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1 Introduction

In the present paper we obtain sufficient conditions for the uniqueness of the trivial solution
for some new classes of nonlinear inequalities and systems with fractional powers of the
Laplacian by using a modification of the test function method developed in [7, 8].

However, this method cannot be used directly, since it was developed for other types of
differential operators, in particular, for integer powers of the Laplacian. But it is known [1] that
the solution sets for many problems containing operators of such types are relatively small.
For instance, harmonic functions cannot approximate a function with interior maxima or
minima, functions of a single variable with null second derivatives are necessarily affine linear,
and so on, which facilitates choosing additional nonlinear terms that yield non-existence of
solutions at all. In contrast, for fractional differential operators many new solutions can arise.
Their set can even become locally dense in C(Rn), as in the case of s-harmonic functions (u
such that (−∆)su = 0), see [2], also in the case of higher order operators, see [1, 6]. Thus, in
order to obtain non-existence results one has to exclude the existence of this larger solution
set. Therefore non-existence results in the fractional setting are always a delicate matter,
which requires a substantial modification of the known techniques, and were obtained up to
now only in some special cases. Namely, this problem was considered in [2] for systems of
equations with fractional powers of the Laplacian, and by the authors of the present paper in
[5, 9] for some respective inequalities and their systems.

The rest of the paper consists of four sections. In §2 we obtain some auxiliary estimates
for the fractional Laplacian. Further, we prove uniqueness theorems: in §3, for some elliptic
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inequalities, in §4, for systems of such inequalities, and in §5, for respective parabolic prob-
lems.

2 Auxiliary estimates

Let s ∈ R+, [s] = sup{z ∈ Z : z ≤ s}, {s} = s− [s]. We define the operator (−∆)s by the
formula

(−∆)su(x) def
= cn,s · (−∆)[s]

(
p.v.

∫
Rn

u(y)− u(x)
|x− y|n+2{s} dy

)
, (2.1)

where

cn,s
def
=

2{s}Γ
(

n+{s}
2

)
πn/2

∣∣∣Γ (− {s}2 )∣∣∣
for all functions such that the right-hand side of (2.1) makes sense at least in the distributional
setting.

Remark 2.1. Note that this definition implies

(−∆)s = (−∆)[s] · (−∆){s}. (2.2)

For u ∈ H2s
loc(R

n), this order can be reversed (see [3]).

We will use definition (2.1) for the proof of the following Lemmas 2.2 and 2.4.

Lemma 2.2. Let s ∈ IR+, q > p > 0 and α, β ∈ R. Consider a function ϕ1 : IRn → IR defined as

ϕ1(x) def
=


1 (|x| ≤ 1),

(2− |x|)λ (1 < |x| < 2),

0 (|x| ≥ 2)

(2.3)

with λ > max
(
2[s] + 1, 2sq

q−p − n
)
. Then one has

0 <
∫

IRn
|(−∆)s ϕ1|

q
q−p (1 + |x|)

αq−βp
q−p ϕ

− p
q−p

1 dx < ∞. (2.4)

Remark 2.3. In the Mitidieri–Pohozaev approach such estimates were established by direct
calculation of the iterated Laplacian of the test functions that were given explicitly. This does
not work for the fractional Laplacian, so we need to establish some additional estimates.

Proof. of Lemma 2.2. It suffices to consider x ∈ Rn such that 3
2 < |x| < 2, since otherwise the

integrand is obviously regular and bounded.
We start with the case [s] = 0 using (2.1) with notation f (x, y) = ϕ1(x)−ϕ1(y)

|x−y|n+2s , where s = {s}:

|(−∆)s ϕ1)(x)| = cn,s

∣∣∣∣∫
Rn

f (x, y) dy
∣∣∣∣ = cn,s

∣∣∣∣∣ 2

∑
i=1

∫
Di(x)

f (x, y) dy

∣∣∣∣∣ , (2.5)

where

D1(x) def
= {y ∈ Rn : |x− y| ≥ (2− |x|)/2},

D2(x) def
= {y ∈ Rn : |x− y| < (2− |x|)/2}
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(here and below the singular integrals are understood in the sense of the Cauchy principal
value).

