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1 Introduction

Consider the differential equation

My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞ (1.1)

with boundary conditions

AY(a) + BY(b) = 0, A, B ∈ Mn(C), (1.2)

where Mn(C) denotes the set of n× n matrices of complex numbers. (This notation is standard
and should not conflict with the notation M for differential expressions.)

In this paper, for regular endpoints a, b, any n = 2k, k > 1, and any skew-diagonal constant
matrix C which satisfies

C−1 = −C = C∗, (1.3)

we generate symmetric differential expressions M = MQ and characterize the boundary con-
ditions (1.2) which determine self-adjoint operators S in L2(J, w) satisfying Smin ⊂ S = S∗ ⊂
Smax. Here the matrix Q ∈ Zn(J, C) is a C-symmetric matrix in the sense that

Q = −C−1Q∗C (1.4)
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and M = MQ is generated by Q.
Such a characterization is well known [17] when

C = E = ((−1)rδr,n+1−s)
n
r,s=1. (1.5)

We prove the following theorem:

Theorem 1.1. Let Q ∈ Zn(J, C), n = 2k, k = 1, 2, 3, . . . , let M = MQ, let w be a weight function.
Suppose a, b are regular endpoints. Assume that C satisfies (1.4) and Q satisfies the C-symmetry
condition:

Q = −C−1Q∗C.

Then the linear manifold D(S) defined by

D(S) = {y ∈ Dmax; (1.2) holds} (1.6)

is the domain of a self-adjoint extension S of Smin (or restriction of Smax) if and only if

rank(A : B) = n and ACA∗ = BCB∗. (1.7)

Proof. The proof will be given below.

Remark 1.2. We find it remarkable that the self-adjoint boundary conditions are characterized
by the same matrix C which generates the symmetric operators M.

The definitions of Zn(J, C), the quasi-derivatives y[j], j = 0, . . . , n − 1, and MQ will be
given in Section 2, the proof of the theorem in Section 3 and examples of matrices C and C-
self-adjoint boundary conditions are given in Section 4. See [17] for definitions of Smin, Smax,
Dmin, Dmax, etc.

2 C-symmetric expressions

In this section, we develop a general form of the C-symmetric quasi-differential expression M
with complex coefficient of any even order n = 2k, k ≥ 1 on an interval J = (a, b), −∞ < a <

b < ∞.
Let

Zn(J) :=
{

Q = (qr,s)
n
r,s=1 : Q ∈ Mn(Lloc(J));

qr,r+1 6= 0 a.e. J, q−1
r,r+1 ∈ Lloc(J), 1 ≤ r ≤ n− 1;

qr,s = 0 a.e. J, 2 ≤ r + 1 < s ≤ n

qr,s ∈ Lloc(J), s 6= r + 1, 1 ≤ r ≤ n− 1
}

.

For Q ∈ Zn(J), in [3] define the quasi-derivatives y[r] (0 ≤ r ≤ n) below:

V0 := {y : J → C, y is measurable}, y[0] := y (y ∈ V0),

Vr := {y ∈ Vr−1 : y[r−1] ∈ (ACloc(J))},

y[r] = q−1
r,r+1

{
y[r−1]′ −∑r

s=1 qr,sy[s−1]
}

(y ∈ Vr, r = 1, 2, . . . , n),



Self-adjoint domains for C-symmetric differential operators 3

where qn,n+1 = 1. Finally we set

My = iny[n], y ∈ Vn,

these expressions M = MQ are generated by or associated with Q and for Vn we also use
the notations D(Q) and V(M). Since the quasi-derivatives depends on Q, we sometimes
write y[r]Q instead of y[r], r = 1, 2, . . . , n.

Remark 2.1. If Q ∈ Zn(J) has the format

qr,r+1 = 1, r = 1, 2, . . . , n− 1,

qr,s = 0, 1 ≤ r ≤ n− 1, s 6= r + 1,
(2.1)

then MQ will reduce to an ordinary differential expression M with y[r] = y(r), r = 1, 2, . . . , n− 1,
the quasi-derivatives and ordinary derivatives are equal for r = 1, 2, . . . , n− 1, when y ∈ D(Q),
and moreover

MQy = iny[n] = in
{

y(n) −∑n
s=1 qn,sy(s−1)

}
. (2.2)

Hence, in this case, MQ is merely an ordinary differential expression M, see (1.1), with
pn(x) = in on J. And conversely every such differential expression can be rewritten in the
form of a quasi-differential expression.

