SOME PROPERTIES OF THE DULAC FUNCTIONS SET

OSVALDO OSUNA, GABRIEL VILLASEÑOR

Abstract

In order to rule out the existence of periodic orbits in the plane for a given system of differential equations, we discuss the feature of the set of Dulac functions, establishing some of its properties as well as some results for special cases where this set of functions is not empty. We give some examples to illustrate applications of these results.

AMS subject classification numbers (2000). 34A34, 34C25.
Key words: Bendixson-Dulac criterion, Dulac functions, periodic orbits.

1. Introduction

Many problems of the qualitative theory of differential equations in the plane refer to the existence of periodic orbits, for example in mechanical or electrical engineering, biological models and many others. However, until now we can not answer in general whether, given an arbitrary system of differential equations, it has periodic orbits or not.

There are some criteria that allow us to rule out the existence of periodic orbits in the plane such as Poincaré-Bendixson, the index theory and special systems such as the system gradient, among others, see ([1],[9],[8] and [5]).

A classical criterion to discard the existence of periodic orbits (or limiting the number of these) in a given region is the Bendixson-Dulac theorem.

For convenience, we recall the last criterion, see ([8] pag. 262, [9] pag. 202-203).
Theorem 1. (Bendixson-Dulac criterion) Let $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ and $h\left(x_{1}, x_{2}\right)$ be functions C^{1} in a simply connected domain $D \subset \mathbb{R}^{2}$ such that $\frac{\partial\left(f_{1} h\right)}{\partial x_{1}}+\frac{\partial\left(f_{2} h\right)}{\partial x_{2}}$ does not change sign in D and vanishes at most on a set of measure zero. Then the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right), \tag{1}\\
\dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in D,
\end{array}\right.
$$

does not have periodic orbits in D.

According to this criterion, to rule out the existence of periodic orbits of the system (1) in a simply connected region D, we need to find a function $h\left(x_{1}, x_{2}\right)$ that satisfies the conditions of the theorem of Bendixson-Dulac. Such function h is called a Dulac function.

Usually it is not easy to determine such a function, however it is possible to propose some candidates of the form $h=1, x_{1}^{s}, x_{2}^{s}, e^{a x_{1}+b x_{2}}, x_{1}^{s} x_{2}^{t}, s, t \in \mathbb{Q}, a, b \in \mathbb{R}$, among others. In the particular case $h=1$ this theorem is known as Bendixson's criterion.

There are some papers constructing the function of Dulac for special systems, for example see [3], [2], [6] and [7], also see [4] and [10] for more general situations.

In this paper we will introduce and study the set $\mathcal{H}_{D}^{+}(F)$ of Dulac functions for a region D and the vector field $F=\left(f_{1}, f_{2}\right)$ defined by system (1), showing some characteristics that allow us to say whether the set $\mathcal{H}_{D}^{+}(F)$ is different from the empty set.

2. Properties of the Dulac functions

Consider the vector field $F\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$, then the system (1) can be rewritten in the form

$$
\begin{equation*}
\dot{x}=F(x), \quad x=\left(x_{1}, x_{2}\right) \in D, \tag{2}
\end{equation*}
$$

now let $C^{0}(D, \mathbb{R})$ be the set of continuous functions and define the set
$\mathcal{F}_{D}=\left\{f \in C^{0}(D, \mathbb{R}): f\right.$ doesn't change sign and vanishes only on a measure zero set $\}$.
Also for the simply connected region D, we introduce the sets

$$
\mathcal{H}_{D}^{+}(F)=\left\{h \in C^{1}(D, \mathbb{R}): k:=\frac{\partial\left(h f_{1}\right)}{\partial x_{1}}+\frac{\partial\left(h f_{2}\right)}{\partial x_{2}} \geq 0, \quad k \in \mathcal{F}_{D}\right\}
$$

and

$$
\mathcal{H}_{D}^{-}(F)=\left\{h \in C^{1}(D, \mathbb{R}): k:=\frac{\partial\left(h f_{1}\right)}{\partial x_{1}}+\frac{\partial\left(h f_{2}\right)}{\partial x_{2}} \leq 0, k \in \mathcal{F}_{D}\right\}
$$

A Dulac function in the system (1) of the Bendixson-Dulac theorem is an element in the set

$$
\mathcal{H}_{D}(F):=\mathcal{H}_{D}^{+}(F) \cup \mathcal{H}_{D}^{-}(F) .
$$

This set has the following properties that are listed below in the next result.