For any ε ∈ (0, 2s), since we have |x− y| ≥ (2− |x|)/2 in D1(x), we get∫
D1(x)

f (x, y) dy =
∫

D1(x)

ϕ1(x)− ϕ1(y)
|x− y|n+2s dy

≤ ϕ1(x)
∫

D1(x)

dy
|x− y|n+2s

≤ ϕ1(x) ·
(

2− |x|
2

)ε−2s ∫
D1(x)

dy
|x− y|n+ε

≤ c1(2− |x|)λ+ε−2s

(2.6)

with some constant c1 > 0.
On the other hand, the Lagrange Mean Value Theorem implies that∫

D2(x)
f (x, y) dy =

∫
D2(x)

ϕ1(x)− ϕ1(y)
|x− y|n+2s dy

=
1
2

∫
D̃2(x)

2ϕ1(x)− ϕ1(x + z) + ϕ1(x− z)
|z|n+2s dz

≤ c2 · max
z∈D̃2(x)

|((2− |x + z|)λ)′′|
∫

D̃2(x)

|z|2
|z|n+2s dy

= c3 · max
z∈D̃2(x)

(2− |x + z|)λ−2|z|2−ε−2s ·
∫

D̃2(x)

dz
|z|n−ε

,

where D̃2(x) = {z ∈ Rn : |z| < (2− |x|)/2}, with constants c2, c3 > 0 and arbitrary small
ε > 0.

For z ∈ D̃2(x) we have

2− |x + z| = 2− |x|+ |x| − |x + z| ≤ (2− |x|) + |z| ≤ 3
2
(2− |x|).

Hence ∫
D2(x)

f (x, y) dy ≤ c4(2− |x|)λ−ε−2s (2.7)

for any ε > 0 and some constant c4 > 0.
Combining (2.5) and (2.7), we obtain

|(−∆)s ϕ1(x)| ≤ c5(2− |x|)λ−ε−2s, (2.8)

which together with (2.3) implies

|(−∆)s ϕ1(x)|
q

q−p (1 + |x|)
αq−βp

q−p ϕ
− p

q−p
1 (x) ≤ c6(2− |x|)

(λ−ε−2s)q−λp
q−p = c6(2− |x|)λ− (2s+ε)q

q−p (2.9)

with some constants c5, c6 > 0 independent of x. Hence, in case [s] = 0 (2.4) follows by
assumption λ > 2sq

q−p − n, if ε > 0 is sufficiently small.
For [s] > 0, we use the identity (2.2) and the representation of the radial Laplacian

∆v =
∂2v
∂r2 +

n− 1
r
· ∂v

∂r
. (2.10)

It is easy to see that for 1 < |x| = r < 2 (2.2) and (2.10) imply

|(−∆)s ϕ1(x)| ≤ c
2[s]

∑
k=1

∣∣∣∣∣∂k(−∆{s}ϕ1)(x)
∂rk

∣∣∣∣∣ (2.11)
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with some c > 0. This holds, both for 0 ≤ r ≤ 1 and for r > 2, since in these cases both parts
of the inequality are zero.

Differentiating the integral in the definition (2.1) up to order 2[s] and repeating the previ-
ous arguments for the respective derivatives (note that they can be exchanged with (−∆)s by
Remark 2.1), we obtain∣∣∣∣∣∂k((−∆{s}ϕ1)(x)

∂rk

∣∣∣∣∣ ≤ c5(2− |x|)λ−ε−2{s}−k (k = 1, . . . , 2[s]; r = |x|)),

which together with (2.10) implies (2.9) and hence (2.4) for arbitrary s ∈ R+.

