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1 Introduction

In this paper, we discuss the existence of multiple solutions for the quasilinear elliptic problem{
−∆Φu = λ|u|l∗−2u + f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, λ is a positive
parameter, l∗ = lN

N−l (1 < l < N) is the critical Sobolev exponent and ∆Φu denotes the Φ-
Laplacian operator, which is defined by ∆Φu = div(φ(|∇u|)∇u). With respect to the function
φ : (0, ∞)→ (0, ∞), we assume that it is C1 and satisfies:

(φ1) φ(t)t→ 0 as t→ 0, φ(t)t→ ∞ as t→ ∞;

(φ2) φ(t)t is strictly increasing in (0, ∞);

(φ3) 0 < l − 1 := inft>0
(φ(t)t)′

φ(t) ≤ supt>0
(φ(t)t)′

φ(t) =: m− 1 < N − 1.

Throughout this paper we define

Φ(t) =
∫ t

0
φ(s)sds, t ≥ 0,
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which is extended as even function, Φ(t) = Φ(−t), for all t < 0. In fact, under the assumptions
(φ1)–(φ3), the equations like (1.1) may be allowed to possess complicated nonhomogeneous
Φ-Laplacian operator. The examples are the following:

(i) p-Laplacian:φ(t) = ptp−2, for 1 < p < N;

(ii) (p, q)-Laplacian:φ(t) = ptp−2 + qtq−2, for 1 < p < q < N and q ∈ (p, p∗) with p∗ = pN
N−p ;

(iii) plasticity: φ(t) = ptp−2(log(1 + t))q + qtp−1(1 + t)−1(log(1 + t))q−1, for p ≥ 1, q > 0;

(iv) p(x)-Laplacian: φ(t) = p(x)tp(x)−2, for p : RN → R is Lipschitz continuous and 1 <

p− := infRN p(x) ≤ supRN p(x) =: p+ < N.

In our discussion, we assume that the nonlinear term f (x, t) ∈ C(Ω×R) satisfies:

( f1) lim|t|→∞
f (x,t)
|t|l∗−1 = 0, uniformly x ∈ Ω;

( f2) there exist constants θ ∈ (m, l∗), σ ∈ [0, l) and C0, C1 > 0, such that

F(x, t)− 1
θ

f (x, t)t ≤ C0|t|σ + C1,

for x ∈ Ω and t ∈ R, where F(x, t) =
∫ t

0 f (x, s)ds;

( f3) there exist constants τ ∈ (m, l∗) and C2, C3 > 0 such that

F(x, t) ≤ C2|t|τ + C3

for x ∈ Ω and t ∈ R;

( f4) there exists an open set Ω0 ⊂ Ω with |Ω0| > 0 such that

lim inf
|t|→∞

F(x, t)
|t|m = +∞,

uniformly x ∈ Ω0;

( f5) f (x, 0) = 0 and f (x,−t) = − f (x, t), for x ∈ Ω and t > 0.

Remark 1.1. It is easily seen that the following function satisfies hypotheses ( f1)–( f4):

f (x, t) = |t|r−2t, for t > 0 and r ∈ (m, l∗).

The equation (1.1), for Φ(t) = tp, is well known as the p-Laplacian equation involving critical
growth p∗ = pN

N−p . The boundary value problem{
−∆pu = µ|u|p∗−2u + f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω
(1.2)

has been studied by B. Silva and Xavier [11]. The multiplicity of solutions for (1.2) is obtained
by the variational method and the minimax critical point theorems. D. Silva improved the
variational method and the concentration compactness principle to deal with the problem
(cf. [12]) {

−div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u + f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)



Multiplicity of solutions for quasilinear elliptic problems 3

where 0 < p(x) ≤ q(x) ≤ p∗(x) = p(x)N
N−p(x) , x ∈ Ω. Further, one of the main motivations for the

study of problem (1.1) is the following problem

− div(φ(|∇u|)∇u) = b(|u|)u + λ f (x, u), x ∈ RN , (1.4)

where N ≥ 2, λ > 0 and b(|u|)u possesses critical growth. Fukagai, Ito and Narukawa [5]
proved that problem (1.4) has a positive solution.

As is mentioned in [13], the problem (1.1) has many physical applications, for instance, in
nonlinear elasticity, plasticity, generalized Newtonian fluids, etc. We refer the readers to the
following related papers (cf. [2, 4–6, 9]) and references therein.

