: wn(r), (2.7)

whence also

vn(r) = −
∫ 1

r
ϕ−1

p (wn(t))dt. (2.8)

On the other hand, it can be easily seen that f (un(r))
ϕp(un(r))

→ f0 (recall un(r)→ 0 for all r ∈ [0, 1]) as
n → ∞. Then, by virtue of (1.7), it follows from Lebesgue’s dominated convergence theorem
that wn(r) tends to w(r),

w(r) := −µ1

∫ r

0

( t
r

)N−1
h(t)ϕp(v(t))dt, for all r ∈ [0, 1].

Consequently, combining (2.8) and Lebesgue’s dominated convergence theorem, we can de-
duce

v(r) = −
∫ 1

r
ϕ−1

p (w(t))dt =
∫ 1

r
ϕ−1

p

(
µ1

∫ s

0

( t
s

)N−1
h(t)ϕp(v(t))dt

)
ds,

which is equivalent to (1.4) with λ = µ1, and hence v ≡ φ1.

Lemma 2.5. Suppose α > 0 and h ∈ H(I). Let φ1 be the eigenfunction corresponding to µ1. Then∫
B

h(x)[φ1(x)]p+αdx > 0.

Proof. Multiplying −div(ϕp(∇u)) = µ1h(x)ϕp(u) by φ1+α
1 and integrating it over B, we obtain

µ1

∫
B

h(x)[φ1]
p+α(x)dx

= −
∫

B
div(|∇φ1|p−2∇φ1)φ

α+1
1 (x)dx

= −
∫

∂B
φα+1

1 (x)|∇φ1|p−2∇φ1 · νdx + (α + 1)
∫

B
φα

1 (x)∇φ1|∇φ1|p−2∇φ1dx

= (α + 1)
∫

B
φα

1 (x)|∇φ1|pdx > 0.

The next result establishes that the continuum C grows to the right from ( µ1
f0

, 0).

Lemma 2.6. Let the hypotheses of Lemma 2.2 hold. Then there exists δ > 0 such that (λ, u) ∈ C and
|λ− µ1

f0
|+ ‖u‖ ≤ δ imply λ > µ1

f0
.
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Proof. For contradiction we assume that there exists a sequence {(λn, un)} ⊂ C satisfying

‖un‖ → 0, λn →
µ1

f0
and λn ≤

µ1

f0
. (2.9)

From Lemma 2.4, there exists a subsequence of {un}, we again denote it by {un}, such that
un
‖un‖ converges uniformly to φ1 on [0, 1], here φ1 > 0 is the eigenfunction corresponding to µ1

satisfying ‖φ1‖ = 1. Multiplying the equation of (1.1) applied to (λn, un) by un and integrating
over B, we see that

λn

∫
B

h(x) f (un)undx =
∫

B
|∇un|pdx.

It follows from the definition of µ1 that

λn

∫
B

h(x) f (un)undx ≥ µ1

∫
B

h(x)|un|pdx,

whence also∫
B

h(x)
f (un)− f0(un)p−1

(un)p−1+α

∣∣∣ un

‖un‖

∣∣∣p+α
dx ≥ µ1 − f0λn

λn‖un‖α

∫
B

h(x)
∣∣∣ un

‖un‖

∣∣∣pdx.

Together with (H2), Lemma 2.5 and Lebesgue’s dominated convergence theorem, then gives

∫
B

h(x)
f (un)− f0(un)p−1

(un)p−1+α

∣∣∣ un

‖un‖

∣∣∣p+α
dx → − f1

∫
B

h(x)|φ1|p+αdx < 0,

but ∫
B

h(x)
∣∣∣ un

‖un‖

∣∣∣pdx →
∫

B
h(x)|φ1|pdx > 0.

Consequently, λn > µ1
f0

, which contradicts (2.9).

Remark 2.7. Lemma 2.6 implies that the bifurcation continuum C has the rightward direction
from the bifurcation point ( µ1

f0
, 0).

3 Direction turn of bifurcation

In this section, in view of the condition (H4), we show that the continuum C grows to the left
at some point.