In [11, 17] the expression M is called a Lagrange symmetric (or just a symmetric) differen-
tial expression if the matrix Q satisfies

Q = −E−1
n Q∗En, (2.3)

where En is the symplectic matrix of order n given by (1.5). However, (2.3) is not generally
satisfied by the companion-type matrices (2.1).

For the Lagrange symmetric MQ, the Green’s formula has the form∫
[α,β]
{Myz− yMz}dx = [y, z](β)− [y, z](α) (y, z ∈ D(Q))

for any compact sub-interval [α, β] of (a, b). Here the skew-symmetric sesquilinear form [·, ·]
maps D(Q)× D(Q)→ C. The explicit form of [·, ·] is given by

[y, z](x) = in
n

∑
r=1

(−1)r−1y[n−r](x)z[r−1](x) = (−1)k+1Z∗EnY, (2.4)

where Z(x), Y(x) are the column vector function

Y = (y[0](x) y[1](x) · · · y[n−1](x))T, Z = (z[0](x) z[1](x) · · · z[n−1](x))T, x ∈ [α, β].

The expression w−1MQ = λy, λ ∈ R defines or generates a linear operator S, once the domain
D(S) is suitably Smin with their respective domains Dmax and Dmin. In general, the minimal
operator Smin is a nonself-adjoint operator, otherwise Smin = S∗min = Smax. So if S is a self-
adjoint operator on D(S), then Smin ⊂ S = S∗ ⊂ Smax, and∫

J
{Myz− yMz}dx = 0 (2.5)

for all y, z ∈ Dmax.

The GKN (Glazeman–Krein–Naimark) Theorem [4] which characterizes all self-adjoint ex-
tensions of TQ,0 in H.
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Theorem 2.2 (GKN). Let d be the deficiency index of minimal operator Smin, then a linear submani-
fold D(S) ⊂ Dmax is the domain of a self-adjoint extension S of Smin in H = L2(J, w) if and only if
there exist functions v1, v2, . . . , vd in Dmax such that

(i) v1, v2, · · · , vd are linearly independent modulo Dmin, i.e. no nontrivial linear combination of
v1, v2, . . . , vd is in Dmin.

(ii) [vi, vj](b)− [vi, vj](a) = 0, i, j = 1, 2, · · · , d;

(iii) D(S) = {y ∈ DQ : [y, vj](b)− [y, vj](a) = 0, j = 1, 2, · · · , d}.

The GKN characterization depends on the maximal domain functions vj, j = 1, . . . , d.
These functions depend on the coefficients of the differential equation and this dependence is
implicit and complicated.

When both endpoints of J are regular, this dependence can be eliminated and an explicit
characterization can be given in terms of two-point boundary conditions involving only solu-
tions and their quasi-derivatives at the endpoints. This has the form:

D(S) = {y ∈ Dmax : AY(a) + BY(b) = 0} , (2.6)

where the complex n× n matrices A, B satisfy

rank(A : B) = n, (2.7)

and
AEn A∗ = BEnB∗. (2.8)

It is much more explicit than the GKN Theorem and it can lead to a canonical form for
self-adjoint boundary conditions such as the well known form in the second order Sturm–
Liouville case, see formulas (4.2.3), (4.2.4) and (4.2.7) in [20]. Through the long history of
Sturm–Liouville problems, these canonical representations have led to a comprehensive un-
derstanding, both theoretically and numerically, of the dependence of the eigenvalues on the
boundary conditions. In [10, 15] canonical representations for regular problems of n = 4 are
known. We will also go on with these canonical forms in our subsequent papers.

Notice that (2.4) and (2.8) hold for the constant matrix En satisfying E−1
n = −En = E∗n, this

paper considers these forms for every general regular skew-diagonal constant matrix C =

(cr,s)n
r,s=1 satisfying C−1 = −C = C∗. Thus we have the following definition.

Definition 2.3. Let Q ∈ Zn(J). Define

y[0] := y, y ∈ V0,

y[r]Q = q−1
r,r+1

{
y[r−1]′

Q −
r

∑
s=1

qr,sy
[s−1]
Q

}
, y ∈ Vr, r = 1, . . . , n,

(2.9)

where qn,n+1 := cn,1.
We set

My = MQy = iny[n], (2.10)

with the domain D(MQ), which we usually write as D(Q). The expression M = MQ is called
the quasi-differential expression generated by or associated with Q. Suppose that

Q = Q+ = −C−1
n Q∗Cn, (2.11)
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i.e.,
qr,s = cr,n+1−rqn+1−s,n+1−rcn+1−s,s, (2.12)

then Q is said to be a C-symmetric matrix. In this case MQ is called a C-symmetric quasi-
differential expression. Note that Q++ = Q, M++

Q = MQ, where M+
Q := MQ+ , we call Q+ the

C-adjoint matrix of Q and M+
Q the C-adjoint expression of MQ.

