
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 70, 1-10; http://www.math.u-szeged.hu/ejqtde/

Existence and uniqueness of positive solutions to

three-point boundary value problems for second order

impulsive differential equations

Chen Yanga∗, Jurang Yanb

a. Department of Mathematics, Business College of Shanxi University, Taiyuan 030031, P.R. China

b. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, P.R. China

Abstract Using a fixed point theorem of generalized concave operators, we present in this paper

criteria which guarantee the existence and uniqueness of positive solutions to three-point boundary

value problems for second order impulsive differential equations.

MSC: 34B15; 34B10; 34B18

Keywords: Existence and uniqueness; Positive solution; Fixed point theorem of generalized con-

cave operators; Second order impulsive differential equation

1 Introduction

In this paper, we study the existence and uniqueness of positive solutions to the following

three-point boundary value problems for second order impulsive differential equations:















x′′(t) + f(t, x(t)) = 0, t 6= tk, k = 1, 2, · · · ,m,

∆x′|t=tk = Ik(x(tk)), k = 1, 2, · · · ,m,

x′(0) = 0, βx(η) = x(1),

(1.1)

where f ∈ C[J × R,R], J = [0, 1], 0 < t1 < t2 < · · · < tk < · · · < tm < 1, ∆x′|t=tk =

x′(t+k ) − x′(t−k ), x′(t+k ), x′(t−k ) denote the right limit(left limit) of x′(t) at t = tk respectively.

Ik ∈ C[R,R], k = 1, 2, · · · ,m and η ∈ (0, 1), 0 < β < 1.

Impulsive differential equations have been studied extensively in recent years. The theory

of impulsive differential equations describes processes which experience a sudden change of their

state at certain moments. Processes with such a character arise naturally and often, especially

in phenomena studied in physics, chemical technology, population dynamics, biotechnology and

economics. For an introduction of the basic theory of impulsive differential equations in Rn , see
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[3,17,26] and the references therein. The theory of impulsive differential equations has become an

important area of investigation in recent years and is much richer than the corresponding theory of

differential equations (see for instance [1,4-10,12-15,18-21,23-25] and their references). Second-order

impulsive differential equations have been studied by many authors with much of the attention given

to positive solutions. For a small sample of such work, we refer the reader to works by Agarwal,

O’Regan [1], Feng, Xie [9], Hu et al. [12], Jankowski [14,15], Lee [18], Lin, Jiang [19], Liu et al.

[20], Wang et al. [27] and Zhang [30]. The results of these papers are based on Schauder fixed point

theorem, Leggett-Williams theorem, fixed point index theorems in cones, Krasnoselskii’s fixed point

theorem, the method of upper-lower solutions, fixed point theorems in cones and so on. However,

few papers can be found in the literature on the existence of positive solutions to three-point

boundary value problems for second-order impulsive differential equations. Three-point boundary

value problems for differential equations or difference equations have been studied by many authors

with much of the attention given to positive solutions. Here we mention only a few of them, see for

example papers by Ahmad, Nieto [2], Gupta and Trofimchuk [11], Karaca [16], Ma [22] and Yang,

Zhai and Yan [28].

To the best of our knowledge, no paper can be found in the literature on the existence and

uniqueness of positive solutions to three-point boundary value problems for second-order impulsive

differential equations. In this paper, we shall study the problem (1.1) and not suppose the existence

of upper-lower solutions. Different from the above works mentioned, in this paper we will use a fixed

point theorem of generalized concave operators to show the existence and uniqueness of positive

solutions for the problem (1.1).

For convenience, we list the following assumptions on the functions f(t, x), Ik(x):

(H1) f(t, 0) ≥ 0, f
(

t,
β(1−η2)
2(1−β)

)

> 0, t ∈ [0, 1]and f(t, x) is increasing in x ∈ [0,∞) for each t ∈ [0, 1];

(H2) Ik(0) ≤ 0 and Ik(x) is decreasing in x ∈ [0,∞), k = 1, 2, · · · ,m;

(H3) for any λ ∈ (0, 1) and x ≥ 0, there exist α1(λ), α2(λ) ∈ (λ, 1) such that

f(t, λx) ≥ α1(λ)f(t, x), Ik(λx) ≤ α2(λ)Ik(x), k = 1, 2, · · · ,m.

(H4)
m
∑

k=1

(1 − tk)Ik

(

1 − βη2

2(1 − β)

)

< 0.

2 Preliminaries

In this section, we state some definitions, notations and known results. For convenience of

readers, we suggest that one refer to [29] and references therein for details.