Lemma 3.1. Let h ∈ H(I). Suppose u is a positive solution of (1.2). Then

‖u‖∞

2
≤ u(r) ≤ ‖u‖∞, r ∈

[
3r1 + r2

4
,

r1 + 3r2

4

]
. (3.1)

Proof. It readily follows from the equation of (1.2) that u′(r) is nondecreasing on [0, 1]\(r1, r2)

and u′(r) is decreasing on (r1, r2) because h ∈ H(I). On the other hand, according to u(1) =
0 = u′(0) and u(r) > 0 for all (0, 1), it becomes apparent that u′(1) ≤ 0. Therefore, u is convex
on [0, 1]\(r1, r2) and concave on (r1, r2). If r0 ∈ [r1, r1+r2

2 ] is a point of a maximum of u, then,
for all r1 ≤ r ≤ r0, we have

u(r)− u(r1)

r− r1
≥ ‖u‖∞ − u(r1)

r0 − r1
,
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whence also
u(r)

r− r1
≥ ‖u‖∞

r0 − r1
+

u(r1)

r− r1
− u(r1)

r0 − r1
≥ ‖u‖∞

r0 − r1
≥ ‖u‖∞

r1+r2
2 − r1

.

Thus

u(r) ≥ ‖u‖∞
r1+r2

2 − r1
(r− r1).

Observe that r−r1
r1+r2

2 −r1
≥ 1

2 is equivalent to r ≥ 3r1+r2
4 .

Analogously, if r0 ∈ [ r1+r2
2 , r2] is a point of a maximum of u. Then, for all r0 ≤ r ≤ r2, it

follows that

u(r) ≥ ‖u‖∞

r2 − r1+r2
2

(r2 − r),

and r2−r
r2−

r1+r2
2
≥ 1

2 is equivalent to r ≤ r1+3r2
4 .

Lemma 3.2. Assume (H1) and (H4) hold. Let h ∈ H(I). Suppose u is a positive solution of (1.2)
with ‖u‖∞ = 2s0. Then λ < µ1/ f0.

Proof. It can be easily seen from Lemma 3.1 that

s0 ≤ u(r) ≤ 2s0, r ∈ J :=
[

3r1 + r2

4
,

r1 + 3r2

4

]
.

For contradiction we assume λ ≥ µ1/ f0. Then it follows from (H4) that, for all r ∈ J,

λh(r)
f (u(r))

ϕp(u(r))
≥ µ1

f0
h0

f0

µ1h0

(
2 (ν2(p)− ν1(p))

r2 − r1

)p

≥
(

2 (ν2(p)− ν1(p))
r2 − r1

)p

.

Put

v(r) = Φ
[

2 (ν2(p)− ν1(p))
r2 − r1

r +
(r1 + 3r2)ν1(p)− (r2 + 3r1)ν2(p)

2(r2 − r1)

]
.

Recall that Φ is a unique solution of (1.5). Then v is a solution of

(rN−1ϕp(v′))′ +
(

2 (ν2(p)− ν1(p))
r2 − r1

)p

rN−1ϕp(v) = 0, r ∈ J,

v
(

3r1 + r2

4

)
= 0, v

(
r1 + 3r2

4

)
= 0.

(3.2)

On the other hand, u is a solution of

(rN−1ϕp(u′))′ + λh(r)
f (u)

ϕp(u)
rN−1ϕp(u) = 0, r ∈ J.

Applying the Sturm comparison Theorem [15, Lemma 4.1], we can deduce that u has at least
one zero on J, an obvious contradiction.

Remark 3.3. It follows from Lemma 3.2 that there exists a direction turn of the bifurcation
continuum C which grows to the left at some point (λ∗, uλ∗) ∈ C.
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4 Second turn and proof of main result

In this section, we prove that there is the second direction turn of bifurcation and complete
the proof of Theorem 1.1.

Lemma 4.1. Suppose u is a positive solution of (1.2) under the hypotheses (H1)–(H3) and h ∈ H(I).
Then there exists a constant C > 0 independent of u such that

|u′(r)| ≤ λ
1

p−1 C‖u‖∞, r ∈ [0, 1]. (4.1)

Proof. An easy integration for (1.2) now yields

−ϕp(u′(r)) = λ
∫ r

0
h(t)

(
t
r

)N−1

f (u)dt, r ∈ [0, 1].

