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Abstract. The purpose of the paper is to show that the canonical operator L3 given by

L3(·) =
(

r2
(
r1(·)′

)′)′
where the functions ri(t) ∈ C([t0, ∞), [0, ∞)) satisfy∫ ∞

t0

ds
ri(s)

= ∞, (i = 1, 2),

can be written in a certain strongly noncanonical form

L3(·) ≡ b3

(
b2

(
b1 (b0(·))′

)′)′
,

such that the functions bi(t) ∈ C([t0, ∞), [0, ∞)) satisfy∫ ∞

t0

ds
bi(s)

< ∞, (i = 1, 2).

We study some relations between canonical and strongly noncanonical operators, show-
ing the advantage of this reverse approach based on the use of a noncanonical represen-
tation of L3 in the study of oscillatory and asymptotic properties of third-order delay
differential equations.

Keywords: linear differential equation, delay, third-order, noncanonical operators, os-
cillation.
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1 Introduction

This paper deals with asymptotic and oscillatory properties of solutions to linear third-order
delay differential equations of the form(

r2
(
r1y′

)′)′
(t) + q(t)y(τ(t)) = 0, t ≥ t0 > 0. (E)
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Throughout, we assume that

(H1) the functions r1, r2, q ∈ C([t0, ∞), R) are positive;

(H2) τ ∈ C1([t0, ∞), R) is strictly increasing, τ(t) ≤ t, and limt→∞ τ(t) = ∞.

For the brevity sake, we define the operators

L0y = y, Liy = ri (Li−1y)′ , (i = 1, 2), L3y = (L2y)′ .

Under a solution of equation (E), we mean a nontrivial function y ∈ C1([Ty, ∞), R) with
Ty ≥ t0, which has the property L1y, L2y ∈ C1([Ty, ∞), R), and satisfies (E) on [Ty, ∞). We
only consider those solutions of (E) which exist on some half-line [Ty, ∞) and satisfy the
condition

sup{|y(t)| : T ≤ t < ∞} > 0 for any T ≥ Ty.

As is customary, a solution y of (E) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed
oscillatory if all its solutions oscillate.

From Trench theory [18], it is known that L3y can be always written in an equivalent
canonical form

L3y(t) ≡ a3(t)
(

a2
(
a1 (a0y)′

)′)′
(t)

such that the functions ai(t) ∈ C([t0, ∞), R), i = 0, 1, 2, 3, are positive,

∫ ∞

t0

ds
ai(s)

= ∞, (i = 1, 2)

and uniquely determined up to positive multiplicative constants with the product 1. The
explicit forms of functions ai generally depend on the convergence or divergence of certain
integrals and may be calculated using the proof of Lemmas 1 and 2 in [18]. As a matter of
fact, the investigation of asymptotic properties of canonical third-order differential equations,
especially with regard to oscillation and nonoscillation, has became the subject of extensive
research, see e.g. [1–9, 11, 12, 15, 17] and the references cited therein.

The purpose of the paper is to show the reverse, i.e. that the canonical operator L3 can be
written in a certain strongly noncanonical form

L3y(t) ≡ b3(t)
(

b2
(
b1 (b0y)′

)′)′
(t), (1.1)

such that the functions bi(t) ∈ C([t0, ∞), R), i = 0, 1, 2, 3, are positive and

∫ ∞

t0

ds
bi(s)

< ∞, (i = 1, 2).

Consequently, we study some relations between canonical and strongly noncanonical opera-
tors and corresponding classes of nonoscillatory solutions of studied equations, showing the
advantage and usefulness of this reverse approach based on the use of a noncanonical repre-
sentation of L3 in the study of oscillatory and asymptotic properties of solutions of third-order
delay differential equations.
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2 Noncanonical representation

Define the functions

Ri(t) =
∫ t

t0

ds
ri(s)

, (i = 1, 2), R12(t) =
∫ t

t0

R2(s)
r1(s)

ds, R21(t) =
∫ t

t0

R1(s)
r2(s)

ds.

In the sequel, we will assume that L3 is in canonical form, that is,

(H3) Ri(∞) = ∞, i = 1, 2.

The following result is a modification of the well known Kiguradze lemma [13, Lemma 1.1]
based on (H3).