Lemma 1. Let $F: D \rightarrow \mathbb{R}^{2}, C^{1}, D$ simply connected, then
(a) if $\mathcal{H}_{D}(F) \neq \emptyset$, then (1) has no periodic orbits entirely contained in D.
(b) $\mathcal{H}_{D}^{-}(F)=-\mathcal{H}_{D}^{+}(F)$.
(c) $\mathcal{H}_{D}(F) \neq \emptyset$ if and only if $\mathcal{H}_{D}^{+}(F) \neq \emptyset$.
(d) If $h_{1}, h_{2} \in \mathcal{H}_{D}^{+}(F)$ and $\lambda_{1}, \lambda_{2} \geq 0, \lambda_{1}+\lambda_{2}>0$, then $\lambda_{1} h_{1}+\lambda_{2} h_{2} \in \mathcal{H}_{D}^{+}(F)$.
(e) Let D_{1}, D_{2} be simply connected sets such that $D_{1} \subset D_{2}$, if $\mathcal{H}_{D_{2}}^{+}(F) \neq \emptyset$, then $\mathcal{H}_{D_{1}}^{+}(F) \neq \emptyset$, in particular $\mathcal{H}_{\mathbb{R}^{2}}^{+}(F) \subset \mathcal{H}_{D_{2}}^{+}(F) \subset \mathcal{H}_{D_{1}}^{+}(F)$.
(f) Let $D \subset \mathbb{R}^{2}$ simply connected. Suppose that for all $D_{1} \subset D$ simply connected bounded, $\mathcal{H}_{D_{1}}^{+}(F) \neq \emptyset$, then there are no periodic orbits in D.
Proof. items (a), (b) and (d) are direct from the definition.
(c) It follows from (b).
(e) If $h \in \mathcal{H}_{D_{2}}^{+}(F)$, then we can take $h_{\mid} \in C^{1}\left(D_{1}, R\right)$ such that h_{\mid}is the restriction of h to the set D_{1}.
(f) Suppose there is a periodic orbit γ in D . Take D_{1} as the region bounded by γ, then by hypothesis, there exists a function $h \in \mathcal{H}_{D_{1}}^{+}(F)$ and so, D_{1} can not have periodic orbits.

Now we examine conditions that imply that the set $\mathcal{H}_{D}^{+}(F) \neq \emptyset$. Our results are established with the help of the techniques developed by the authors in [10], let us recall the following proposition

Theorem 2. ([10]). If there exist $c \in \mathcal{F}_{D}$ such that h is a solution of the equation

$$
\begin{equation*}
f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}=h\left(c\left(x_{1}, x_{2}\right)-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right), \tag{3}
\end{equation*}
$$

with $h \in \mathcal{F}_{D}$, then h is a Dulac function for (1) on D.
A first result of the existence of Dulac functions is as follows
Theorem 3. Suppose there is $c \in \mathcal{F}_{D}$, such that

$$
\mu_{i}:=\frac{1}{f_{i}}\left(c-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right) \text { depends only on } x_{i}, \text { for some } i \in\{1,2\}
$$

and is continuous, then the set $\mathcal{H}_{D}^{+}(F)$ is not empty.