Together this with (1.7), we are lead to

|u′|p−1 = λ
∣∣∣ ∫ r

0
h(t)

(
t
r

)N−1

f (u)dt
∣∣∣ ≤ λ f ∗‖u‖p−1

∞

∫ 1

0
|h(t)|dt,

the result follows at once.

The following result provides us with a lower bound for the parameter.

Lemma 4.2. Let the hypotheses of Lemma 4.1 hold. If u is a positive solution of (1.2), then there exists
λ∗ > 0 such that λ ≥ λ∗.

Proof. Let r0 be a point of a maximum of u. According to (4.1), we obtain

‖u‖∞ = u(r0) =
∫ r0

1
u′(r)dr ≤

∫ 1

r0

|u′(r)|dr ≤ λ
1

p−1 C‖u‖∞

∫ 1

r0

dr ≤ λ
1

p−1 C‖u‖∞,

and hence, λ ≥ C−(p−1), where C is a constant defined in Lemma 4.1.

Remark 4.3. Lemma 4.2 implies that the bifurcation continuum C can not intersect with the X
axis.

The next result shows that there is an upper estimate of the C1-norm of positive solutions
of (1.2).

Lemma 4.4. Let the hypotheses of Lemma 4.1 hold. Suppose J ⊂ (0, ∞) is a compact interval. Then
there exists MJ > 0 such that all possible positive solutions u of (1.2) with λ ∈ J satisfy

‖u‖ ≤ MJ .

Proof. Now we proceed as in [12], repeating the arguments for completeness. Put J := [a, b].
For contradiction, we suppose that there exists a sequence {un} of positive solutions of (1.2)
with λn ∈ J, ‖un‖ → ∞ as n→ ∞, which implies that ‖un‖∞ → ∞ (as n→ ∞) by Lemma 4.1.
Taking

α ∈
(

0,
1

bϕp(γpQ)

)
, where γp = max

{
1, 2

2−p
p−1

}
, Q = ϕ−1

p

(∫ 1

0
|h(s)|ds

)
.
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Thanks to (H3), there exists uα > 0 such that

f (u) < αup−1 for all u > uα.

Define

mα = max
s∈[0,uα]

f (s), An = {r : un(r) ≤ uα for r ∈ [0, 1]}, Bn = {r : un(r) > uα for r ∈ [0, 1]}.

Let δn ∈ (0, 1) satisfy un(δn) = max
r∈[0,1]

un(r). Then, for all r ∈ [δn, 1], it follows

un(δn) =
∫ 1

δn

ϕ−1
p

(
1

rN−1 λn

∫ r

δn

τN−1h(τ) f (un(τ))dτ

)
dr

≤
∫ 1

δn

ϕ−1
p

(
λn

∫ 1

δn

|h(τ)| f (un(τ))dτ

)
dr

≤ ϕ−1
p (λn)

∫ 1

δn

ϕ−1
p

(∫
An

|h(τ)| f (un(τ))dτ +
∫

Bn

|h(τ)| f (un(τ))dτ

)
dr

≤ ϕ−1
p (λn)

∫ 1

δn

ϕ−1
p

(
mα

∫
An

|h(τ)|dτ +
∫

Bn

|h(τ)| f (un(τ))dτ

)
dr.

Then
1

ϕ−1
p (λn)

≤ γp

∫ 1

δn

[
ϕ−1

p (mα)Q
‖un‖∞

+ ϕ−1
p

(∫
Bn

|h(τ)| f (un(τ))

‖un‖p−1
∞

dτ

)]
dr.

Combining this with f (un(τ))

‖un‖p−1
∞
≤ f (un(τ))

up−1
n (τ)

≤ α since un(τ) > uα for τ ∈ Bn, we obtain

1
ϕ−1

p (λn)
≤ γp

[
ϕ−1

p (mα)Q
‖un‖∞

+ ϕ−1
p (α)Q

]
.

It follows from λn ∈ J that 1
ϕ−1

p (λn)
≥ 1

ϕ−1
p (b)

for all n, and hence

1
ϕ−1

p (b)
≤ γp

[
ϕ−1

p (mα)Q
‖un‖∞

+ ϕ−1
p (α)Q

]
.

According to ‖un‖∞ → ∞ as n→ ∞, we must have

1
ϕ−1

p (b)
≤ γp ϕ−1

p (α)Q < γp ϕ−1
p

(
1

bϕp(γpQ)

)
Q =

1
ϕ−1

p (b)
,

an obvious contradiction.

