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1 Introduction

The main purpose of this paper is to prove existence of the mild solution for fractional

differential equations of neutral type with infinite delay in Banach space X




dq

dtq
(x(t) − h(t, xt))=A(x(t) − h(t, xt))+f(t, x(t), xt), t ∈ [0, T ],

x(t) = φ(t) ∈ P, t ∈ (−∞, 0],
(1.1)

where T > 0, 0 < q < 1,P is an admissible phase space that will be defined

later. The fractional derivative is understood here in the Caputo sense. A is a
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generator of an analytic semigroup {S(t)}t≥0 of uniformly bounded linear operators

on X, then there exists M ≥ 1 such that ‖S(t)‖ ≤ M . h : [0, T ] × P → X,

f : [0, T ] × X × P → X, and xt : (−∞, 0] → X defined by xt(θ) = x(t + θ) for

θ ∈ (−∞, 0], φ belongs to P and φ(0) = 0.

The fractional differential equations have been of much interest to many re-

searchers due to its applications in various fields, such as Physics, Chemistry, Engi-

neering, Economy, Aerodynamics, etc(cf., e.g. [2, 5, 6, 14, 15, 17] and the references

therein). Moreover, the Cauchy problem for various delay equations in Banach

spaces has been receiving more and more attention during the past decades(cf., e.g.

[7, 11, 12, 15] and the references therein).

Neutral differential equations with infinite delay appear frequently in applications

as model of equations and for this reason the study of this type of equations has

received great attention in the last few years(cf., e.g. [2, 9, 10] and the references

therein). To the author’s knowledge, few papers can be found in the literature for

the solvability of the fractional order functional differential equations of neutral type

with infinite delay.

In this paper, we study the solvability of Eq. (1.1) and obtain the existence result

of Eq. (1.1) by using the Kuratowski’s measures of noncompactness. Moreover, an

example is presented to show an application of the abstract result.

2 Preliminaries

Throughout this paper, we set J := [0, T ] and denote by X a Banach space, by

L(X) the Banach space of all linear and bounded operators on X, and C(J, X) the

space of all X-valued continuous functions on J .

The following definition about phase space is due to Hale and Kato([7]).

Definition 2.1. A linear space P consisting of functions from R− into X with semi-

norm ‖ · ‖P is called an admissible phase space if P has the following properties.

(1) If x : (−∞, T ] → X is continuous on J and x0 ∈ P, then xt ∈ P and xt is

continuous in t ∈ J , and

‖x(t)‖ ≤ C‖xt‖P , (2.1)
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where C ≥ 0 is a constant.

(2) There exist a continuous function C1(t) > 0 and a locally bounded function

C2(t) ≥ 0 in t ≥ 0 such that

‖xt‖P ≤ C1(t) sup
s∈[0,t]

‖x(s)‖ + C2(t)‖x0‖P (2.2)

for t ∈ [0, T ] and x as in (1).

(3) The space P is complete.

Remark 2.2. Equation (2.1) in (1) is equivalent to ‖φ(0)‖ ≤ C‖φ‖P, for all φ ∈ P.

Next, we recall the definition of Kuratowski’s measure of noncompactness.

Definition 2.3. Let B be a bounded subset of a semi-normed linear space Y . The

Kuratowski’s measure of noncompactness of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d}.

This measure of noncompactness satisfies some important properties([3]).

Lemma 2.4. ([3]) Let A and B be bounded subsets of X. Then

(1) α(A) ≤ α(B) if A ⊆ B.

(2) α(A) = α(A), where A denotes the closure of A.

(3) α(A) = 0 if and only if A is precompact.

(4) α(λA) = |λ|α(A), λ ∈ R.

(5) α(A ∪ B) = max{α(A), α(B)}.

(6) α(A + B) ≤ α(A) + α(B), where A + B = {x + y : x ∈ A, y ∈ B}.

(7) α(A + a) = α(A) for any a ∈ X.

(8) α(convA) = α(A), where convA is the closed convex hull of A.
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For H ⊂ C(J, X) and t ∈ J , we define

∫ t

0

H(s)ds =

{∫ t

0

u(s)ds : u ∈ H

}
,

where H(s) = {u(s) ∈ X : u ∈ H}.
The following lemmas will be needed.