In this work we will propose a variant symmetric mountain pass theorem for solving the
multiplicity of solutions for problem (1.1). This requires the functional associated with the
problem (1.1) satisfies the (PS)c condition below a fixed level. Hence, it will allow us to use
a more efficient concentration-compactness type principle than the problem (1.4), which just
showed the weak limit u is positive in Fukagai, Ito and Narukawa [5].

The main difficulty in dealing with this class of problems is that the associated functional
involves the critical growth term so that the embedding of W1,Φ

0 (Ω) into Ll∗(Ω) is no longer
compact. And another difficulty comes from the fact that Φ-Laplacian operator is nonhomoge-
neous, which requires some additional efforts to overcome the estimate. It is worthwhile men-
tioning that we exploit the compactness of the embedding W1,Φ

0 (Ω) ↪→ LΨ(Ω), Φ ≤ Ψ � Φ∗
and the existence of a Schauder basis for W1,Φ(Ω) to establish a lower bound for the minimax
levels.

Our main result can be stated as follows.

Theorem 1.2. Assume that (φ1)–(φ3) and ( f1)–( f5) hold. Then for any given i ∈ N, there exists
λi ∈ (0, ∞) such that for all λ ∈ (0, λi), problem (1.1) possesses at least i pairs of nontrivial weak
solutions.

The organization of this paper is as follows. In Section 2, we set up the framework of
Orlicz–Sobolev spaces and give some essential results of Φ-Laplacian. In Section 3, we present
the functional associated with the problem (1.1) satisfies the Palais–Smale condition below a
given level. Finally, in Section 4, we give some useful lemmas for our main result and the
complete proof of the existence of multiple solutions for the problem (1.1).

2 Preliminaries

Due to the nature of the operator ∆Φ we shall work in the framework of Orlicz–Sobolev spaces
W1,Φ(Ω). For the sake of completeness, we recall some definitions and properties as follows.

The Orlicz space

LΦ(Ω) :=
{

u : Ω→ R : u is measurable and
∫

Ω
Φ(|u(x)|)dx < ∞

}
is a Banach space under the usual norm (Luxemburg norm)

‖u‖Φ = inf
k

{
k > 0

∣∣∣∣ ∫Ω
Φ
(
|u(x)|

k

)
dx ≤ 1

}
.

The Orlicz–Sobolev space W1,Φ(Ω) is defined as the set of all weakly differentiable u ∈
LΦ(Ω) such that Dγu ∈ LΦ(Ω) for all multi-indices γ = {γ1, γ2, . . . , γN} with |γ| ≤ 1. The
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Orlicz–Sobolev norm of W1,Φ(Ω) is defined as

‖u‖1,Φ = ‖u‖Φ + ‖∇u‖Φ.

We denote by W1,Φ
0 (Ω) the closure of C∞

0 (Ω) with respect to the Orlicz–Sobolev norm of
W1,Φ(Ω).

If ∫ 1

0

Φ−1(s)

s
N+1

N
ds < +∞ and

∫ +∞

1

Φ−1(s)

s
N+1

N
ds = +∞, (2.1)

then the Sobolev conjugate N-function function Φ∗ of Φ is given in [1] by

t ∈ (0, ∞) 7→
∫ t

0

Φ−1(s)

s
N+1

N
ds.

Notice that Φ is N-function and (φ3) guarantees (2.1) holds.
The dual (LΦ(Ω))∗ is LΦ̃(Ω) (cf. [6]), where Φ̃ is called the complement of Φ, given by

Φ̃(t) = max
s≥0
{ts−Φ(s)}, for t ≥ 0. (2.2)

By using of the assumptions (φ1) and (φ3), it turns out that Φ, Φ∗ and Φ̃ are N-functions
satisfying 42-condition (cf. [10]), namely there is a constant C4 > 0 such that

Φ(2t) ≤ C4Φ(t), ∀t > 0.

Meanwhile, the assumptions (φ3) implies that

(φ3)′ 1 < l := inf
t>0

φ(t)t2

Φ(t)
≤ sup

t>0

φ(t)t2

Φ(t)
=: m < N,

which ensures that LΦ(Ω) and W1,Φ
0 (Ω) are separable and reflexive Banach spaces (cf. [10]).