Lemma 2.4. Let s ∈ R+, q > p > 0 and α, β ∈ R. For the family of functions ϕR(x) = ϕ1
( x

R

)
,

where R > 0, one has∫
IRn
|(−∆)s ϕR|

q
q−p (1 + |x|)

αq−βp
q−p ϕ

− p
q−p

R dx ≤ cRn+ (α−2s)q−βp
q−p (2.12)

for every R > 0 and some c > 0 independent of R.

Sketch of the proof. By (2.1) and a change of variables ỹ = y
R , we have

(−∆)s ϕR(x) = R−2s(−∆)s ϕ1

( x
R

)
. (2.13)

Substituting (2.13) into the left-hand side of (2.12) and applying Lemma 2.2, we obtain the
claim.

3 Single elliptic inequalities

Now consider the nonlinear elliptic inequality

(−∆)s(|x|α|u|p−1u) ≥ c|u|q(1 + |x|)β (x ∈ IRn), (3.1)

where s > 0, c > 0, q > p > 0 and α are real numbers.
We define the class Lα

p,loc(IR
n) as that of all functions u such that for each compact set

Ω ⊂ IRn one has
∫

Ω |x|
α|u|p dx < ∞.

Definition 3.1. A weak solution of inequality (3.1) is a function u ∈ Lq,loc(IRn) ∩ Lα
p,loc(IR

n)

such that for any nonnegative function ϕ ∈ C2[s]+1
0 (IRn) there holds the inequality∫

IRn
|x|α|u|p−1u(−∆)s ϕ dx ≥ c

∫
IRn
|u|q(1 + |x|)β ϕ dx. (3.2)

We will prove the following theorem.

Theorem 3.2. Inequality (3.1) has no nontrivial (i.e., distinct from zero a.e.) weak solutions for
n + α− 2s > 0 and

p < q ≤ (n + β)p
n + α− 2s

. (3.3)
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Proof. We make use of the test function ϕR(x) = ϕ1
( x

R

)
defined in Lemma 2.4.

Substituting ϕ(x) = ϕR(x) into (3.1) and applying the Hölder inequality, we get

c
∫

IRn
|u|q(1 + |x|)β ϕR dx

≤
∫

IRn
|u|p−1u|x|α(−∆)s ϕR dx

≤
∫

IRn
|u|p|x|α|(−∆)s ϕR| dx

≤
(∫

IRn
|u|q(1 + |x|)β ϕR dx

) p
q
(∫

supp|(−∆)s ϕR|
|(−∆)s ϕR|

q
q−p (1 + |x|)

αq−βp
q−p ϕ

− p
q−p

R dx
) q−p

q

.

(3.4)

Hence, ∫
IRn
|u|q(1 + |x|)β ϕR dx ≤ c

∫
IRn
|(−∆)s ϕR|

q
q−p (1 + |x|)

αq−βp
q−p ϕ

− p
q−p

R dx. (3.5)

From (3.5) by Lemma 2.4 we obtain∫
IRn
|u|q(1 + |x|)β ϕR dx ≤ cRn+ (α−2s)q−βp

q−p .

Taking R → ∞, in case of strict inequality in (3.3) we come to a contradiction, which proves
the claim. In case of equality, we have∫

IRn
|u|q(1 + |x|)β dx < ∞,

whence ∫
supp|(−∆)s ϕR|

|u|q(1 + |x|)β ϕR dx → 0 as R→ ∞

and by (3.4) ∫
IRn
|u|q(1 + |x|)β dx = 0,

which completes the proof in this case as well.

Remark 3.3. From the results of [7] it follows that at least for α = 0 and integer s the upper
bound given for uniqueness of the trivial solution in (3.3) is optimal. Its optimality for α 6= 0
and/or non-integer s is an open problem.

4 Systems of elliptic inequalities

Here we consider a system of nonlinear elliptic inequalities{
(−∆)s1(|x|α1 |u|p1−1u) ≥ c1|v|q1(1 + |x|)β1 (x ∈ IRn),

(−∆)s2(|x|α2 |v|p2−1v) ≥ c2|u|q2(1 + |x|)β2 (x ∈ IRn),
(4.1)

where s1 > 1, s2 > 1, q1 > p2 > 0, q2 > p1 > 0, α1, α2, β1 and β2 are real numbers.