Lemma 2.5. ([3]) If H ⊂ C(J, X) is a bounded, equicontinuous set, then

α(H) = sup
t∈J

α(H(t)).

Lemma 2.6. ([8]) If {un}∞n=1 ⊂ L1(J, X) and there exists an m ∈ L1(J, R+) such

that ‖un(t)‖ ≤ m(t), a.e. t ∈ J , then α({un(t)}∞n=1) is integrable and

α

({∫ t

0

un(s)ds

}∞

n=1

)
≤ 2

∫ t

0

α({un(s)}∞n=1)ds.

Lemma 2.7. ([4], P125) If U is a bounded set of X, then for any ε > 0, there exists

{un}∞n=1 ⊂ U , such that α(U) ≤ 2α({un}∞n=1) + ε.

The following result will be used later.

Lemma 2.8. ([1, 16]) Let D be a bounded, closed and convex subset of a Banach

space X such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the

implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Let Ω be set defined by

Ω = {x : (−∞, T ] → X such that x|(−∞, 0] ∈ P and x|J ∈ C(J, X)}.

Following [5, 6, 17], we introduce the definition of mild solution of Eq. (1.1).

Definition 2.9. A function x ∈ Ω satisfying the equation

x(t) =





φ(t), t ∈ (−∞, 0],

−Q(t)h(0, φ) + h(t, xt) +

∫ t

0

R(t − s)f(s, x(s), xs)ds, t ∈ J,
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is called a mild solution of Eq. (1.1), where

Q(t) =

∫ ∞

0

ξq(σ)S(tqσ)dσ,

R(t) = q

∫ ∞

0

σtq−1ξq(σ)S(tqσ)dσ

and ξq is a probability density function defined on (0, ∞) such that

ξq(σ) =
1

q
σ−1− 1

q ̟q(σ
− 1

q ) ≥ 0,

where

̟q(σ) =
1

π

∞∑

n=1

(−1)n−1σ−qn−1Γ(nq + 1)

n!
sin(nπq), σ ∈ (0,∞).

Remark 2.10. According to [13], direct calculation gives that

‖R(t)‖ ≤ M

Γ(q)
tq−1, t > 0.

3 Main Results

We will require the following assumptions.

(H1) f : J × X × P → X satisfies f(·, v, w) : J → X is measurable for all

(v, w) ∈ X × P and f(t, ·, ·) : X × P → X is continuous for a.e. t ∈ J , and

there exist two positive functions µi(·) ∈ Lp(J, R+)(p > 1
q

> 1, i = 1, 2) such

that

‖f(t, v, w)‖ ≤ µ1(t)‖v‖ + µ2(t)‖w‖P , (t, v, w) ∈ J × X × P.

(H2) For any bounded sets D1 ⊂ X, D2 ⊂ P and 0 ≤ s ≤ t ≤ T , there exist two

integrable functions β1, β2 such that

α (R(t − s)f(s, D1, D2)) ≤ β1(t, s)α(D1) + β2(t, s) sup
−∞<θ≤0

α(D2(θ)),

where sup
t∈J

∫ t

0

βi(t, s)ds := βi < ∞(i = 1, 2).
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(H3) There exists a constant L > 0 such that

‖h(t1, ϕ) − h(t2, ϕ̃)‖ ≤ L(|t1 − t2| + ‖ϕ − ϕ̃‖P), t1, t2 ∈ J, ϕ, ϕ̃ ∈ P.

(H4) There exists M∗ ∈ (0, 1) such that

LC∗
1 +

MTp, qMp, q

Γ(q)
(‖µ1‖Lp(J,R+) + C∗

1‖µ2‖Lp(J, R+)) < M∗, (3.1)

where Tp, q := T
q− 1

p , Mp, q :=
(

p−1
pq−1

)p−1

p

, C∗
1 = sup

0≤η≤T

C1(η).

Let us consider the operator Φ : Ω → Ω defined by

(Φx)(t) =






φ(t), t ∈ (−∞, 0],

−Q(t)h(0, φ) + h(t, xt) +

∫ t

0

R(t − s)f(s, x(s), xs)ds, t ∈ J.

It is easy to see that Φ is well-defined.

Let y(·) : (−∞, T ] → X be the function defined by

y(t) =

{
φ(t), t ∈ (−∞, 0],

0, t ∈ J.