Suppose that (E, ‖·‖) is a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤

y if and only if y − x ∈ P. By θ we denote the zero element of E. Recall that a non-empty closed

convex set P ⊂ E is called a cone if it satisfies (i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P ; (ii) x ∈ P,−x ∈ P ⇒

x = θ.

Moreover, P is called normal if there exists a constant N > 0 such that, for all x, y ∈ E, θ ≤
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x ≤ y implies ‖x‖ ≤ N‖y‖; in this case N is called the normality constant of P . We say that an

operator A : E → E is increasing(decreasing) if x ≤ y implies Ax ≤ Ay(Ax ≥ Ay).

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that

λx ≤ y ≤ µx. Clearly, ∼ is an equivalence relation. Given h > θ(i.e., h ≥ θ and h 6= θ), we denote

by Ph the set Ph = {x ∈ E| x ∼ h}. Clearly, Ph ⊂ P is convex and aPh = Ph for all a > 0.

We now present a fixed point theorem of generalized concave operators which will be used in

the latter proof. See [29] for further information.

Theorem 2.1(from the Lemma 2.1 and Theorem 2.1 in [29]). Let h > θ and P be a normal cone.

Assume that: (D1) A : P → P is increasing and Ah ∈ Ph; (D2) For any x ∈ P and t ∈ (0, 1), there

exists α(t) ∈ (t, 1) such that A(tx) ≥ α(t)Ax. Then (i) there are u0, v0 ∈ Ph and r ∈ (0, 1) such

that rv0 ≤ u0 < v0, u0 ≤ Au0 ≤ Av0 ≤ v0; (ii) operator equation x = Ax has a unique solution in

Ph.

Remark 2.2. An operator A is said to be generalized concave if A satisfies condition (D2)( see

Remark 1.1 in [29]).

In what follows, for the sake of convenience, let J ′ = J\{t1, t2, · · · , tm}, C[J,R] = {x|x : J → R

is continuous }, PC1[J,R] = {x ∈ C[J,R]|x′(t) is continuous at t 6= tk and left continuous at

t = tk, x
′(t+k ) exists, k = 1, 2, · · · ,m}. Evidently, C[J,R] is a Banach space with the norm ‖x‖C =

sup{|x(t)| : t ∈ J} and PC1[J,R] is a Banach space with the norm ‖x‖PC1 = sup{‖x‖C , ‖x
′‖C}.

Definition 2.3. A function x ∈ PC1[J,R]
⋂

C2[J ′,R] is called a solution of the problem (1.1), if

it satisfies the problem (1.1).

Lemma 2.4. x ∈ PC1[J,R]
⋂

C2[J ′,R] is a solution of the problem (1.1) if and only if x ∈

PC1[J,R] is the solution of the following integral equation:

x(t) =
1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds

−

∫ t

0
(t− s)f(s, x(s))ds +

∑

0<tk<t

(t− tk)Ik(x(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk)). (2.1)

Proof. First suppose that x ∈ PC1[J,R]
⋂

C2[J ′,R] is a solution of the problem (1.1). It is easy

to see by integration of (1.1) that

x′(t) = x′(0) −

∫ t

0
f(s, x(s))ds+

∑

0<tk<t

[x′(t+k ) − x′(tk)]

= −

∫ t

0
f(s, x(s))ds +

∑

0<tk<t

Ik(x(tk)).
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Integrate again, we can get

x(t) = x(0) −

∫ t

0
(t− s)f(s, x(s))ds+

∑

0<tk<t

Ik(x(tk))(t− tk). (2.2)

Letting t = 1 and t = η in (2.2), we find

x(1) = x(0) −

∫ 1

0
(1 − s)f(s, x(s))ds +

m
∑

k=1

Ik(x(tk))(1 − tk),

x(η) = x(0) −

∫ η

0
(η − s)f(s, x(s))ds +

∑

0<tk<η

Ik(x(tk))(η − tk).

From the boundary condition x(1) = βx(η), we have

x(0) =
1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds−

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds

−
1

1 − β

m
∑

k=1

Ik(x(tk))(1 − tk) +
β

1 − β

∑

0<tk<η

Ik(x(tk))(η − tk). (2.3)

Substituting (2.3) into (2.2), we have

x(t) =
1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds

−

∫ t

0
(t− s)f(s, x(s))ds +

∑

0<tk<t

(t− tk)Ik(x(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk)).

Thus, the proof of sufficient is complete.