It is of special interest to note that if Cn = En, then

Q = −E−1
n Q∗En,

and the expression M = MQ is reduced to the Lagrange symmetric differential expression.

Remark 2.4. What we really need to emphasize is that the constant matrix Cn is not only a
skew-diagonal matrix satisfying

C−1
n = −Cn = C∗n, (2.13)

but plays a key role in the construction of symmetric quasi-differential expressions as well
as in the self-adjoint domain characterization for C-symmetric differential operators. In addi-
tion, the C-symmetric condition on the matrix Q means that Q is invariant under the com-
position of the following three operators: “flips” about the secondary diagonal, conjugation,
multiplying qr,s by (−1)r+s+1 (i.e., changing the sign of qr,s if r + s is even).

Remark 2.5. The operator M : D(Q) −→ Lloc(J) is linear.

From Definition 2.3 we have the symmetric condition

Q = −C−1
n Q∗Cn.

Set

Cn =

(
0k×k C12

C21 0k×k

)
, C21, C12 ∈ Mk(C).

Then
C21 = −C∗12, C−1

12 = C∗12,

i.e.,

Cn =

(
0k×k C12

−C∗12 0k×k

)
(2.14)

and C12 is a skew-diagonal unitary matrix, that is,

cr,scr,s = 1, for r + s = n + 1, 1 ≤ r ≤ k,

cr,s = 0, otherwise.
(2.15)

Set
cr,n−r+1 = eiθr , −π < θr ≤ π, r = 1, 2, . . . , k,

Thus Cn can be rewritten as

Cn = skew-diagonal(eiθ1 , eiθ2 , . . . , eiθk ,−e−iθk , . . . ,−e−iθ2 ,−e−iθ1). (2.16)

Let

Q =

(
Q11 Q12

Q21 Q22

)
∈ Zn(J),
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Qij ∈ Mk(C), i, j = 1, 2, then

Q+ =

(
−C12Q∗22C∗12 C12Q∗12C12

C∗12Q∗21C∗12 −C∗12Q∗11C12

)
.

From Q = Q+, we have the C-symmetric matrix

Q =

(
Q11 Q12

Q21 −C∗12Q∗11C12

)
, (2.17)

where Q12 = C12Q∗12C12, Q21 = C∗12Q∗21C∗12, i.e., C∗12Q12, C12Q21 are symmetric matrices.
By direct calculation, the C-symmetric matrices Q ∈ Zn(J) have the form

q11 q12 0 · · · · · · 0

q21 q22 q23 · · · · · ·
...

...
...

...
...

...
...

qn−2,1 qn−2,2 · · · · · · −c3,n−2c2,n−1q23 0
qn−1,1 qn−1,2 · · · · · · −q22 −c2,n−1c1,nq12
qn,1 c1,nc2,n−1qn−1,1 · · · · · · −c1,nc2,n−1q21 −q11


, (2.18)

where qn,1 = c2
1,nqn,1, qn−1,2 = c2

2,n−1qn−1,2, · · · , qk+1,k = c2
k,k+1qk+1,k, qk,k+1 = c2

k,k+1qk,k+1.
The self-adjoint operators S in the Hilbert space L2(J, w) generated by the equation

My = MQy = λwy on J,

where Q has the form (2.18). Then S satisfy

Smin ⊂ S = S∗ ⊂ Smax. (2.19)

So it is clear that these operators S differ from each other only by their domains. These
domains D(S) are characterized by Theorem 1.1 and the proof is given in next section.

3 Characterization of self-adjoint domains

In this section, we prove the main results in this paper: characterization of self-adjoint domains
for general regular even order C-symmetric quasi-differential operators. Our starting point
for this characterization is the Lagrange identity which plays a critical important role in the
characterization of self-adjoint domains.

To prove Lagrange identity, we use the following two lemmas.