Let x(t) = y(t) + z(t), t ∈ (−∞, T ].

It is clear to see that z satisfies z0 = 0 and

z(t) = −Q(t)h(0, φ) + h(t, yt + zt) +

∫ t

0

R(t − s)f(s, y(s) + z(s), ys + zs)ds, t ∈ J

if and only if x satisfies

x(t) = −Q(t)h(0, φ) + h(t, xt) +

∫ t

0

R(t − s)f(s, x(s), xs)ds, t ∈ J

and x(t) = φ(t), t ∈ (−∞, 0].

Let Z0 = {z ∈ Ω : z0 = 0}. For any z ∈ Z0,

‖z‖Z0
= sup

t∈J

‖z(t)‖ + ‖z0‖P = sup
t∈J

‖z(t)‖.

Thus (Z0, ‖ · ‖Z0
) is a Banach space.
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Define the operator Φ̃ : Z0 → Z0 by (Φ̃z)(t) = 0, t ∈ (−∞, 0] and

(Φ̃z)(t) = −Q(t)h(0, φ) + h(t, yt + zt) +

∫ t

0

R(t − s)f(s, y(s) + z(s), ys + zs)ds, t ∈ J.

Obviously, the operator Φ has a fixed point is equivalent to Φ̃ has one. Now we

show that Φ̃ has a fixed point.

Before going further we need the lemma as follows.

Lemma 3.1. Let C∗
2 = sup

0≤η≤T

C2(η), for z ∈ Z0, we have

‖yt + zt‖P ≤ C∗
2‖φ‖P + C∗

1 sup
0≤τ≤t

‖z(τ)‖. (3.2)

Proof. Noting (2.2), we have

‖yt + zt‖P ≤ ‖yt‖P + ‖zt‖P
≤ C1(t) sup

0≤τ≤t

‖y(τ)‖ + C2(t)‖y0‖P + C1(t) sup
0≤τ≤t

‖z(τ)‖ + C2(t)‖z0‖P

= C2(t)‖φ‖P + C1(t) sup
0≤τ≤t

‖z(τ)‖

≤ C∗
2‖φ‖P + C∗

1 sup
0≤τ≤t

‖z(τ)‖.

For some r > 0, we set Br = {z ∈ Z0 : ‖z‖Z0
≤ r}.

Now, from (3.2), for z ∈ Br, we can see

‖yt + zt‖P ≤ C∗
2‖φ‖P + C∗

1r := r∗. (3.3)

In view of (H1) and (H3), we have

‖f(t, y(t) + z(t), yt + zt)‖ ≤ µ1(t)‖y(t) + z(t)‖ + µ2(t)‖yt + zt‖P
≤ µ1(t)r + µ2(t)r

∗, (3.4)

and

‖h(t, yt + zt)‖ ≤ ‖h(t, yt + zt) − h(t, 0)‖ + ‖h(t, 0)‖

≤ L‖yt + zt‖P + M1

≤ Lr∗ + M1, (3.5)

where M1 = sup
t∈J

‖h(t, 0)‖.
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Proposition 3.2. The operator Φ̃ maps Br into itself.

Proof. Suppose contrary that for each positive number r there exist a function

zr(·) ∈ Br and some t ∈ J such that ‖(Φ̃zr)(t)‖ > r. Then from (3.4) and (3.5), we

obtain

r < ‖(Φ̃zr)(t)‖

≤ ‖ − Q(t)h(0, φ)‖ + ‖h(t, yt + zr
t )‖ +

∫ t

0

‖R(t − s)f(s, y(s) + zr(s), ys + zr
s)‖ds

≤ LM‖φ‖P + MM1 + Lr∗ + M1 +
M

Γ(q)

∫ t

0

(t − s)q−1[µ1(s)r + µ2(s)r
∗] ds

= M2 +
Mr

Γ(q)

∫ t

0

(t − s)q−1µ1(s)ds +
Mr∗

Γ(q)

∫ t

0

(t − s)q−1µ2(s)ds,

where M2 = LM‖φ‖P + MM1 + Lr∗ + M1.

Noting that the Hölder inequality, we have

∫ t

0

(t − s)q−1µi(s)ds ≤ Mp, q ‖µi‖Lp(J, R+) t
pq−1

p ≤ Tp, qMp, q‖µi‖Lp(J, R+), i = 1, 2.