Now put

f (s) = min
s/2≤t≤s

f (t)
tp−1 .

Lemma 4.5. Suppose (H1)–(H4) are satisfied and h ∈ H(I). Let u be a positive solution of (1.2).
Then there exists a constant C > 0 independent of u such that

λ f (‖u‖) ≤ C. (4.2)
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Proof. Let r0 be a point of a maximum of u. As in the proof of Lemma 3.1, it readily follows
that

u′′(r) > 0, r ∈ [0, 1] \ (r1, r2), u′′ < 0, r ∈ (r1, r2).

Therefore, r0 ∈ (r1, r2), which is divided into four cases.

Case 1. Let r1+r2
2 ≤ r0 ≤ r1+3r2

4 . Owing to r1+r2
2 > 3r1+r2

4 . Integrating the equation of (1.2) from
r0 to r, we are lead to

rN−1 ϕp(u′) =
∫ r

r0

(tN−1ϕp(u′))′dt = −
∫ r

r0

λtN−1h(t) f (u(t))dt =
∫ r0

r
λtN−1h(t) f (u(t))dt,

and then integrating it from 3r1+r2
4 to r0,

u(r0)− u
(

3r1 + r2

4

)
=
∫ r0

3r1+r2
4

ϕ−1
p

(
1

rN−1

∫ r0

r
λtN−1h(t) f (u(t))dt

)
dr.

It follows from Lemma 3.1 that

‖u‖∞ = u(r0) ≥
∫ r0

3r1+r2
4

ϕ−1
p

(
1

rN−1

∫ r0

r
λtN−1h(t)

f (u(t))
[u(t)]p−1 [u(t)]

p−1dt
)

dr

≥ ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2

∫ r1+r2
2

3r1+r2
4

ϕ−1
p

(∫ r1+r2
2

r
h(t)dt

)
dr.

Now put

M1 :=
∫ r1+r2

2

3r1+r2
4

ϕ−1
p

(∫ r1+r2
2

r
h(t)dt

)
dr > 0.

Necessarily,

λ f (‖u‖) ≤ λ f (‖u‖∞) ≤
2p−1

Mp−1
1

. (4.3)

Case 2. Let r1+3r2
4 < r0 < r2. It should be noted that u′( r1+3r2

4 ) > 0. Then, integrating the
equation of (1.2) in ( 3r1+r2

4 , r) shows that

u(r)− u
(

3r1 + r2

4

)
=
∫ r

3r1+r2
4

ϕ−1
p

(
1

sN−1

∫ r0

s
λtN−1h(t)

f (u(t))
[u(t)]p−1 [u(t)]

p−1dt
)

ds

=
∫ r

3r1+r2
4

ϕ−1
p

(
1

sN−1

∫ r1+3r2
4

s
λtN−1h(t)

f (u(t))
[u(t)]p−1 [u(t)]

p−1dt

)
ds,

and hence

‖u‖∞ ≥ u
(

r1 + 3r2

4

)
≥
∫ r1+3r2

4

3r1+r2
4

ϕ−1
p

(
1

sN−1

∫ r1+3r2
4

s
λtN−1h(t)

f (u(t))
[u(t)]p−1 [u(t)]

p−1dt

)
ds.

Owing to Lemma 3.1, one gets

‖u‖∞ ≥ ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2

∫ r1+3r2
4

3r1+r2
4

ϕ−1
p

(∫ r1+3r2
4

s
h(t)dt

)
ds

≥ ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2

∫ r1+r2
2

3r1+r2
4

ϕ−1
p

(∫ r1+r2
2

s
h(t)dt

)
ds

= ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2
M1,
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and (4.3) is satisfied.