Lemma 3.1. Let Qn, Pn ∈ Zn(J). Let F, G be n× 1 function matrices on J. If Y′ = QnY+ F and Z′ =
PnZ + G and the constant matrix Cn ∈ Mn(C) satisfies

C∗n = −Cn = C−1
n .

Then
(Z∗CnY)′ = Z∗(P∗n Cn + CnQn)Y + Z∗CnF + G∗CnY, (3.1)

where
Y =

(
y[0] y[1] · · · y[n−1]

)T
, Z =

(
z[0] z[1] · · · z[n−1]

)T
.
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Proof. From the differentiation of function matrix, we have

(Z∗CnY)′ = (Z∗)′CnY + Z∗C′nY + Z∗CnY′

= (Z′)∗CnY + Z∗CnY′

= (PnZ + G)∗CnY + Z∗Cn(QnY + F)

= (Z∗P∗n + G∗)CnY + Z∗CnQnY + Z∗CnF

= Z∗(P∗n Cn + CnQn)Y + G∗CnY + Z∗CnF.

This completes the proof.

Lemma 3.2. Assume Qn ∈ Zn(J) and Pn = −C−1
n Q∗nCn, then Pn ∈ Zn(J) and if Y′ = QnY +

F and Z′ = PnZ + G on J, where F, G be n× 1 function matrices on J. Then

(Z∗CnY)′ = Z∗CnF + G∗CnY. (3.2)

Proof. Let Qn = (qr,s)n
r,s=1 ∈ Zn(J) and Pn = (pr,s)n

r,s=1 = −C−1
n Q∗nCn, then we have

pr,s =
n

∑
l=1

(
n

∑
j=1

cr,jql,j)cl,s = cr,n−r+1qn−s+1,n−r+1cn−s+1,s, r, s = 1, 2, · · · , n.

So for 1 ≤ r ≤ n− 1,
pr,r+1 = cr,n−r+1qn−r,n−r+1cn−r,r+1

is invertible a.e. on J.
Since for 2 ≤ r + 1 < s ≤ n, r + 1− s = (n− s− 1) + 1− (n− r + 1) < 0, qn−s−1,n−r+1 =

0, then
pr,s = cr,n−r+1qn−s+1,n−r+1cn−s+1,s = 0.

This concludes that Pn ∈ Zn(J).
From Cn satisfy (2.13), and CnPn = −Q∗nCn = −(C∗nQn)∗, we have CnQn = −(C∗nQn) =

(CnPn)∗ = −P∗n Cn. Hence from (3.1) in Lemma 3.1, (3.2) is established.

We obtain a new general version of the Lagrange identity as follows.

Theorem 3.3 (Lagrange identity). Let Q ∈ Zn(J), and P = −C−1
n Q∗Cn, Cn is defined by (2.14) (or

(2.16)). Then P ∈ Zn(J) and for any y ∈ D(Q) and z ∈ D(P), we have

zMQy− yMPz = [y, z]′, [y, z] = Z̃∗CnỸ, (3.3)

and

Z̃∗CnỸ =
n−1

∑
r=0

cn−r,r+1 z[n−r−1]
P y[r]Q =

k

∑
r=1

{
cr,n−r+1 z[r−1]

P y[n−r]
Q − cr,n−r+1 z[n−r]

P y[r−1]
Q

}
, (3.4)

where Ỹ = (y[0] y[1] · · · y[n−1])T, Z̃ = (z[0] z[1] · · · z[n−1])T are generated by Q and P respectively.

Proof. Set f = −c1,ny[n]Q , g = −c1,nz[n]P , then we have

Ỹ′ = QỸ + F, Z̃′ = PZ̃ + G,

where
F = (0 . . . 0 f )T , G = (0 . . . 0 g)T .
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So from the Lemma 3.2, we have

(Z̃∗CnỸ)′ = Z̃∗PCnF + G∗CnỸQ

= c1nz[0] f − c1ngy[0]

= −z[0]y[n]Q + z[n]P y[0]

= −(−i)n{z[0]MQy− y[0]MPz}.

After integrating both sides of the above equation on any subinterval [α, β] ⊂ J, we get

[y, z]βα =
∫ β

α
zMQydx−

∫ β

α
yMPzdx = (−1)k+1Z̃∗CnỸ |βα .

Hence from the arbitrariness of α, β ∈ J we have

zMQy− yMPz = [y, z]′,

and
[y, z] = (−1)k+1Z̃∗CnỸ.

By calculation (3.4) is also established. This completes the proof.