Conversely, if x is a solution of (2.1). Direct differentiation of (2.1) implies, for t 6= tk

x′(t) = −

∫ t

0
f(s, x(s))ds +

∑

0<tk<t

Ik(x(tk)).

Further

x′′(t) = −f(t, x(t)), ∆x′|t=tk = x′(t+k ) − x′(t−k ) = Ik(x(tk)).

So x ∈ C2[J ′,R] and it is easy to verify that x′(0) = 0, x(1) = βx(η), and the lemma is proved.2

Define an operator A : C[J,R] → C[J,R] by

Ax(t) =
1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds−

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds

−

∫ t

0
(t− s)f(s, x(s))ds +

∑

0<tk<t

(t− tk)Ik(x(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk)).

Lemma 2.5. x ∈ PC1[J,R]
⋂

C2[J ′,R] is a solution of the problem (1.1) if and only if x ∈

PC1[J,R] is a fixed point of the operator A.
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3 Existence and uniqueness of positive solutions for problem (1.1)

In this section, we apply Theorem 2.1 to study the problem (1.1) and we obtain a new result on

the existence and uniqueness of positive solutions. The method used in this paper is new to the

literature and so is the existence and uniqueness result to the second-order impulsive differential

equations. This is also the main motivation for the study of (1.1) in the present work.

Set P̃ = {x ∈ C[J,R]|x(t) ≥ 0, t ∈ J}, the standard cone. It is clear that P̃ is a normal cone

in C[J,R] and the normality constant is 1. Our main result is summarized in the following theorem.

Theorem 3.1. Assume that (H1) − (H4) hold. Then (i) there exist u0, v0 ∈ P̃h such that

u0(t) ≤
1

1 − β

∫ 1

0
(1 − s)f(s, u0(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, u0(s))ds

−

∫ t

0
(t− s)f(s, u0(s))ds +

∑

0<tk<t

(t− tk)Ik(u0(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(u0(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(u0(tk)), t ∈ J,

v0(t) ≥
1

1 − β

∫ 1

0
(1 − s)f(s, v0(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, v0(s))ds

−

∫ t

0
(t− s)f(s, v0(s))ds +

∑

0<tk<t

(t− tk)Ik(v0(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(v0(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(v0(tk)), t ∈ J ;

(ii) the problem (1.1) has a unique positive solution x∗ in P̃h

⋂

PC1[J,R], where

h(t) = −
1

2
t2 +

1 − βη2

2(1 − β)
, t ∈ [0, 1].

Remark 3.1. It is easy to see that the function h(t) satisfies h′(0) = 0, βh(η) = h(1), h′′(t) ≡ −1

and for t ∈ [0, 1]

h(t) =
1

1 − β

∫ 1

0
(1 − s)ds−

β

1 − β

∫ η

0
(η − s)ds−

∫ t

0
(t− s)ds,

0 <
β(1 − η2)

2(1 − β)
= h(1) ≤ h(t) ≤ h(0) =

1 − βη2

2(1 − β)
.

Proof of Theorem 3.1 Firstly, we show that A : P̃ → P̃ is increasing, generalized concave. To

illuminate this, we divide into two cases: (i) for any t ∈ [0, η], we have

Ax(t) =
1

1 − β

[
∫ t

0
(1 − s)f(s, x(s))ds +

∫ η

t
(1 − s)f(s, x(s))ds+

∫ 1

η
(1 − s)f(s, x(s))ds

]

−
β

1 − β

[
∫ t

0
(η − t)f(s, x(s))ds +

∫ η

t
(η − s)f(s, x(s))ds

]

−

∫ t

0
(t− s)f(s, x(s))ds
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+
∑

0<tk<t

(t− tk)Ik(x(tk)) +
β

1 − β





∑

0<tk<t

(η − tk)Ik(x(tk)) +
∑

t≤tk<η

(η − tk)Ik(x(tk))





−
1

1 − β





∑

0<tk<t

(1 − tk)Ik(x(tk)) +
∑

t≤tk<η

(1 − tk)Ik(x(tk)) +
∑

η≤tk<1

(1 − tk)Ik(x(tk))





=
1

1 − β

[
∫ t

0
(1 − t− βη + βt)f(s, x(s))ds +

∫ η

t
(1 − s− βη + βs)f(s, x(s))ds

+

∫ 1

η
(1 − s)f(s, x(s))ds

]

−
1

1 − β





∑

0<tk<t

(1 − t− βη + βt)Ik(x(tk))

+
∑

t≤tk<η

(1 − tk − βη + βtk))Ik(x(tk)) +
∑

η≤tk<1

(1 − tk)Ik(x(tk))



 .