Proof. We consider the case μ_{1} depending only on x_{1}. We seek a Dulac function, using the theorem 2 , so that the associated equation is

$$
f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}=h\left(c\left(x_{1}, x_{2}\right)-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right),
$$

Assume that h depends only on x_{1}. Thus the previous equation reduces to

$$
f_{1} \frac{\partial h}{\partial x_{1}}=h\left(c\left(x_{1}, x_{2}\right)-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right),
$$

which is rewritten as

$$
\frac{\partial \log h}{\partial x_{1}}=\frac{1}{f_{1}}\left(c\left(x_{1}, x_{2}\right)-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right)=\mu_{1} .
$$

From our hypothesis $h=\exp \left(\int \mu_{1} d x_{1}\right)$ is a solution and satisfies the conditions of theorem 2, therefore the system has a Dulac function. The proof is complete.

Example 1. Consider the system

$$
\begin{aligned}
& \dot{x_{1}}=x_{1} x_{2}, \\
& \dot{x_{2}}=\left(x_{1} x_{2}\right)^{2} \cos x_{1}+2 x_{2}^{3}+5 x_{2},
\end{aligned}
$$

calculating μ_{1}, we have

$$
\mu_{1}=\frac{1}{f_{1}}\left[c\left(x_{1}, x_{2}\right)-\frac{\partial f_{1}}{\partial x_{1}}-\frac{\partial f_{2}}{\partial x_{2}}\right],
$$

or replacing

$$
\mu_{1}=\frac{1}{x_{1} x_{2}}\left[c\left(x_{1}, x_{2}\right)-x_{2}-\left[2\left(x_{1}^{2} x_{2}\right) \cos x_{1}+6 x_{2}^{2}+5\right]\right]
$$

and taking

$$
c=x_{2}+5+6 x_{2}^{2}>0, \quad \forall x_{1}, x_{2} \in \mathbb{R}^{2} .
$$

We have

$$
\mu_{1}=2 x_{1} \cos x_{1}
$$

and therefore the set $\mathcal{H}_{\mathbb{R}^{2}}^{+}(F)$ is not empty.

Example 2. Let $g \in C^{1}(\mathbb{R}, \mathbb{R})$ and the system

$$
\begin{aligned}
\dot{x_{1}} & =2 x_{1}^{3}-5 x_{1}^{2} x_{2}+g\left(x_{2}\right), \\
\dot{x_{2}} & =x_{1} x_{2}+x_{1} x_{2}^{3},
\end{aligned}
$$

then

$$
\mu_{2}=\frac{1}{x_{1} x_{2}\left(1+x_{2}^{2}\right)}\left[c\left(x_{1}, x_{2}\right)-\left(6 x_{1}^{2}-10 x_{1} x_{2}\right)-3 x_{1} x_{2}^{2}\right] .
$$

We can take $c \in \mathcal{F}_{\mathbb{R}^{2}}$ as $c\left(x_{1}, x_{2}\right):=6 x_{1}^{2} \geq 0$, we have

$$
\mu_{2}=\frac{10-3 x_{2}}{1+x_{2}^{2}}
$$

that only depend on x_{2}, then by theorem $3, \mathcal{H}_{\mathbb{R}^{2}}^{+}(F) \neq \emptyset$.
Now we use theorem 3 to study some special systems, consider an equation as follows

$$
\left\{\begin{array}{l}
\dot{x}_{1}=r_{1}\left(x_{1}\right) r_{2}\left(x_{2}\right), \tag{4}\\
\dot{x}_{2}=s_{1}\left(x_{1}\right) s_{2}\left(x_{2}\right) .
\end{array}\right.
$$

We establish the following

Proposition 1. Let $D_{0} \subset D$ be a compact, simply connected set. If $r_{1} \neq 0, r_{2} \in \mathcal{F}_{D}$ and $s_{1} s_{2}^{\prime} \geq 0$ then the set $\mathcal{H}_{D_{0}}^{+}(F)$ is not empty.