Remark 3.4.

(1) If in (2.16) for odd number in 1 ≤ j ≤ k, we set θj = π and for even number in 1 ≤ j ≤
k, θj = 0, then Cn = En and we have the classical Lagrange identity in the references [12,
17, 21] below:

Assume Q ∈ Zn(J), and P = −E−1
n Q∗En, then P ∈ Zn(J) and for any y ∈ D(Q) and z ∈

D(P), we have
zMQy− yMPz = [y, z]′,

and

[y, z] = (−1)k
n−1

∑
r=0

(−1)n+1−rz[n−r−1]y[r] = (−1)k+1Z∗EnY. (3.5)

(2) If we set θj = 0, j = 1, 2, 3, . . . , k in (2.16), then Cn = −Fn, and we have the another
classical type of Lagrange identity in the Naimark book [14] as follows:

Let Q ∈ Zn(J), and P = −F−1
n Q∗Fn, then P ∈ Zn(J) and for any y ∈ D(Q) and z ∈

D(P), we have
zMQy− yMPz = [y, z]′,

and

[y, z] = (−1)k
k

∑
r=1
{y[r−1]z[n−r] − y[n−r]z[r−1]} = (−1)kẐ∗FnŶ, (3.6)

where

Fn =

(
0k×k −Jk

Jk 0k×k

)
, Jk = (δr,k+1−s)

k
r,s=1. (3.7)
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Theorem 1.1 characterizes all self-adjoint realizations of the operators generated by differ-
ential equation

My = λwy, on J = (a, b), −∞ < a < b < ∞, (3.8)

where M is C-symmetric quasi-differential expression.
Let (3.8) has the two-point boundary condition

AỸ(a) + BỸ(b) = 0, Ỹ = (y[0] y[1] · · · y[n−1])T, (3.9)

in the Hilbert space H = L2(J, w). Then according to Lemma 3.1, Lemma 3.2 and Theo-
rem 3.3 we have the following proof of Theorem 1.1.

Proof. From Theorem 3.3 we have∫ b

a
zMydx−

∫ b

a
Mzydx = [y, z]ba = Z̃∗(b)CnỸ(b)− Z̃∗(a)CnỸ(a) = 0,

then
D̃(S) =

{
y ∈ Dmax : AỸ(a) + BỸ(b) = 0

}
is a self-adjoint domain if and only if

ACn A∗ = BCnB∗.

Thus Theorem 1.1 is established.

Remark 3.5. If A, B ∈ Mn(R), then the condition (1.7) reduces to det(A) = det(B). However,
not all the real self-adjoint boundary conditions are generated in this way.

Remark 3.6.

(1) In [4, 6] and [17, 21] Everitt and Zettl et al. define a formally self-adjoint differential equa-
tion MQ by

Q = Q+ = −E−1
n Q∗En, Q ∈ Zn(J),

where constant n× n matrix En is defined by (1.5). En is a skew-diagonal matrix satisfy-
ing E−1

n = −En = E∗n, i.e., it is a special case of Cn. Then S is a self-adjoint extension of
minimal operator generated by MQ if and only if

D(S) = {y ∈ Dmax : AY(a) + BY(b) = 0, A, B ∈ Mn(C)} , (3.10)

where
rank(A : B) = n, AEn A∗ = BEnB∗. (3.11)

(2) In [14, Chapter V] the formally self-adjoint differential expressions are generated by the
matrices

Q̂ = −F−1
n Q̂∗Fn, Q̂ ∈ Zn(J). (3.12)

Notice that Fn is a constant skew-diagonal matrix and satisfy F−1
n = −Fn = F∗n , it is a

special case of Cn. Let M = MQ̂ is generated by (3.12), then the domain defined by

D(Ŝ) =
{

y ∈ Dmax : AŶ(a) + BŶ(b) = 0, A, B ∈ Mn(C)
}

, (3.13)

is a self-adjoint domain, i.e.,
Ŝmin ⊂ Ŝ = Ŝ∗ ⊂ Ŝmax

if and only if
rank(A : B) = n, AFn A∗ = BFnB∗. (3.14)
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(3) Theorem 1.1 unifies and generalizes the statement of (1)–(2). Furthermore the different
characterizations of self-adjoint domains among (1.6), (3.10) and (3.13) are caused by the
use of different definition of the quasi-derivatives. In fact, the self-adjoint characterization
of C-symmetric differential operators are generalization of previously known characteri-
zations [4–6, 8, 13, 14, 17, 18, 21].