Lemma 2.1. Assume (H1)−(H3). The set of all nonoscillatory solutions y of (E) can be divided into
the following two classes

N0 = {y(t) : (∃T ≥ t0)(∀t ≥ T) (y(t)L1y(t) < 0, y(t)L2y(t) > 0)}
N2 = {y(t) : (∃T ≥ t0)(∀t ≥ T) (y(t)L1y(t) > 0, y(t)L2y(t) > 0)}

Theorem 2.2. Assume (H1)−(H3). Then L3 has a certain strongly noncanonical form (1.1), where

b0 =
1

R12
, b1 =

r1R2
12

R21
, b2 =

r2R2
21

R12
, b3 =

1
R21

.

Proof. By some computations, we have

r2R2
21

R12

(
r1R2

12
R21

(
y

R12

)′)′
= L2yR21 − L1yR1 − y

R21

R12
+ y

R1R2

R12
. (2.1)

Integrating the equality

(R1R2)
′ =

R2

r1
+

R1

r2

from t0 to t, we obtain
R1R2 = R12 + R21. (2.2)

Using (2.2) in (2.1), we get

r2R2
21

R12

(
r1R2

12
R21

(
y

R12

)′)′
= L2yR21 − L1yR1 + y.

Therefore,

L̃3y =
1

R21

(
r2R2

21
R12

(
r1R2

12
R21

(
y

R12

)′)′)′
= L3y. (2.3)

It remains to show that L̃3 is strongly noncanonical, that is,∫ ∞

t0

R21(t)
r1(t)R2

12(t)
dt =

∫ ∞

t0

R12(t)
r2(t)R2

21(t)
dt < ∞. (2.4)
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By virtue of (2.2), we see that

∫ ∞

t0

R21(t)
r1(t)R2

12(t)
dt = −

∫ ∞

t0

[(
1

R12(t)

)′
R1(t) +

1
r1(t)R12(t)

]
dt =

R1(t)
R12(t)

∣∣∣∣t0

∞
.

Using the l’Hospital rule, we have

lim
t→∞

R1(t)
R12(t)

= lim
t→∞

1
R2(t)

= 0. (2.5)

Hence, ∫ ∞

t0

R21(t)
r1(t)R2

12(t)
dt < ∞.

Convergence of the second integral in (2.4) can be shown in the same way. The proof is
complete.

Corollary 2.3. The equation (E) possesses a solution y if and only if the equation(
b2
(
b1x′

)′)′
(t) + q(t)R21(t)R12(τ(t))x(τ(t)) = 0. (E′)

has a solution x = y/R12.

Similarly as before, one can define the operators

L̃0x = x =
y

R12
, L̃ix = bi

(
L̃i−1x

)′
, (i = 1, 2), L̃3x =

(
L̃2x
)′

,

where bi, i = 1, 2 are as in Theorem 2.2. Also, we set

q̃(t) = q(t)R21(t)R12(τ(t)).

Then (E′) can be rewritten in the form

L̃3x(t) + q̃(t)x(τ(t)) = 0.

Let us explore various asymptotic properties of (E′) which will be useful in the next. The
following obvious result gives the structure of possible nonoscillatory solutions of (E′).

Lemma 2.4. Assume (H1)−(H3). The set of all nonoscillatory solutions x = y/R12 of (E′) can be
divided into the following four classes

Ñ0 =
{

x(t) : (∃T ≥ t0)(∀t ≥ T)
(

x(t)L̃1x(t) < 0, x(t)L̃2x(t) > 0
)}

,

Ña =
{

x(t) : (∃T ≥ t0)(∀t ≥ T)
(

x(t)L̃1x(t) > 0, x(t)L̃2x(t) < 0
)}

,

Ñb =
{

x(t) : (∃T ≥ t0)(∀t ≥ T)
(

x(t)L̃1x(t) > 0, x(t)L̃2x(t) > 0
)}

,

Ñ∗ =
{

x(t) : (∃T ≥ t0)(∀t ≥ T)
(

x(t)L̃1x(t) < 0, x(t)L̃2x(t) < 0
)}

.

Lemma 2.5. Assume (H1)−(H3). If∫ ∞

t0

1
b2(t)

∫ t

t0

q̃(s)ds dt = ∞, (2.6)

then Ña = Ñb = ∅ for (E′) .
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Proof. To show the nonexistence of solutions from classes Ña and Ñb, we proceed as the in
proof of cases (3) and (4), respectively, in [10, Theorem 1].