Lemma 2.1. Assume that (φ1)–(φ3) hold. Then for t ≥ 0, we have

Φ̃(φ(t)t) = φ(t)t2 −Φ(t) ≤ Φ(2t). (2.3)

Proof. The convexity of Φ(t) implies that

Φ(t) + Φ′(t)(s− t) ≤ Φ(s),

for s, t ≥ 0. By (φ2) and Φ′(t) = φ(t)t, we have

φ(t)ts−Φ(s) ≤ φ(t)t2 −Φ(t),

for s, t ≥ 0. Thus by (2.2), we obtain

Φ̃(φ(t)t) = max
s≥0
{φ(t)ts−Φ(s)}

≤ φ(t)t2 −Φ(t)

≤ φ(t)t2

≤
∫ 2t

t
φ(z)zdz

≤ Φ(2t),

for t ≥ 0. Hence, this shows (2.3).
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Remark 2.2. It is easy to see that (φ3)′ implies that

(φ3)′′ l ≤ φ(t)t2

Φ(t)
≤ m, t > 0

is verified.

It follows from the Poincaré inequality for Φ-Laplacian operator (cf. [7]) that there exists a
constant S1 > 0 such that

‖u‖Φ ≤ S1‖∇u‖Φ,

for all u ∈W1,Φ
0 (Ω). As a consequence of this, the norm ‖ · ‖1,Φ is equivalent to the norm

‖u‖ := ‖∇u‖Φ

on W1,Φ
0 (Ω). In this paper, we will use ‖ · ‖ as the norm of W1,Φ

0 (Ω).
The embedding results below (cf. [1, 3]) are used in this paper. First, we have

W1,Φ
0 (Ω) ↪→↪→ LΨ(Ω), (2.4)

if Φ ≤ Ψ� Φ∗, where Ψ� Φ∗ means that the function Ψ essentially grows more slowly than
Φ∗. Furthermore,

W1,Φ
0 (Ω) ↪→ LΦ∗(Ω). (2.5)

Define a constant S2 > 0, such that for any u ∈W1,Φ
0 (Ω),

‖u‖Φ∗ ≤ S2‖u‖. (2.6)

Besides this, it is worth mentioning that if (φ1)–(φ2) and (φ3)′′ are satisfied, we have

LΦ(Ω) ↪→ Ll(Ω),

LΦ∗(Ω) ↪→ Ll∗(Ω).

Define a constant S3 > 0, such that for any u ∈W1,Φ
0 (Ω),

‖u‖Ll∗ (Ω) ≤ S3‖u‖Φ∗ . (2.7)

Since
W1,Φ

0 (Ω) ↪→ Ll∗(Ω), (2.8)

we can define a constant S4 > 0, such that for any u ∈W1,Φ
0 (Ω),

‖u‖Ll∗ (Ω) ≤ S4‖u‖. (2.9)

Lemma 2.3 ([5]). Assume that (φ1)–(φ3) hold. For t ≥ 0, set

η1(t) = min{tl , tm}, η2(t) = max{tl , tm}.

Then Φ satisfies

η1(t)Φ(ρ) ≤ Φ(ρt) ≤ η2(t)Φ(ρ), for any ρ, t > 0, (2.10)

η1(‖u‖Φ) ≤
∫

Ω
Φ(u)dx ≤ η2(‖u‖Φ), for u ∈ LΦ(Ω). (2.11)
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Let Φ̃∗ be the complement of Φ∗, we have

Lemma 2.4 ([5]). Assume that (φ1)–(φ3) hold. For t ≥ 0, set

η3(t) = min{tl̃∗ , tm̃∗}, η4(t) = max{tl̃∗ , tm̃∗},

where l̃∗ = l∗
l∗−1 and m̃∗ = m∗

m∗−1 . Then Φ̃∗ satisfies

m̃∗ ≤ Φ̃′∗(t)t
Φ̃∗(t)

≤ l̃∗, for t > 0,

η3(t)Φ̃∗(ρ) ≤ Φ̃∗(ρt) ≤ η4(t)Φ̃∗(ρ), for any ρ, t ≥ 0, (2.12)

η3(‖u‖Φ̃∗
) ≤

∫
Ω

Φ̃∗(u)dx ≤ η4(‖u‖Φ̃∗
), for u ∈ LΦ̃∗

(Ω). (2.13)

Next, we recall the variational framework for problem (1.1). The functional Iλ: W1,Φ
0 (Ω)→

R associated with our problem is given by

Iλ(u) =
∫

Ω

(
Φ(|∇u|)− λ

l∗
|u|l∗ − F(x, u)

)
dx, u ∈W1,Φ

0 (Ω).

