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SOME PROPERTIES OF THE DULAC FUNCTIONS SET

OSVALDO OSUNA, GABRIEL VILLASEÑOR

Abstract. In order to rule out the existence of periodic orbits in the plane for
a given system of differential equations, we discuss the feature of the set of Dulac
functions, establishing some of its properties as well as some results for special
cases where this set of functions is not empty. We give some examples to illustrate
applications of these results.
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1. Introduction

Many problems of the qualitative theory of differential equations in the plane
refer to the existence of periodic orbits, for example in mechanical or electrical
engineering, biological models and many others. However, until now we can not
answer in general whether, given an arbitrary system of differential equations, it
has periodic orbits or not.

There are some criteria that allow us to rule out the existence of periodic orbits
in the plane such as Poincaré-Bendixson, the index theory and special systems such
as the system gradient, among others, see ([1],[9],[8] and [5]).

A classical criterion to discard the existence of periodic orbits (or limiting the
number of these) in a given region is the Bendixson-Dulac theorem.

For convenience, we recall the last criterion, see ([8] pag. 262, [9] pag. 202-203).

Theorem 1. (Bendixson-Dulac criterion) Let f1(x1, x2), f2(x1, x2) and h(x1, x2)

be functions C1 in a simply connected domain D ⊂ R2 such that ∂(f1h)
∂x1

+ ∂(f2h)
∂x2

does
not change sign in D and vanishes at most on a set of measure zero. Then the
system

(1)

{

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2), (x1, x2) ∈ D,

does not have periodic orbits in D.
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According to this criterion, to rule out the existence of periodic orbits of the
system (1) in a simply connected region D, we need to find a function h(x1, x2) that
satisfies the conditions of the theorem of Bendixson-Dulac. Such function h is called
a Dulac function.

Usually it is not easy to determine such a function, however it is possible to
propose some candidates of the form h = 1, xs

1, x
s
2, e

ax1+bx2 , xs
1x

t
2, s, t ∈ Q, a, b ∈ R,

among others. In the particular case h = 1 this theorem is known as Bendixson’s
criterion.

There are some papers constructing the function of Dulac for special systems, for
example see [3], [2], [6] and [7], also see [4] and [10] for more general situations.

In this paper we will introduce and study the set H+
D(F ) of Dulac functions for

a region D and the vector field F = (f1, f2) defined by system (1), showing some
characteristics that allow us to say whether the set H+

D(F ) is different from the
empty set.

2. Properties of the Dulac functions

Consider the vector field F (x1, x2) = (f1(x1, x2), f2(x1, x2)), then the system (1)
can be rewritten in the form

(2) ẋ = F (x), x = (x1, x2) ∈ D,

now let C0(D, R) be the set of continuous functions and define the set

FD = {f ∈ C0(D, R) : f doesn’t change sign and vanishes only on a measure zero set}.

Also for the simply connected region D, we introduce the sets

H+
D(F ) = {h ∈ C1(D, R) : k :=

∂(hf1)

∂x1
+

∂(hf2)

∂x2
≥ 0, k ∈ FD}

and

H−
D(F ) = {h ∈ C1(D, R) : k :=

∂(hf1)

∂x1

+
∂(hf2)

∂x2

≤ 0, k ∈ FD}.

A Dulac function in the system (1) of the Bendixson-Dulac theorem is an element
in the set

HD(F ) := H+
D(F ) ∪H−

D(F ).

This set has the following properties that are listed below in the next result.
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Lemma 1. Let F : D → R2, C1, D simply connected, then

(a) if HD(F ) 6= ∅, then (1) has no periodic orbits entirely contained in D.

(b) H−
D(F ) = −H+

D(F ).

(c) HD(F ) 6= ∅ if and only if H+
D(F ) 6= ∅.

(d) If h1, h2 ∈ H+
D(F ) and λ1, λ2 ≥ 0, λ1 + λ2 > 0, then λ1h1 + λ2h2 ∈ H+

D(F ).