(ii) for any t ∈ (η, 1], we have

Ax(t) =
1

1 − β

[
∫ η

0
(1 − s)f(s, x(s))ds+

∫ t

η
(1 − s)f(s, x(s))ds+

∫ 1

t
(1 − s)f(s, x(s))ds

]

−
β

1 − β

∫ η

0
(η − s)f(s, x(s))ds−

[
∫ η

0
(t− s)f(s, x(s))ds +

∫ t

η
(t− s)f(s, x(s))ds

]

+





∑

0<tk<η

(t− tk)Ik(x(tk)) +
∑

η≤tk<t

(t− tk)Ik(x(tk))



+
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk))

−
1

1 − β





∑

0<tk<η

(1 − tk)Ik(x(tk)) +
∑

η≤tk<t

(1 − tk)Ik(x(tk)) +
∑

t≤tk<1

(1 − tk)Ik(x(tk))





=
1

1 − β

[
∫ η

0
(1 − t− βη + βt)f(s, x(s))ds +

∫ t

η
(1 − t− βs+ βt)f(s, x(s))ds

+

∫ 1

t
(1 − s)f(s, x(s))ds

]

−
1

1 − β





∑

0<tk<η

(1 − t− βη + βt)Ik(x(tk))

+
∑

η≤tk<t

(1 − t− βtk + βt)Ik(x(tk)) +
∑

t≤tk<1

(1 − tk)Ik(x(tk))



 .

For case (i), we can easily get 1 − t − βη + βt ≥ 0 for t ∈ [0, η], 1 − s − βη + βs ≥ 0 for s ∈ [t, η]

and 1 − tk − βη + βtk ≥ 0 for tk ∈ [t, η). For case (ii), we can easily get 1 − t − βη + βt ≥ 0 for

t ∈ (η, 1], 1 − t − βs + βt ≥ 0 for s ∈ [η, t] and 1 − t − βtk + βt ≥ 0 for tk ∈ [η, t). Note that

η ∈ (0, 1), 0 < β < 1, and from (H1), (H2), we obtain

1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds−

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds−

∫ t

0
(t− s)f(s, x(s))ds ≥ 0, (3.1)

∑

0<tk<t

(t− tk)Ik(x(tk)) +
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk)) ≥ 0. (3.2)

So we have Ax(t) ≥ 0, t ∈ [0, 1]. Further, also from the above two cases (i),(ii) and (H1), (H2),

we can easily prove that A : P̃ → P̃ is increasing. Set α(t) = min{α1(t), α2(t)}, t ∈ (0, 1). Then
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α(t) ∈ (t, 1). For any λ ∈ (0, 1) and x ∈ P̃ , it follows from the above two cases (i),(ii), (3.1),(3.2)

and (H3) that

A(λx)(t) ≥ α1(λ)

[

1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds−

β

1 − β

∫ η

0
(η − s)f(s, x(s))ds

−

∫ t

0
(t− s)f(s, x(s))ds

]

+ α2(λ)





∑

0<tk<t

(t− tk)Ik(x(tk)) +
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk))

−
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk))

]

≥ α(λ)

{

1

1 − β

∫ 1

0
(1 − s)f(s, x(s))ds

−
β

1 − β

∫ η

0
(η − s)f(s, x(s))ds−

∫ t

0
(t− s)f(s, x(s))ds+

∑

0<tk<t

(t− tk)Ik(x(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(x(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(x(tk))







= α(λ)Ax(t).

That is, A(λx) ≥ α(λ)Ax, x ∈ P̃ , λ ∈ (0, 1). So A : P̃ → P̃ is generalized concave.

Secondly, we prove Ah ∈ P̃h. Set

r1 = min
t∈[0,1]

f

(

t,
β(1 − η2)

2(1 − β)

)

, r2 = max
t∈[0,1]

f

(

t,
1 − βη2

2(1 − β)

)

.