In the sequel, we consider the following auxiliary functions

π1(t) =
∫ ∞

t

1
b1(s)

ds =
R1(t)
R12(t)

, π2(t) =
∫ ∞

t

1
b2(s)

ds =
R2(t)
R21(t)

,

π(t) =
∫ ∞

t

1
b1(s)

π2(s)ds =
1

R12(t)
.

Lemma 2.6. Assume (H1)−(H3). If ∫ ∞

t0

q̃(s)π1(τ(s))ds = ∞, (2.7)

then every nonoscillatory solution x(t) ∈ Ñ0 of (E′) satisfies

lim
t→∞

x(t) = lim
t→∞

L̃1x(t) = 0.

Proof. Let x(t) be a positive solution of (E′) such that x(t) ∈ Ñ0 eventually, say for t ≥ t1,
where t1 ∈ [t0, ∞) is large enough. Assume on the contrary that limt→∞ x(t) = ` > 0. An
integration of (E′) yields

L̃2x(t1) ≥
∫ ∞

t1

q̃(s)x(τ(s))ds ≥ `
∫ ∞

t1

q̃(s)ds. (2.8)

On the other of hand, since limt→∞ π1(t) = 0, (2.7) implies that
∫ ∞

t1
q̃(s)ds = ∞. In view of

(2.8), this, however, contradicts the fact that L2x is decreasing and we conclude that x(t) → 0
as t→ ∞.

Now assume that limt→∞ L̃1x(t) = −` < 0. Then − L̃1x(t) ≥ ` eventually, and so

x(t) ≥ `
∫ ∞

t

1
b1(s)

ds = `π1(t). (2.9)

Integrating (E′) from t1 to ∞ and using (2.7) and (2.9) in the resulting inequality yield

L̃2x(t1) ≥
∫ ∞

t1

q̃(s)x(τ(s))ds ≥ `
∫ ∞

t1

q̃(s)π1(τ(s))ds→ ∞ as t→ ∞.

A contradiction and the proof is complete.

The next result is crucial in establishing important relations between solutions of (E) and
those of the corresponding strongly noncanonical equation (E′).

Lemma 2.7. Let (H1)−(H3), (2.6) and (2.7) hold. Assume that x(t) is a positive solution of (E′). If
x(t) ∈ Ñ0, then

(xR12)
′ (t) ≤ 0. (2.10)

.
If x(t) ∈ Ñ∗, then

(xR12)
′ (t) ≥ 0. (2.11)
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Proof. At first assume that x(t) ∈ Ñ0. By Lemma 2.6 and the monotonicity of L̃2x, we see that

−L̃1x(t) =
∫ ∞

t

1
b2(s)

L̃2x(s)ds ≤ L̃2x(t)π2(t).

Hence, (
L̃1x
π2

)′
(t) =

L̃2x(t)π2(t) + L̃1x(t)
π2

2(t)b2(t)
≤ 0,

which implies that L̃1x(t)/π2(t) is decreasing. Therefore,

x(t) =
∫ ∞

t

−L̃1x(s)
π2(s)

1
b1(s)

π2(s)ds ≤ −L̃1x(t)
π2(t)

π(t),

and we conclude that

(xR12)
′ (t) =

( x
π

)′
(t) =

L̃1x(t)π(t) + π2(t)x(t)
π2(t)b1(t)

≤ 0.

Now we assume that x(t) ∈ Ñ∗. By virtue of the fact that −L̃1x is increasing, we have

x(t) = x(∞)−
∫ ∞

t

1
b1(s)

L̃1x(s)ds ≥ −L̃1x(t)π1(t).

Thus, (
x

π1

)′
(t) =

L̃1x(t) + x(t)
π2

1(t)b1(t)
≥ 0,

that is, (
R12

R1
x
)′

(t) ≥ 0.

Hence,

0 ≤
(

R12

R1
x
)′

(t) = (R12x)′ (t)
1

R1(t)
− x(t)R12(t)

1
r1(t)R2

1(t)
.

Consequently, (R12x)′ (t) ≥ 0 and the proof is complete.

In view of Lemma 2.5, the essential classes for (E′) are Ñ0 and Ñ∗. In the next main result,
they will be shown, under weak assumptions, to be equivalent to classes N0 and N2 of (E),
respectively.