(e) Let D1, D2 be simply connected sets such that D1 ⊂ D2, if H+
D2

(F ) 6= ∅, then

H+
D1

(F ) 6= ∅, in particular H+
R2(F ) ⊂ H+

D2
(F ) ⊂ H+

D1
(F ).

(f) Let D ⊂ R2 simply connected. Suppose that for all D1 ⊂ D simply connected
bounded, H+

D1
(F ) 6= ∅, then there are no periodic orbits in D.

Proof. items (a), (b) and (d) are direct from the definition.

(c) It follows from (b).
(e) If h ∈ H+

D2
(F ), then we can take h| ∈ C1(D1, R) such that h| is the restriction

of h to the set D1.
(f) Suppose there is a periodic orbit γ in D. Take D1 as the region bounded by

γ, then by hypothesis, there exists a function h ∈ H+
D1

(F ) and so, D1 can
not have periodic orbits. 2

Now we examine conditions that imply that the set H+
D(F ) 6= ∅. Our results are

established with the help of the techniques developed by the authors in [10], let us
recall the following proposition

Theorem 2. ([10]). If there exist c ∈ FD such that h is a solution of the equation

(3) f1
∂h

∂x1
+ f2

∂h

∂x2
= h

(

c(x1, x2) −

(

∂f1

∂x1
+

∂f2

∂x2

))

,

with h ∈ FD, then h is a Dulac function for (1) on D.

A first result of the existence of Dulac functions is as follows

Theorem 3. Suppose there is c ∈ FD, such that

µi :=
1

fi

(

c −

(

∂f1

∂x1

+
∂f2

∂x2

))

depends only on xi, for some i ∈ {1, 2}

and is continuous, then the set H+
D(F ) is not empty.
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Proof. We consider the case µ1 depending only on x1. We seek a Dulac function,
using the theorem 2, so that the associated equation is

f1
∂h

∂x1
+ f2

∂h

∂x2
= h

(

c(x1, x2) −

(

∂f1

∂x1
+

∂f2

∂x2

))

,

Assume that h depends only on x1. Thus the previous equation reduces to

f1
∂h

∂x1
= h

(

c(x1, x2) −

(

∂f1

∂x1
+

∂f2

∂x2

))

,

which is rewritten as

∂ log h

∂x1
=

1

f1

(

c(x1, x2) −

(

∂f1

∂x1
+

∂f2

∂x2

))

= µ1.

From our hypothesis h = exp
(∫

µ1dx1

)

is a solution and satisfies the conditions of
theorem 2, therefore the system has a Dulac function. The proof is complete. 2

Example 1. Consider the system

ẋ1 = x1x2,

ẋ2 = (x1x2)
2 cos x1 + 2x3

2 + 5x2,

calculating µ1, we have

µ1 =
1

f1

[

c(x1, x2) −
∂f1

∂x1
−

∂f2

∂x2

]

,

or replacing

µ1 =
1

x1x2

[

c(x1, x2) − x2 − [2(x2
1x2) cos x1 + 6x2

2 + 5]
]

and taking

c = x2 + 5 + 6x2
2 > 0, ∀x1, x2 ∈ R2.

We have
µ1 = 2x1 cos x1

and therefore the set H+
R2(F ) is not empty. 3

Example 2. Let g ∈ C1(R, R) and the system

ẋ1 = 2x3
1 − 5x2

1x2 + g(x2),

ẋ2 = x1x2 + x1x
3
2,
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then

µ2 =
1

x1x2(1 + x2
2)

[

c(x1, x2) − (6x2
1 − 10x1x2) − 3x1x

2
2

]

.

We can take c ∈ FR2 as c(x1, x2) := 6x2
1 ≥ 0, we have

µ2 =
10 − 3x2

1 + x2
2

,

that only depend on x2, then by theorem 3, H+
R2(F ) 6= ∅. 3

Now we use theorem 3 to study some special systems, consider an equation as
follows

(4)

{

ẋ1 = r1(x1)r2(x2),
ẋ2 = s1(x1)s2(x2).