Then from (H1), we have r2 ≥ r1 > 0. Further, from (H1), (H2), the above two cases (i),(ii) and

(3.2), we have

Ah(t) ≥
1

1 − β

∫ 1

0
(1 − s)f(s, h(1))ds −

β

1 − β

∫ η

0
(η − s)f(s, h(1))ds −

∫ t

0
(t− s)f(s, h(1))ds

≥ r1

[

1

1 − β

∫ 1

0
(1 − s)ds−

β

1 − β

∫ η

0
(η − s)ds−

∫ t

0
(t− s)ds

]

= r1h(t),

From (H2), we have

∑

0<tk<t

(t− tk)Ik(h(tk))+
β

1 − β

∑

0<tk<η

(η− tk)Ik(h(tk)) ≤ 0, −
1

1 − β

m
∑

k=1

(1− tk)Ik(h(tk)) ≥ 0. (3.3)

Further, from (H1), (H2), (H4), the above two cases (i),(ii) and (3.1)-(3.3), we have

Ah(t) ≤
1

1 − β

∫ 1

0
(1 − s)f(s, h(0))ds −

β

1 − β

∫ η

0
(η − s)f(s, h(0))ds

−

∫ t

0
(t− s)f(s, h(0))ds −

1

1 − β

m
∑

k=1

(1 − tk)Ik(h(0))

≤ r2h(t) −
1

1 − β

m
∑

k=1

(1 − tk)Ik

(

1 − βη2

2(1 − β)

)

≤

[

r2 −
2

β(1 − η2)

m
∑

k=1

(1 − tk)Ik

(

1 − βη2

2(1 − β)

)]

h(t).

Hence,

r1h ≤ Ah ≤

[

r2 −
2

β(1 − η2)

m
∑

k=1

(1 − tk)Ik

(

1 − βη2

2(1 − β)

)]

h.
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That is, Ah ∈ P̃h. Finally, an application of Theorem 2.1 implies that (i) there are u0, v0 ∈ P̃h such

that u0 ≤ Au0, Av0 ≤ v0; (ii) operator equation x = Ax has a unique solution in P̃h. That is,

u0(t) ≤
1

1 − β

∫ 1

0
(1 − s)f(s, u0(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, u0(s))ds

−

∫ t

0
(t− s)f(s, u0(s))ds +

∑

0<tk<t

(t− tk)Ik(u0(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(u0(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(u0(tk)), t ∈ J,

v0(t) ≥
1

1 − β

∫ 1

0
(1 − s)f(s, v0(s))ds −

β

1 − β

∫ η

0
(η − s)f(s, v0(s))ds

−

∫ t

0
(t− s)f(s, v0(s))ds +

∑

0<tk<t

(t− tk)Ik(v0(tk))

+
β

1 − β

∑

0<tk<η

(η − tk)Ik(v0(tk)) −
1

1 − β

m
∑

k=1

(1 − tk)Ik(v0(tk)), t ∈ J ;

and the problem (1.1) has a unique solution x∗ in P̃h. Moreover, from Lemmas 2.4 and 2.5 we know

that x∗ ∈ PC1[J,R]. Evidently, x∗ is a positive solution of the problem (1.1).2

Remark 3.2. For the case of Ik = 0, k = 1, 2, . . . ,m, the problem (1.1) reduces to the follow-

ing three-point boundary value problem for ordinary differential equations:
{

x′′(t) + f(t, x(t)) = 0, 0 < t < 1,

x′(0) = 0, βx(η) = x(1).
(3.4)

We can establish the existence and uniqueness of positive solutions for the problem (3.1) by the

same method used in this paper, which is new to the literature. So the method employed in this

paper is different from previous ones in literature and the result obtained in this paper is new.

4 An example

To illustrate how our main result can be used in practice we present an example.

Example 4.1. Consider the following boundary value problem














x′′(t) + xγ + ψ(t) = 0, t ∈ J, t 6= 1
2 ,

∆x′|t= 1

2

= − 4

√

x(1
2 ),

x′(0) = 0, 1
2x(

1
4) = x(1),

(4.1)

where γ ∈ (0, 1) and ψ : [0, 1] → [0,+∞) is a continuous function.

Conclusion. The impulsive problem (4.1) has a unique positive solution in P̃h

⋂

PC1[J,R], where

h(t) = −
1

2
t2 +

1 − βη2

2(1 − β)
= −

1

2
t2 +

31

32
, t ∈ [0, 1].
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Proof. The problem (4.1) can be regarded as a boundary value problem of the form (1.1), where

η = 1
4 , β = 1

2 , t1 = 1
2 , f(t, x) = xγ +ψ(t), I1(x) = −x

1

4 . It is not difficult to see that the conditions

(H1), (H2) and (H4) hold. In addition, let α1(λ) = λγ , α2(λ) = λ
1

4 . Then, the condition (H3) of

Theorem 3.1 holds. Hence, by Theorem 3.1, the conclusion follows, and the proof is complete.

Remark 4.1. Example 4.1 implies that there is a large number of functions that satisfy the

conditions of Theorem 3.1. In addition, the conditions of Theorem 3.1 are also easy to check.
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