Then

r < M2 +
MrTp, qMp, q

Γ(q)
‖µ1‖Lp(J, R+) +

Mr∗Tp, qMp, q

Γ(q)
‖µ2‖Lp(J,R+). (3.6)

Dividing both sides of (3.6) by r, and taking r → ∞, we have

LC∗
1 +

MTp, qMp, q

Γ(q)
(‖µ1‖Lp(J,R+) + C∗

1‖µ2‖Lp(J, R+)) ≥ 1.

This contradicts (3.1). Hence for some positive number r, Φ̃(Br) ⊂ Br.

Proposition 3.3. The operator Φ̃ is a continuous mapping of Br into itself.

Proof. Let {zk}k∈N be a sequence of Br such that zk → z in Br as k → ∞. Since f

satisfies (H1), for almost every t ∈ J , we get

f(t, y(t) + zk(t), yt + zk
t ) → f(t, y(t) + z(t), yt + zt), as k → ∞. (3.7)

In view of (3.3) and (3.4), we obtain ‖yt + zk
t ‖P ≤ r∗ and

‖f(t, y(t) + zk(t), yt + zk
t ) − f(t, y(t) + z(t), yt + zt)‖ ≤ 2µ1(t)r + 2µ2(t)r

∗,

EJQTDE, 2011 No. 52, p. 8



then by the Lebesgue Dominated Convergence Theorem we have

‖(Φ̃zk)(t) − (Φ̃z)(t)‖

≤ ‖h(t, yt + zk
t ) − h(t, yt + zt)‖

+

∫ t

0

‖R(t − s)[f(s, y(s) + zk(s), ys + zk
s ) − f(s, y(s) + z(s), ys + zs)]‖ds

≤ L‖zk
t − zt‖P

+
M

Γ(q)

∫ t

0

(t − s)q−1‖f(s, y(s) + zk(s), ys + zk
s ) − f(s, y(s) + z(s), ys + zs)‖ds

→ 0, k → ∞.

Therefore, we obtain that lim
k→∞

‖Φ̃zk − Φ̃z‖Z0
= 0.

Proposition 3.4. The operator Φ̃ transforms Br into equicontinuous set.

Proof. Let 0 < t2 < t1 < T and z ∈ Br, we can see

‖(Φ̃z)(t1) − (Φ̃z)(t2)‖ ≤ I1 + I2 + I3 + I4,

where

I1 = ‖Q(t1) − Q(t2)‖ · ‖h(0, φ)‖,

I2 = ‖h(t1, yt1 + zt1) − h(t2, yt2 + zt2)‖,

I3 =

∥∥∥∥
∫ t2

0

[R(t1 − s) − R(t2 − s)]f(s, y(s) + z(s), ys + zs)ds

∥∥∥∥

≤ q

∥∥∥∥
∫ t2

0

∫ ∞

0

σ[(t1 − s)q−1 − (t2 − s)q−1]ξq(σ)S((t1 − s)qσ)f(s, y(s) + z(s), ys + zs)dσds

∥∥∥∥

+ q

∫ t2

0

∫ ∞

0

σ(t2 − s)q−1ξq(σ)‖S((t1 − s)qσ) − S((t2 − s)qσ)‖‖f(s, y(s) + z(s), ys + zs)‖dσds

≤ M

Γ(q)

∫ t2

0

∣∣(t1 − s)q−1 − (t2 − s)q−1
∣∣ ‖f(s, y(s) + z(s), ys + zs)‖ds (3.8)

+ q

∫ t2

0

∫ ∞

0

σ(t2 − s)q−1ξq(σ)‖S((t1 − s)qσ) − S((t2 − s)qσ)‖‖f(s, y(s) + z(s), ys + zs)‖dσds,

I4 =

∫ t1

t2

‖R(t1 − s)‖‖f(s, y(s) + z(s), ys + zs)‖ds

≤ M

Γ(q)

∫ t1

t2

(t1 − s)q−1‖f(s, y(s) + z(s), ys + zs)‖ds.
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It follows the continuity of S(t) in the uniform operator topology for t > 0 that

I1 tends to 0, as t2 → t1. The continuity of h ensures that I2 tends to 0, as t2 → t1.