Definition 4.1. A weak solution of system of inequalities (4.1) is a pair of functions (u, v) ∈
(Lq2,loc(IRn) ∩ Lα1

p1,loc(IR
n))× (Lq1,loc(IRn) ∩ Lα2

p2,loc(IR
n)) such that for any nonnegative function

ϕ ∈ C2 max([s1],[s2])+1
0 (IRn) there hold the inequalities
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∫
IRn
|x|α1 |u|p1−1u(−∆)s1 ϕ dx ≥ c1

∫
IRn
|v|q1(1 + |x|)β1 ϕ dx,∫

IRn
|x|α2 |v|p2−1v(−∆)s2 ϕ dx ≥ c1

∫
IRn
|u|q2(1 + |x|)β2 ϕ dx.

(4.2)

We will prove the following theorem.

Theorem 4.2. System (4.1) has no nontrivial (i.e., distinct from a pair of zero constants a.e.) weak
solutions for

n + max{(α1−2s1)q1q2+p1[q1(α2−2s2−β2)−β1 p2],(α2−2s2)q1q2+p2[q2(α1−2s1−β1)−β2 p1]}
q1q2−p1 p2

≤ 0. (4.3)

Proof. Introduce a test function ϕR(x) as in the proof of the previous theorems. Similarly to
(3.4), we get

c1

∫
IRn
|v|q1(1 + |x|)β1 ϕR dx ≤

∫
IRn
|u|p1 |x|α1 |(−∆)s1 ϕR| dx

≤
(∫

IRn
|u|q2(1 + |x|)β2 ϕR dx

)p1
q2
(∫

supp|(−∆)s1 ϕR|
|(−∆)s1 ϕR|

q2
q2−p1 (1 + |x|)

α1q2−β2 p1
q2−p1 ϕ

− p1
q2−p1

R dx
)q2−p1

q2
,

c2

∫
IRn
|u|q2(1 + |x|)β2 ϕR dx ≤

∫
IRn
|v|p2 |x|α2 |(−∆)s2 ϕR| dx

≤
(∫

IRn
|v|q1(1 + |x|)β1 ϕR dx

)p2
q1
(∫

supp|(−∆)s2 ϕR|
|(−∆)s2 ϕR|

q1
q1−p2 (1 + |x|)

α2q1−β1 p2
q1−p2 ϕ

− p2
q1−p2

R dx
)q1−p2

q1
.

Estimating the second factors in the right-hand sides of the obtained inequalities by Lemma 2.4
similarly to (2.4), we get

∫
IRn
|v|q1(1 + |x|)β1 ϕR dx ≤ cRn+α1−2s1−

(n+β2)p1
q2

(∫
IRn
|u|q2(1 + |x|)β2 ϕR dx

) p1
q2

, (4.4)

∫
IRn
|u|q2(1 + |x|)β2 ϕR dx ≤ cRn+α2−2s2−

(n+β1)p2
q1

(∫
IRn
|v|q1(1 + |x|)β1 ϕR dx

) p2
q1

(4.5)

and, substituting (4.5) into (4.4) and vice versa,

∫
IRn
|v|q1(1 + |x|)α1 ϕR dx ≤ cRn+ (α1−2s1)q1q2+p1 [q1(α2−2s2−β2)−β1 p2 ]

q1q2−p1 p2 ,

∫
IRn
|u|q2(1 + |x|)α2 ϕR dx ≤ cRn+ (α2−2s2)q1q2+p2 [q2(α1−2s1−β1)−β2 p1 ]

q1q2−p1 p2 .

Passing to the limit as R→ ∞, we complete the proof of the theorem similarly to the previous
ones, including the critical case.