Remark 3.7. In general, the matrices which determine symmetric differential expressions
are not unique, two different matrices may determine the same quasi-symmetric differen-
tial expressions. Frentzen [9] extended the Shin–Zettl set of matrices Zn(J) and Everitt and
Race [6] studied the relationship between the matrices in this extended set which generate the
same symmetric expressions. Theorem 1.1 shows that, given any constant skew-symmetric
matrix C satisfying

C−1 = −C = C∗,

the matrix
Q = −C−1Q∗C

is C-symmetric. And, remarkably, this same matrix C determines all self-adjoint boundary
conditions, i.e., Smin and Smax denote the minimal and maximal operators determined by Q, re-
spectively, then all self-adjoint extensions of Smin (or equivalently self-adjoint restrictions
of Smax), i.e. all operators S in L2(J, w) satisfying

Smin ⊂ S = S∗ ⊂ Smax

are determined by the boundary conditions (1.6), (1.7). In addition to the examples C =

En, C = Fn, the general generator of the symplectic group

C =

(
0 −I
I 0

)
,

where I is the identity matrix of order k, is another example. See also the example

C =


0 0 0 eiθ1

0 0 eiθ2 0
0 −e−iθ2 0 0

−e−iθ1 0 0 0


below.

4 Examples

In order to get a better understanding about our main results in this section we give some
simple examples for the special case n = 2, 4, 6.

Example 4.1. Let C2 =
( 0 c12

c21 0

)
∈ M2(C) satisfy

C−1
2 = −C2 = C∗2 ,

then

C2 =

(
0 c12

−c12 0

)
=

(
0 eiθ

−e−iθ 0

)
, −π < θ ≤ π. (4.1)
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Now, let Q ∈ Z2(J) satisfy
Q = Q+ := −C−1

2 Q∗C2. (4.2)

Then

Q+ =

(
−q22 c2

12q12
c2

12q21 −q11

)
,

and we have a second order C-symmetric matrix

Q =

(
q11 q12

q21 −q11

)
, (4.3)

where q12 = c2
12q12, q21 = c2

12q21.
The C-symmetric quasi-derivatives generated by (4.3) are:

y[0] = y, y[1] =
1

q12
{(y[0])′ − q11y},

y[2] = −c12{(y[1])′ − q21y[0] + q11y[1]} = −eiθ{(y[1])′ − q21y[0] + q11y[1]},
(4.4)

and M = MQ is given by

My = i2y[2] = eiθ

{[
1

q12
(y′ − q11y)

]′
− q21y +

q11
q12

(y′ − q11y)

}
. (4.5)

Let Q ∈ Z2(J), P = −C−1
2 Q∗C2, then we obtain a new version of Lagrange identity for the

second order case:

zMQy− yMPz = [y, z]′, y ∈ D(Q), z ∈ D(P), (4.6)

where
[y, z] = Z∗C2Y = eiθz[1]y[0] − e−iθz[0]y[1], −π < θ ≤ π.

Let
My = λwy, on J = (a, b), (4.7)

in Hilbert space L2(J, w), where M is defined by (4.5), it has the following boundary conditions

Ã
(

y[0](a), y[1](a)
)T

+ B̃
(

y[0](b), y[1](b)
)T

= 0, Ã, B̃ ∈ M2(C),

where y[0], y[1] are defined by (4.4).
Define

D(S) =
{

y ∈ Dmax : ÃY(a) + B̃Y(b) = 0, Y =

(
y[0]

y[1]

)}
, (4.8)

and S is generated by (4.7) satisfying Smin ⊂ S ⊂ Smax, then D(S) is a self-adjoint domain for
the second-order C-symmetric differential operators if and only if

ÃC2 Ã∗ = B̃C2B̃∗, rank(Ã : B̃) = 2. (4.9)

Remark 4.2. If θ = π, i.e., C2 = E2, then (4.3) is reduced to the Lagrange symmetric matrix

Q =

(
q11 r1

r2 −q11

)
, (4.10)
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where r1, r2 are real-valued functions. Smin, Smax are determined by (4.10) and S is a self-
adjoint extension of Smin if and only if the domain

D̃(S) =
{

y ∈ Dmax : ÃỸ(a) + B̃Ỹ(b) = 0, Ã, B̃ ∈ M2(C)
}

(4.11)

satisfy
rank(Ã : B̃) = 2, and ÃE2Ã∗ = B̃E2B̃∗, (4.12)

i.e., the well-known characterization (4.12) is a special case of (4.9).