Noting (3.4) and using the assumption of µi(s)(i = 1, 2), we see that the first

term on the right-hand side of (3.8) tends to 0 as t2 → t1. The second term on the

right-hand side of (3.8) tends to 0 as t2 → t1 as a consequence of the continuity of

S(t) in the uniform operator topology for t > 0.

In view of the assumption of µi(s)(i = 1, 2) and (3.4) we see that I4 → 0, as t2 →
t1.

Theorem 3.5. Assume that (H1)-(H4) are satisfied, and if L+4(β1 +β2) < 1, then

there exists a mild solution of Eq. (1.1) on (−∞, T ].

Proof. Let V be any subset of Br such that V ⊂ conv(Φ̃(V ) ∪ {0}).
Set (Φ̃1z)(t) = h(t, yt + zt),

(Φ̃2z)(t) = −Q(t)h(0, φ) +

∫ t

0

R(t − s)f(s, y(s) + z(s), ys + zs)ds.

Noting that for z, z̃ ∈ V , we have

‖h(t, yt + z̃t) − h(t, yt + zt)‖ ≤ L‖z̃t − zt‖P ,

thus

α(h(t, yt + Vt)) ≤ Lα(Vt) ≤ L sup
−∞<θ≤0

α(V (t + θ)) = L sup
0≤τ≤t

α(V (τ)) ≤ Lα(V ),

where Vt = {zt : z ∈ V }. Therefore, α(Φ̃1V ) = sup
t∈J

α((Φ̃1V )(t)) ≤ Lα(V ).

Moreover, from Lemma 2.4-2.7 and (H2), we have

α(Φ̃2V ) ≤ 2α({Φ̃2vn}) + ε = 2 sup
t∈J

α({Φ̃2vn(t)}) + ε

= 2 sup
t∈J

α

({∫ t

0

R(t − s)f(s, y(s) + vn(s), ys + vns)ds

})
+ ε

≤ 4 sup
t∈J

∫ t

0

α({R(t − s)f(s, y(s) + vn(s), ys + vns)})ds + ε

≤ 4 sup
t∈J

∫ t

0

[β1(t, s)α({vn(s)}) + β2(t, s) sup
−∞<θ≤0

α({vn(θ + s)})]ds + ε

≤ 4 sup
t∈J

∫ t

0

[β1(t, s)α({vn}) + β2(t, s) sup
0≤τ≤s

α({vn(τ)})]ds + ε

≤ 4(β1 + β2)α({vn}) + ε ≤ 4(β1 + β2)α(V ) + ε.
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It follows from Lemma 2.4 that

α(V ) ≤ α(Φ̃V ) ≤ α(Φ̃1V ) + α(Φ̃2V ) ≤ [L + 4(β1 + β2)]α(V ) + ε,

since ε is arbitrary, we can obtain

α(V ) ≤ [L + 4(β1 + β2)]α(V ),

hence α(V ) = 0. Now, combining this with Proposition (3.2)-(3.3) and applying

Lemma 2.8, we conclude that Φ̃ has a fixed point z∗ in Br. Let x(t) = y(t)+z∗(t), t ∈
(−∞, T ], then x(t) is a fixed point of the operator Φ which is a mild solution of Eq.

(1.1).

We make the following hypothesis:

(H4’)There exists M∗ ∈ (0, 1) such that

MTp, qMp, q

Γ(q)
(‖µ1‖Lp(J, R+) + C∗

1‖µ2‖Lp(J,R+)) < M∗.

From Theorem 3.5, we can see the following theorem.

Theorem 3.6. Assume that (H1), (H2) and (H4’) are satisfied, and if 4(β1 +β2) <

1, then there exists a mild solution of problem





dq

dtq
x(t)=Ax(t)+f(t, x(t), xt), t ∈ [0, T ],

x(t) = φ(t), t ∈ (−∞, 0],

on (−∞, T ].