We establish the following

Proposition 1. Let D0 ⊂ D be a compact, simply connected set. If r1 6= 0, r2 ∈ FD

and s1s
′
2 ≥ 0 then the set H+

D0
(F ) is not empty.

Proof. From theorem 3, it is enough to see that we can choose µ1(x1) a continuous
function such that

c := µ1r1r2 +

(

∂r1r2

∂x1
+

∂s1s2

∂x2

)

∈ FD0
.

Without loss of generality, suppose r2 ≥ 0 and r1 > 0 in D. We take µ1(x1) :=
nr1(x1) with n ∈ N such that µ1r1 + r′1 > 0 in D0. This is possible because r′1 is
continuous and D0 compact. So we have r2(µ1r1 + r′1) ∈ FD0

. Therefore

c = r2(µ1r1 + r′1) + s1s
′
2 ≥ r2(µ1r1 + r′1),

thus c ∈ FD0
, which we needed to prove. 2

Example 3. Let D0 = {(x1, x2) :
√

x2
1 + x2

2 ≤ 1} ⊂ R2, and consider the system

ẋ1 = −x1x2 + x1 + 2x2 − 2,

ẋ2 = x2
1(x2 − cos x2),

as −x1x2 +x1 +2x2−2 = (2−x1)(x2−1), and (x2 − cos x2)
′

= 1+sin x2. It follows
from the last proposition that there is some h ∈ H+

D0
(F ).

EJQTDE, 2011 No. 72, p. 5



Example 4. Let D0 be the region bounded by 0 ≤ x1 ≤ a and 0 ≤ x2 ≤ b in R2 and
consider the system

ẋ1 = x2
1x

2
2 + ax2

2,

ẋ2 = ex1(b + x2),

now r1 = x2
1 + a 6= 0 and r2 = x2

2 ∈ FD and s1s
′

2 ≥ 0, therefore from proposition 1,
H+

D0
(F ) 6= ∅.

Another result that helps us to establish conditions for which the set H+
D(F ) 6= ∅

is the next

Proposition 2. Let D ⊆ R2, suppose that there exists a function h : D → R, C1

which only vanishes on a set of measure zero such that

(5) f1
∂h

∂x1

+ f2
∂h

∂x2

> 0 in D,

then for any D1 ⊂ D simply connected compact, we have

H+
D1

(F ) 6= ∅.

Proof. Note that h2k ∈ FD for all k ∈ N. Let D1 be a simply connected compact
and take

0 < r0 := min(x1,x2)∈D1

{

f1
∂h

∂x1
+ f2

∂h

∂x2

}

and take m0 > 0 such that |h
(

∂f1

∂x1

+ ∂f2

∂x2

)

| ≤ m0 in D1. Now take n := 2k + 1 such

that nr0 − m0 > 0 and consider

f1
∂hn

∂x1
+ f2

∂hn

∂x1
+ hn

(

∂f1

∂x1
+

∂f2

∂x2

)

=

hn−1

[

n

(

f1
∂h

∂x1
+ f2

∂h

∂x2

)

+ h

(

∂f1

∂x1
+

∂f2

∂x2

)]

∈ FD1
,

since it holds that
h2k [nr0 − m0] ∈ FD1

.

2

Example 5. Consider

ẋ1 = −x2
1 + x1x2 + 1,

ẋ2 = −x1x2 + 2x2
1
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and take h(x1, x2) = x1 + x2, then

f1
∂h

∂x1

+ f2
∂h

∂x2

= f1 + f2 = 1 + x2
1 > 0,

therefore for any simply connected compact region D ⊂ R2, H+
D(F ) 6= ∅.

3

Example 6. Consider

ẋ1 = −4x1x
2
2 + 2x2 − 1,

ẋ2 = 2x2
1x2 − 2x1x2 + 1.

Let h = x2
2 − x1, then

(−4x1x
2
2 + 2x2 − 1)(−1) + (2x2

1x2 − 2x1x2 + 1)(2x2) = 1 + 4x2
1x

2
2 > 0

and H+
D(F ) 6= ∅ for any simply connected compact region D ⊂ R2. 3
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