Theorem 2.8. Let (H1)−(H3), (2.6) and (2.7) hold. Assume that y(t) and x(t) = y(t)/R12(t) are
corresponding nonoscillatory solutions of (E) and (E′), respectively. Then

y(t) ∈ N0 if and only if x(t) ∈ Ñ0,

y(t) ∈ N2 if and only if x(t) ∈ Ñ∗,

Proof. Assume that y(t) ∈ N0. Then y′(t) < 0, and consequently (R12x)′ (t) < 0. By
Lemma 2.7, x(t) 6∈ Ñ∗ and so x(t) ∈ Ñ0.

On the other hand, if we assume that y(t) ∈ N2, then y′(t) > 0, and consequently
(R12x)′ (t) > 0. By Lemma 2.7, x(t) ∈ Ñ∗.
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3 Applications

In this section, we provide some oscillation criteria for (E) in two ways: using directly (E) and
also using a strongly noncanonical corresponding equation (E′). Subsequently, we test the
strength of these results on Euler type equations, showing the advantage of making use the
strongly noncanonical equation (E′).

As usual, all functional inequalities considered in this paper are supposed to be satisfied
for all t large enough.

Theorem 3.1. Assume (H1)−(H3). If

lim inf
t→∞

∫ t

τ(t)
q(s)R12(τ(s))ds >

1
e

, (3.1)

then any nonoscillatory solution y of (E) belongs to the class N0.

Proof. Let y(t) be a nonoscillatory solution of (E). By Lemma 2.1, either y ∈ N0 or y ∈ N2.
Assume on the contrary that y ∈ N2. Without loss of generality, we may take t1 ≥ t0 such that

y(t) > 0, Liy(t) > 0, i = 1, 2, L3y(t) < 0 for t ≥ t1.

Next, we claim that (3.1) implies

lim
t→∞

L2y(t) = 0. (3.2)

Assume not, i.e. limt→∞ L2y(t) = ` > 0. Then L2y(t) ≥ ` eventually, say for t∗ ≥ t1 and so
y(t) ≥ `R12(t). Using this inequality in (E) and integrating the resulting inequality from t∗ to
t, we see that

L2y(t) ≥
∫ t

t∗
q(s)R12(τ(s))ds→ ∞ as t→ ∞. (3.3)

Since ∫ ∞

t0

q(s)R12(τ(s))ds = ∞

is necessary for the validity of (3.1), condition (3.3) clearly contradicts the fact that L2y is
decreasing. Thus, (3.2) holds. On the other hand, it follows from the monotonicity of L2y(t)
that

L1y(t) = L1y(t1) +
∫ t

t1

1
r2(s)

L2y(s)ds

≥ L1y(t1) + L2y(t)
∫ t

t1

ds
r2(s)

= L1y(t1) + L2y(t)R2(t)− L2y(t)
∫ t1

t0

ds
r2(s)

≥ L2y(t)R2(t)

for t ≥ t2, where t2 > t1 is large enough. Dividing both sides of the latter inequality by r1(t)
and integrating the resulting inequality from t2 to t, we get

y(t) = y(t2) +
∫ t

t2

R2(s)
r1(s)

L2y(s)ds

≥ y(t2) + L2y(t)
∫ t

t2

R2(s)
r1(s)

ds

= y(t2) + L2y(t)R12(t)− L2y(t)
∫ t2

t0

R2(s)
r1(s)

ds

≥ L2y(t)R12(t)
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for t ≥ t3, where t3 > t2 is large enough. From (E), we see that z(t) = L2y(t) is a positive
solution of the first-order delay differential inequality

z′(t) + q(t)R12(τ(t))z(τ(t)) ≤ 0.

However, by [14, Theorem 2.1.1], condition (3.1) ensures that the above inequality does not
possess a positive solution, which is a contradiction. The proof is complete.

Remark 3.2. Theorem 3.1 given for canonical equation (E) improves [16, Theorem 6.2.2] in the
sense that (3.1) does not depend on the value of the initial constant appearing in R12.

The next result provides an alternative criterion for Theorem 3.1, based on the use of
corresponding strongly noncanonical equation (E′).