Proof. From theorem 3, it is enough to see that we can choose $\mu_{1}\left(x_{1}\right)$ a continuous function such that

$$
c:=\mu_{1} r_{1} r_{2}+\left(\frac{\partial r_{1} r_{2}}{\partial x_{1}}+\frac{\partial s_{1} s_{2}}{\partial x_{2}}\right) \in \mathcal{F}_{D_{0}} .
$$

Without loss of generality, suppose $r_{2} \geq 0$ and $r_{1}>0$ in D. We take $\mu_{1}\left(x_{1}\right):=$ $n r_{1}\left(x_{1}\right)$ with $n \in \mathbb{N}$ such that $\mu_{1} r_{1}+r_{1}^{\prime}>0$ in D_{0}. This is possible because r_{1}^{\prime} is continuous and D_{0} compact. So we have $r_{2}\left(\mu_{1} r_{1}+r_{1}^{\prime}\right) \in \mathcal{F}_{D_{0}}$. Therefore

$$
c=r_{2}\left(\mu_{1} r_{1}+r_{1}^{\prime}\right)+s_{1} s_{2}^{\prime} \geq r_{2}\left(\mu_{1} r_{1}+r_{1}^{\prime}\right),
$$

thus $c \in \mathcal{F}_{D_{0}}$, which we needed to prove.
Example 3. Let $D_{0}=\left\{\left(x_{1}, x_{2}\right): \sqrt{x_{1}^{2}+x_{2}^{2}} \leq 1\right\} \subset \mathbb{R}^{2}$, and consider the system

$$
\begin{aligned}
& \dot{x_{1}}=-x_{1} x_{2}+x_{1}+2 x_{2}-2, \\
& \dot{x_{2}}=x_{1}^{2}\left(x_{2}-\cos x_{2}\right),
\end{aligned}
$$

as $-x_{1} x_{2}+x_{1}+2 x_{2}-2=\left(2-x_{1}\right)\left(x_{2}-1\right)$, and $\left(x_{2}-\cos x_{2}\right)^{\prime}=1+\sin x_{2}$. It follows from the last proposition that there is some $h \in \mathcal{H}_{D_{0}}^{+}(F)$.

Example 4. Let D_{0} be the region bounded by $0 \leq x_{1} \leq a$ and $0 \leq x_{2} \leq b$ in \mathbb{R}^{2} and consider the system

$$
\begin{aligned}
\dot{x_{1}} & =x_{1}^{2} x_{2}^{2}+a x_{2}^{2}, \\
\dot{x_{2}} & =e^{x_{1}}\left(b+x_{2}\right),
\end{aligned}
$$

now $r_{1}=x_{1}^{2}+a \neq 0$ and $r_{2}=x_{2}^{2} \in \mathcal{F}_{D}$ and $s_{1} s_{2}^{\prime} \geq 0$, therefore from proposition 1, $\mathcal{H}_{D_{0}}^{+}(F) \neq \emptyset$.

Another result that helps us to establish conditions for which the set $\mathcal{H}_{D}^{+}(F) \neq \emptyset$ is the next

Proposition 2. Let $D \subseteq \mathbb{R}^{2}$, suppose that there exists a function $h: D \rightarrow \mathbb{R}, C^{1}$ which only vanishes on a set of measure zero such that

$$
\begin{equation*}
f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}>0 \quad \text { in } D \tag{5}
\end{equation*}
$$

then for any $D_{1} \subset D$ simply connected compact, we have

$$
\mathcal{H}_{D_{1}}^{+}(F) \neq \emptyset .
$$

Proof. Note that $h^{2 k} \in \mathcal{F}_{D}$ for all $k \in \mathbb{N}$. Let D_{1} be a simply connected compact and take

$$
0<r_{0}:=\min _{\left(x_{1}, x_{2}\right) \in D_{1}}\left\{f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}\right\}
$$

and take $m_{0}>0$ such that $\left|h\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right| \leq m_{0}$ in D_{1}. Now take $n:=2 k+1$ such that $n r_{0}-m_{0}>0$ and consider