Example 4.3. Let Q ∈ Z4(J) be C-symmetric, then from Definition 2.3 we get

Q = Q+ = −C−1
4 Q∗C4, (4.13)

where C4 has the form

C4 =


0 0 0 c14

0 0 c23 0
0 −c23 0 0
−c14 0 0 0

 =


0 0 0 eiθ1

0 0 eiθ2 0
0 −e−iθ2 0 0

−e−iθ1 0 0 0

 .

From (4.13) we have

Q+ =


−q44 −c14c23q34 0 0

−c14c23q43 −q33 c2
23q23 0

c14c23q42 c2
23q32 −q22 −c14c23q12

c2
14q41 c14c23q31 −c14c23q21 −q11

 ,

and it follows that

Q =


q11 q12 0 0
q21 q22 q23 0
q31 q32 −q22 −c14c23q12
q41 c14c23q31 −c14c23q21 −q11

 , (4.14)

where q23 = c2
23q23, q32 = c2

23q32, q41 = c2
14q41.

Thus the quasi-derivatives associated with the C-symmetric matrix Q are

y[0] = y, y[1] =
1

q12
{(y[0])′ − q11y},

y[2] =
1

q23
{(y[1])′ − q21y[0] − q22y[1]},

y[3] = − 1
c14c23q12

{(y[2])′ − q31y[0] − q32y[1] + q22y[2]},

y[4] = −c14{(y[3])′ − q41y[0] − c14c23q31y[1] + c14c23q21y[2] + q11y[3]}14).

(4.15)

So the fourth order C-symmetric quasi-differential expressions be given by

My = i4y[4] = −c14{(y[3])′ − q41y[0] − c14c23q31y[1] + c14c23q21y[2] + q11y[3]}. (4.16)

Set
My = λwy, (4.17)
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where M is defined by (4.17). Then all self-adjoint extension S of minimal operator generated
by (4.17) are characterized as follows:

D̃(S) =
{

y ∈ Dmax : AỸ(a) + BỸ(b) = 0
}

, (4.18)

where A, B satisfy

rank(A : B) = 4, AC4A∗ = BC4B∗, A, B ∈ M4(C), (4.19)

and the quasi-derivatives in Ỹ are defined by (4.15).

Remark 4.4. Note that q11 = q21 = q22 = q31 = 0 and q12 = 1 in (4.16) yields

My = c23[(q−1
23 y′′)′ − q32y′]′ + c14q41y. (4.20)

Moreover,

(1) if θ1 = π, θ2 = 0, i.e., c14 = −1, c23 = 1 in (4.20), then it is reduced to the real Lagrange
symmetric differential expression [21]

My = [(q−1
23 y′′)′ − q32y′]′ − q41y, (4.21)

where q−1
23 , q32, q41 are reals.

For this Lagrange symmetric differential expression we have characterization of self-adjoint
domains

D(S) =

y ∈ Dmax : AY(a) + BY(b) = 0, Y =


y
y′

1
q23

y′′

( 1
q23

y′′)′ − q32y′


 , (4.22)

where
rank(A : B) = 4, AE4A∗ = BE4B∗, A, B ∈ M4(C).

(2) If θ1 = θ2 = 0 in (4.20), then it is reduced to the modified Naimark form [14]

My = [(q−1
23 y′′)′ − q32y′]′ + q41y, (4.23)

where q−1
23 , q32, q41 are reals.

For this differential expression (4.23) we have the characterization of self-adjoint domains

D̂(S) =

y ∈ Dmax : AŶ(a) + BŶ(b) = 0, Ŷ =


y
y′

1
q23

y′′

q32y′ −
(

1
q23

y′′
)′

 , (4.24)

where
rank(A : B) = 4, AF4A∗ = BF4B∗, A, B ∈ M4(C).
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Example 4.5. n = 6. Let Q = (qr,s)6
r,s=1 ∈ Z6(J) is C-symmetric, where

C = C6 =



0 0 0 0 0 c16

0 0 0 0 c25 0
0 0 0 c34 0 0
0 0 −c34 0 0 0
0 −c25 0 0 0 0
−c16 0 0 0 0 0


. (4.25)