Theorem 3.3. Assume (H1)−(H3) and (2.7). If

lim inf
t→∞

∫ t

τ(t)

1
b1(v)

∫ v

t1

1
b2(u)

∫ u

t1

q̃(s)dsdu dv >
1
e

(3.4)

for any t1 ≥ t0, where bi, i = 1, 2 are as in Theorem 2.2, then any nonoscillatory solution y of (E)
belongs to the class N0.

Proof. Let y(t) be a nonoscillatory solution of (E). By Lemma 2.1, either y ∈ N0 or y ∈ N2.
Assume on the contrary that y ∈ N2.

Clearly, condition ∫ ∞

t1

1
b1(v)

∫ v

t1

1
b2(u)

∫ u

t1

q̃(s)ds du dv = ∞, (3.5)

is necessary for the validity of (3.4), which in view of the fact that π(t1) < ∞ implies (2.6).
By Theorem 2.8, it suffices to show that (E′) does not possess a solution x ∈ Ñ∗. Assume the
contrary. Without loss of generality, we may take t1 ≥ t0 such that

x(t) > 0, L̃ix(t) < 0, i = 1, 2, 3 for t ≥ t1.

Proceeding the same as in the proof of case (1) of [10, Theorem 2], we arrive at contradiction
with (3.4). The proof is complete.

Theorem 3.4. Let all assumptions of Theorem 3.1 hold. If, moreover,

lim sup
t→∞

∫ t

τ(t)
q(s)

∫ τ(t)

τ(s)

1
r1(u)

∫ τ(t)

u

dx
r2(x)

du ds > 1, (3.6)

then (E) is oscillatory.

Proof. Assume to the contrary that y is a nonoscillatory solution of (E). By Theorem 3.1, we
have that y(t) ∈ N0. Proceeding the same as in the proof of case (2) of [9, Theorem 2], we
arrive at contradiction with (3.6). The proof is complete.

Theorem 3.5. Let all assumptions of Theorem 3.3 hold. If, moreover,

lim sup
t→∞

∫ t

τ(t)
q̃(s)

∫ τ(t)

τ(s)

1
b1(u)

∫ τ(t)

u

dx
b2(x)

du ds > 1, (3.7)

then (E) is oscillatory.
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Proof. By Theorem 2.8 and the proof of Theorem 3.3, it suffices to show that (E′) does not
possess a solution x ∈ N0. Assume the contrary. Without loss of generality, we may take
t1 ≥ t0 such that

x(t) > 0, L̃1x(t) < 0, L̃2x(t) > 0, L̃3x(t) < 0 for t ≥ t1.

Proceeding the same as in the proof of case (2) of [9, Theorem 2], we arrive at contradiction
with (3.7). The proof is complete.

Example 3.6. Consider the Euler equation

y′′′(t) +
q0

t3 y(λt) = 0, λ ∈ (0, 1). (3.8)

By Theorem 2.2, the corresponding strongly noncanonical equation is(
t2 (t2x′(t)

)′)′
+ q0λ2tx(λt) = 0, λ ∈ (0, 1). (3.9)

Both Theorems 3.1 and 3.3 reduce to the same condition

λ2q0

2
ln

1
λ
>

1
e

,

which ensures that N2 = ∅ for (3.8). On the other hand, condition

q0λ2
[

ln
1
λ
− 2

(
1
λ
− 1
)
+

1
2

(
1

λ2 − 1
)]

> 2 (3.10)

from Theorem 3.4 or condition

q0

[
ln

1
λ
− 2(1− λ) +

1− λ2

2

]
> 2 (3.11)

from Theorem 3.5 implies that N0 = ∅. One can verify that (3.11) always provides a stronger
result than (3.10), which clearly justifies the use of strongly noncanonical equations (3.9) in
investigating the asymptotic properties of (E). This surprising feature has been revealed when
evaluating the integrals (3.6) and (3.7).

Remark 3.7. In general, the nonexistence of solutions of (E) belonging to the class N0 is due
to a delay argument only. The idea of improving the criteria eliminating such solutions by
rewriting the equation into a strongly noncanonical form which we present in this paper
deserves to be further studied.
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[1] R. P. Agarwal, M. F. Aktaş, A. Ti̇ryaki̇, On oscillation criteria for third order nonlinear
delay differential equations. Arch. Math. (Brno) 45(209), No. 1, 1–18. MR2591657

https://www.ams.org/mathscinet-getitem?mr=2591657


10 B. Baculíková, J.Džurina and I. Jadlovská
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