Case 3. Let 3r1+r2
4 < r0 < r1+r2

2 . Analogously, integrating the equation of (1.2) in (r0, r) and
then integrating it over (r0, r), we find that

u(r0)− u(r) =
∫ r

r0

ϕ−1
p

(
1

sN−1

∫ s

r0

λtN−1h(t)
f (u(t))
[u(t)]p−1 [u(t)]

p−1dt
)

ds,

whence also

u(r0) = ‖u‖∞ ≥
∫ r1+3r2

4

r0

ϕ−1
p

(
1

sN−1

∫ s

r0

λtN−1h(t)
f (u(t))
[u(t)]p−1 [u(t)]

p−1dt
)

ds

≥ ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2

∫ r1+3r2
4

r0

ϕ−1
p

(
1

sN−1

∫ s

r0

tN−1h(t)dt
)

ds

≥ ϕ−1
p (λ f (‖u‖∞))

‖u‖∞

2
ϕ−1

p

[(
2(r1 + r2)

r1 + 3r2

)N−1
] ∫ r1+3r2

4

r1+r2
2

ϕ−1
p

(∫ s

r1+r2
2

h(t)dt
)

ds.

Put

M2 :=
∫ r1+3r2

4

r1+r2
2

ϕ−1
p

(∫ s

r1+r2
2

h(t)dt
)

ds > 0.

Consequently,

λ f (‖u‖) ≤ λ f (‖u‖∞) ≤
2p−1

Mp−1
2

(
r1 + 3r2

2(r1 + r2)

)N−1

. (4.4)

Case 4. Let r1 < r0 < 3r1+r2
4 . Arguing as above, we can also prove (4.4).

Consequently, λ f (‖u‖) ≤ C, where

C =
2p−1

min{Mp−1
1 , Mp−1

2 }

(
r1 + 3r2

2(r1 + r2)

)N−1

.

The next result establishes that the continuum C grows to (∞, ∞) in [0, ∞)× X.

Lemma 4.6. Let the hypotheses of Lemma 4.5 hold. Then C joins ( µ1
f0

, 0) to (∞, ∞) in [0, ∞)× X.

Proof. From Lemma 2.2, it follows that C is unbounded, and hence, there exists {(λn, un)} ⊂ C
such that

|λn|+ ‖un‖ → ∞. (4.5)

Clearly, by virtue of Lemma 4.2, λn > 0. We first claim that {λn} is unbounded. Suppose for
contradiction that there exists a bounded subsequence {λnk}. Then it follows from Lemma 4.4
that ‖unk‖ is bounded, which contradicts (4.5). Thus, claim is valid.

On the other hand, owing to (4.2) (in Lemma 4.5), we must have f (‖un‖) → 0. It can be
easily seen that ‖un‖ → ∞ according to (1.6).

Remark 4.7. Lemma 4.6 means that there is the second direction turn of the unbounded
continuum C, i.e. it grows to the right at (λ∗, uλ∗).

Now, we are ready to establish the main result (Theorem 1.1) in this paper.
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Proof. It follows from Lemma 2.2 and Lemma 2.6 that C is bifurcating from ( µ1
f0

, 0) and goes
rightward. Moreover, by Lemma 4.6, there exist {(λn, un)} ⊂ C such that λn → ∞ and
‖un‖ → ∞ as n → ∞. Thus, there exists (λ0, u0) ∈ C such that ‖u0‖∞ = 2s0 (s0 be defined by
(H4)), and hence, λ0 < µ1

f0
by Lemma 3.2. Therefore, together with Lemmas 2.6, 3.2 and 4.4, it

deduces that C passes through some points ( µ1
f0

, v1) and ( µ1
f0

, v2) with

‖v1‖∞ < 2s0 < ‖v2‖∞,

and there exist λ and λ̄ satisfying 0 < λ < µ1
f0
< λ̄, as well as we have

(i) if λ ∈ ( µ1
f0

, λ̄], then there exist u and v such that (λ, u), (λ, v) ∈ C with ‖u‖∞ < ‖v‖∞ <

2s0;

(ii) if λ ∈ [λ, µ1
f0
], then there exist u and v such that (λ, u), (λ, v) ∈ C with ‖u‖∞ < 2s0 < ‖v‖∞.

Now put

λ∗ = sup{λ̄ : λ̄ satisfies (i)}, λ∗ = inf{λ : λ satisfies (ii)}.

Then, by the standard argument, there exists at least one positive solution of (1.2) with λ = λ∗
and λ = λ∗, respectively. Clearly, C turns to the left at (λ∗, uλ∗) and to the right at (λ∗, uλ∗).
Consequently, Lemma 3.2 implies that, for any λ > µ1

f0
, there exists w such that (λ, w) ∈ C

with ‖w‖∞ > 2s0. This ends the proof of Theorem 1.1.
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