Remark 4.3. From the results of [7] it follows that at least for α1 = α2 = 0 and integer s1, s2

the upper bound given for uniqueness of the trivial solution in (4.3) is optimal. Its optimality
for arbitrary α1, α2 and/or non-integer s1, s2 is an open problem.
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5 Nonlinear parabolic inequalities

Now let u0 ∈ L1,loc(R
n), u0(x) ≥ 0 a.e. in Rn. We consider the nonlinear parabolic inequality

ut + (−∆)s(|x|αu) ≥ c|u|q(1 + |x|)β ((x, t) ∈ Rn ×R+) (5.1)

with the initial condition
u(x, 0) = u0(x) (x ∈ Rn). (5.2)

Definition 5.1. A weak global (in time) solution of inequality (5.1) is a function u ∈ Lq,loc(R
n×

R+) ∩ Lα
1,loc(R

n ×R+) such that for any nonnegative function ϕ ∈ C2[s]+1,1(Rn ×R+) with
supp ϕ(·, t) ⊂⊂ Rn for each t > 0 there holds the inequality∫

R+

∫
Rn
|x|αu[(−∆)s ϕ− ϕt] dx dt ≥ c

∫
R+

∫
Rn
|u|q(1 + |x|)β ϕ dx +

∫
Rn

u0(x)ϕ(x, 0) dx. (5.3)

We prove the following theorem.

Theorem 5.2. Inequality (5.1) with initial condition (5.2) has no nontrivial weak global solutions for
α < 2s and

1 < q ≤ 1 +
2s− α + β

n
. (5.4)

Proof. Introduce the test function ϕR,θ(x, t) = ϕ1
( x

R

)
ϕ1
( t

Rθ

)
, where ϕ1 is defined as in

Lemma 2.2, and the parameter θ > 0 will be specified below. Substituting ϕ(x, t) = ϕR,θ(x, t)
into (3.1) and using the Young inequality, we get

c
∫

R+

∫
Rn
|u|q(1 + |x|)β ϕR,θ dx dt

≤
∫

R+

∫
Rn

u ·
[
|(−∆)s ϕR,θ |+ |x|α ·

∣∣∣∣∂ϕR,θ

∂t

∣∣∣∣] dx dt ≤ c
2

∫
R+

∫
Rn
|u|q(1 + |x|)β ϕR,θ dx dt

+ d(c)
∫

R+

∫
Rn

[
|(−∆)s ϕR,θ |

q
q−1 (1 + |x|)

αq−β
q−1 +

∣∣∣∣∂ϕR,θ

∂t

∣∣∣∣
q

q−1

(1 + |x|)−
β

q−1

]
ϕ
− 1

q−1
R,θ dx dt,

(5.5)

where d(c) > 0. Hence, ∫
R+

∫
Rn
|u|q(1 + |x|)β ϕR,θ dx ≤ 2d(c)

c
I, (5.6)

where

I :=
∫

R+

∫
Rn

[
|(−∆)s ϕR,θ |

q
q−1 +

∣∣∣∣∂ϕR,θ

∂t

∣∣∣∣
q

q−1
]
(1 + |x|)

αq−β
q−1 ϕ

− 1
q−1

R,θ dx.

From (5.6) and (2.4) due to the definition of ϕR,θ(x, t) we have

I ≤ CRn+θ− β
q−1

(
R

(α−2s)q
q−1 + R−

θq
q−1

)
with some C > 0. Choosing θ = 2s− α and taking R→ ∞, in the case of a strict inequality in
(5.4) we come to a contradiction, which proves the theorem. The case of equality is considered
similarly to Theorem 3.2.
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Remark 5.3. Similar results can be obtained for the inequality

ut + (−∆)s(|x|α|u|p−1u) ≥ c|u|q(1 + |x|)β ((x, t) ∈ Rn ×R+) (5.7)

with initial condition (5.2).

Remark 5.4. From the results of [7] it follows that at least for α = 0 and integer s the upper
bound given for uniqueness of the trivial solution in (5.4) is optimal. Its optimality for α 6= 0
and/or non-integer s is an open problem.
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