Then we obtain

Q =



q11 q12 0 0 0 0
q21 q22 q23 0 0 0
q31 q32 q33 q34 0 0
q41 q42 q43 −q 33 −c25c34q23 0
q51 q52 c25c34q42 −c34c25q 32 −q22 −c16c25q 12

q61 c16c25q51 c16c34q41 −c34c16q 31 −c25c16q21 −q 11


, (4.26)

where q34 = c2
34q34, q43 = c2

34q43, q52 = c2
25q 52, q61 = c2

16q61.
Then we have the C-symmetric quasi-derivatives below:

y[0] = y, y[1] =
1

q12
{(y[0])′ − q11y},

y[2] =
1

q23
{(y[1])′ − q21y[0] − q22y[1]},

y[3] =
1

q34
{(y[2])′ − q31y[0] − q32y[1] − q33y[2]},

y[4] = − 1
c25c34q23

{(y[3])′ − q41y[0] − q42y[1] − q43y[2] + q33y[3]},

y[5] = − 1
c16c25q 12

{(y[4])′ − q51y[0] − q52y[1] − c25c34q42y[2] + c34c25q 32y[3] + q22y[4]},

(4.27)

and My = MQy is given by

My = c16(y[5])′ − c16q61y− c25q51y[1] − c34q41y[2] + c34q 31y[3] + c25q21y[4] + q11y[5]. (4.28)

Set
My = λwy, (4.29)

where M is defined by (4.28). Then all self-adjoint extension S of minimal operator generated
by (4.29) are characterized as follows:

D̃(S) =
{

y ∈ Dmax : AỸ(a) + BỸ(b) = 0, A, B ∈ M6(C)
}

, (4.30)

where A, B satisfy
rank(A : B) = 6, AC6A∗ = BC6B∗,

and Ỹ are defined by (4.27).
Note that q11 = q21 = q22 = q31 = q32 = q33 = q41 = q42 = q51 = 0 and q12 = q23 = 1 in

(4.28) yields
My = {c34[(q−1

34 y′′′)′ − q43y′′]′ + c25q52y′}′ − c16q61y. (4.31)
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Furthermore we observe that θ1 = θ3 = π and θ2 = 0 in (4.31) yields the Lagrange symmetric
expression

My = {[(q−1
34 y′′′)′ − q43y′′]′ − q52y′}′ − q61y, (4.32)

where q−1
34 , q43, q52, q61 are real-valued functions.

For this Lagrange symmetric differential expression we have characterization of self-adjoint
domains:

D(S) = {y ∈ Dmax : AY(a) + BY(b) = 0, A, B ∈ M6(C)} , (4.33)

where

rank(A : B) = 6, AE6A∗ = BE6B∗, Y =



y
y′

y′′
1

q34
y′′′

( 1
q34

y′′′)′ − q43y′′

{[q43y′′ − ( 1
q34

y′′′)′]′ − q52y′}


.

If θ1 = θ2 = θ3 = 0 in (4.31), then it is reduced to the real modified Naimark form

My = {[(−q−1
34 y′′′)′ + q43y′′]′ − q52y′}′ + q61y, (4.34)

where q−1
34 , q43, q52, q61 are real-valued functions.

For this special expressions (4.34), we have the characterization of self-adjoint domains:

D̂(S) =
{

y ∈ Dmax : AŶ(a) + BŶ(b) = 0, A, B ∈ M6(C)
}

, (4.35)

where

rank(A : B) = 6, AF6A∗ = BF6B∗, Ŷ =



y
y′

y′′
1

q34
y′′′

q43y′′ − ( 1
q34

y′′′)′

q52y′ − [q43y′′ − ( 1
q34

y′′′)′]′


.

Remark 4.6. (1) For n = 4 and n = 6, (4.21) and (4.32) are generated by the following matrix
form [21]: 

0 1 0 0
0 0 q23 0
0 q32 0 1

q41 0 0 0

 ,



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 q34 0 0
0 0 q43 0 1 0
0 q52 0 0 0 1

q61 0 0 0 0 0


,

respectively. However, (4.23) and (4.34) are generated by the G-N type matrix function [14]:


0 1 0 0
0 0 q23 0
0 q32 0 −1

q41 0 0 0

 ,



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 q34 0 0
0 0 q43 0 −1 0
0 q52 0 0 0 −1

q51 0 0 0 0 0


,
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respectively.
(2) For n = 4, (4.18) contains the characterization (4.22) and (4.24). For n = 6, (4.30) con-

tains the characterization (4.33) and (4.35).
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