$$
\begin{aligned}
& f_{1} \frac{\partial h^{n}}{\partial x_{1}}+f_{2} \frac{\partial h^{n}}{\partial x_{1}}+h^{n}\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)= \\
& h^{n-1}\left[n\left(f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}\right)+h\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right] \in \mathcal{F}_{D_{1}}
\end{aligned}
$$

since it holds that

$$
h^{2 k}\left[n r_{0}-m_{0}\right] \in \mathcal{F}_{D_{1}} .
$$

Example 5. Consider

$$
\begin{aligned}
& \dot{x_{1}}=-x_{1}^{2}+x_{1} x_{2}+1, \\
& \dot{x_{2}}=-x_{1} x_{2}+2 x_{1}^{2}
\end{aligned}
$$

and take $h\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$, then

$$
f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}=f_{1}+f_{2}=1+x_{1}^{2}>0
$$

therefore for any simply connected compact region $D \subset \mathbb{R}^{2}, \mathcal{H}_{D}^{+}(F) \neq \emptyset$.

Example 6. Consider

$$
\begin{aligned}
\dot{x_{1}} & =-4 x_{1} x_{2}^{2}+2 x_{2}-1 \\
\dot{x_{2}} & =2 x_{1}^{2} x_{2}-2 x_{1} x_{2}+1 .
\end{aligned}
$$

Let $h=x_{2}^{2}-x_{1}$, then

$$
\left(-4 x_{1} x_{2}^{2}+2 x_{2}-1\right)(-1)+\left(2 x_{1}^{2} x_{2}-2 x_{1} x_{2}+1\right)\left(2 x_{2}\right)=1+4 x_{1}^{2} x_{2}^{2}>0
$$

and $\mathcal{H}_{D}^{+}(F) \neq \emptyset$ for any simply connected compact region $D \subset \mathbb{R}^{2}$.

Acknowledgments: O. Osuna was partially supported by CIC-UMSNH. We thank the referee for various comments that helped to improve the paper.

References

[1] I. Bendixson, Sur les curbes définiés par des équations différentielles, Acta Math., 24 (1901), p. 1-88.
[2] L. A. Cherkas, Dulac functions for polynomial autonomous systems on a plane, Diff. eqs., 33, (1997), 692-701.
[3] M. Chamberland, A. Cima, A. Gasull, F. Mañosas, Characterizing Asymptotic Stability with Dulac Functions, Discrete Contin. Dynam. Systems, 17(1), (2007), 59-76.
[4] E. Saéz, I. Szánto, On the construction of certain Dulac function, Transactions on Automatic Control, vol. 33, (1988).
[5] M. Farkas, Periodic Motions, Applied Math. Sciences 104, Springer-Verlag, (1994).
[6] A. Gasull, H. Giacomini, Upper bounds for the number of limit cycles through linear differential equations, Pacific J. Math., 226(2), (2006), 277-296.
[7] L. A. Cherkas, A. A Grin, K. R. Schneider, Dulac-Cherkas functions for generalized Liénard Systems, E. J. of Qualitative Theory of Differential Equations, No. 35, (2011), 1-23.
[8] Lawrence Perko, Differential equations and dynamical systems, Springer-Verlag, (2006).
[9] Strogatz, S. Nonlinear dynamics and chaos, Addison-Wesley, (1994).
[10] Osvaldo Osuna, Villaseñor-Aguilar G. On the Dulac functions, Qualitative Theory of Dynamical Systems, Vol. 10, No. 1, (2011), 43-49.

Instituto de Física y Matemáticas, Universidad Michoacana. Edif. C-3, Cd. Universitaria, C.P. 58040. Morelia, Mich., México (osvaldo@ifm.umich.mx).

Instituto Tecnológico de Morelia, Departamento de Ciencias Básicas. Edif. AD, Morelia Mich., México (gabriel@ifm.umich.mx).