4 Application

We consider the following integrodifferential model:




∂q

∂tq

[
v(t, ξ) − t

∫ 0

−∞

k1(θ)

1 + |v(t + θ, ξ)|dθ

]
=

∂2

∂ξ2

[
v(t, ξ) − t

∫ 0

−∞

k1(θ)

1 + |v(t + θ, ξ)|dθ

]

+
tk

k
sin |v(t, ξ)| ·

∫ t

0
cos v(s, ξ)ds +

∫ 0

−∞

k2(θ) sin(t3|v(t + θ, ξ)|)dθ,

v(t, 0) − t

∫ 0

−∞

k1(θ)

1 + |v(t + θ, 0)|dθ = 0,

v(t, 1) − t

∫ 0

−∞

k1(θ)

1 + |v(t + θ, 1)|dθ = 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0,

(4.1)
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where 0 ≤ t ≤ 1, ξ ∈ [0, 1], k ∈ N, k1, k2 : (−∞, 0] → R, v0 : (−∞, 0]× [0, 1] → R

are continuous functions, and

∫ 0

−∞

|ki(θ)|dθ < ∞(i = 1, 2).

Set X = L2([0, 1], R) and define A by

{
D(A) = H2(0, 1) ∩ H1

0 (0, 1),

Au = u′′.

Then A generates a compact, analytic semigroup S(·) of uniformly bounded linear

operators, and ‖S(t)‖ ≤ 1.

Let the phase space P be BUC(R−, X), the space of bounded uniformly con-

tinuous functions endowed with the following norm:

‖ϕ‖P = sup
−∞<θ≤0

|ϕ(θ)|, for all ϕ ∈ P,

then we can see that C1(t) = 1 in (2.2).

For t ∈ [0, 1] , ξ ∈ [0, 1] and ϕ ∈ BUC(R−, X), we set

x(t)(ξ) = v(t, ξ),

φ(θ)(ξ) = v0(θ, ξ), θ ∈ (−∞, 0],

h(t, ϕ)(ξ) = t

∫ 0

−∞

k1(θ)

1 + |ϕ(θ)(ξ)|dθ,

f(t, x(t), ϕ)(ξ) =
tk

k
sin |x(t)(ξ)| ·

∫ t

0

cos x(s)(ξ)ds +

∫ 0

−∞

k2(θ) sin(t3|ϕ(θ)(ξ)|)dθ.

Then the above equation (4.1) can be written in the abstract form as Eq. (1.1).

Moreover, for t ∈ [0, 1], we can see

‖f(t, x(t), ϕ)(ξ)‖ ≤ tk+1

k
‖x(t)‖ + t3‖ϕ‖P

∫ 0

−∞

|k2(θ)|dθ

= µ1(t)‖x(t)‖ + µ2(t)‖ϕ‖P ,

where µ1(t) :=
tk+1

k
, µ2(t) := t3

∫ 0

−∞

|k2(θ)|dθ.
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For t1, t2 ∈ [0, 1], ϕ, ϕ̃ ∈ P, we have

‖h(t1, ϕ) − h(t2, ϕ̃)‖ ≤ |t1 − t2|
∫ 0

−∞

∥∥∥∥
k1(θ)

1 + |ϕ(θ)(ξ)|

∥∥∥∥ dθ

+t2

∫ 0

−∞

|k1(θ)|
∥∥∥∥

1

1 + |ϕ(θ)(ξ)| −
1

1 + |ϕ̃(θ)(ξ)|

∥∥∥∥ dθ

≤ |t1 − t2|
∫ 0

−∞

|k1(θ)|dθ +

∫ 0

−∞

|k1(θ)|dθ · ‖ϕ − ϕ̃‖P

= L(|t1 − t2| + ‖ϕ − ϕ̃‖P),

where L =
∫ 0

−∞
|k1(θ)|dθ.

Suppose further that there exists a constant M∗ ∈ (0, 1) such that

L +
Mp, q

Γ(q)
(‖µ1‖Lp([0, 1],R+) + ‖µ2‖Lp([0, 1],R+)) < M∗,

then (4.1) has a mild solution by Theorem 3.5.

For example, if we take

k1(θ) = k2(θ) = ekθ, q = 0.5, p = 3, k = 3,

then L = 1
3
,Mp,q = 4

2

3 , ‖µ1‖Lp([0, 1],R+) = 1
3
( 1

13
)

1

3 , ‖µ2‖Lp([0, 1],R+) = 1
3
( 1

10
)

1

3 , thus, we

see

L +
Mp, q

Γ(q)
(‖µ1‖Lp([0, 1], R+) + ‖µ2‖Lp([0, 1], R+)) =

1

3
+

4
2

3

3
√

π

(
(

1

13
)

1

3 + (
1

10
)

1

3

)
< 0.8 < 1.
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