It is easy to verify that Iλ is well-defined and of class C1 on W1,Φ
0 (Ω). Hence finding weak

solutions for the problem (1.1) is equivalent to find the critical points for the functional Iλ and
the Gateaux derivative for Iλ has the following form:

〈I′λ(u), ψ〉 =
∫

Ω
(φ(|∇u|)∇u∇ψ− λ|u|l∗−2uψ− f (x, u)ψ)dx,

for any u, ψ ∈W1,Φ
0 (Ω).

Definition 2.5. For given E a real Banach space and I ∈ C1(E, R), we say that I satisfies the
Palais–Smale condition on the level c ∈ R, denoted by (PS)c condition, if every sequence
{un} ⊂ E such that I(un)→ c and I′(un)→ 0 as n→ ∞, possesses a convergent subsequence
in E.

In this article we will apply the following version of the symmetric mountain pass theorem
(cf. [11]).

Lemma 2.6. Let E = X ⊕ Y, where E is a real Banach space and X is finite dimensional. Suppose
I ∈ C1(E, R) is an even functional, satisfying I(0) = 0 and

(I1) there exists a constant ρ > 0 such that I|∂Bρ∩Y > 0;

(I2) there exist a subspace W of E with dim X < dim W < ∞ and M > 0 such that maxu∈W I(u) <
M;

(I3) considering M > 0 given by (I2), I satisfies (PS)c condition, for 0 < c < M.

Then I possesses at least (dim W − dim X) pairs of nontrivial critical points.
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3 The Palais–Smale condition

In this section, we will verify that the functional Iλ satisfies the (PS)c condition below a given
level when λ > 0 is sufficiently small. In order to do this, we need some preliminary results.

First, we will show the Palais–Smale sequence {un} ⊂W1,Φ
0 (Ω) is bounded.

Lemma 3.1. Assume that (φ1)–(φ3) and ( f1)–( f2) hold. Then the (PS)c sequence {un} ⊂W1,Φ
0 (Ω)

of Iλ is bounded.

Proof. According to ( f2), (φ3)′′ and Hölder’s inequality, it follows that

Iλ(un)−
1
θ
〈I′λ(un), un〉 =

∫
Ω

(
Φ(|∇un|)−

1
θ

φ(|∇un|)|∇un|2
)

dx

+ λ

(
1
θ
− 1

l∗

) ∫
Ω
|un|l

∗
dx−

∫
Ω

(
F(x, un)−

1
θ

f (x, un)un

)
dx

≥
(

1
m
− 1

θ

) ∫
Ω

φ(|∇un|)|∇un|2dx + λ

(
1
θ
− 1

l∗

)
‖un‖l∗

Ll∗ (Ω)

− C0‖un‖σ
Lσ(Ω) − C1|Ω|

≥ λ

(
1
θ
− 1

l∗

)
‖un‖l∗

Ll∗ (Ω)
− C0|Ω|1−

σ
l∗ ‖un‖σ

Ll∗ (Ω)
− C1|Ω|.

(3.1)

Moreover, by Young’s inequality, we have

‖un‖σ
Ll∗ (Ω)

≤ δ‖un‖l∗
Ll∗ (Ω)

+ Cδ, (3.2)

where δ =
λ( 1

θ−
1
l∗ )

2C0|Ω|
1− σ

l∗
and Cδ =

l∗−σ
l∗
(

σ
δl∗
) σ

l∗−σ .

On the other hand, since {un} is a (PS)c sequence, we have

Iλ(un)−
1
θ
〈I′λ(un), un〉 ≤ Iλ(un) +

1
θ
‖I′λ(un)‖W1,Φ̃

0 (Ω)
‖un‖

≤ C5 + C6‖un‖,
(3.3)

with some constants C5, C6 > 0.
Therefore, from (3.1), (3.2) and (3.3)), there exist constants C7, C8 > 0 such that

‖un‖l∗
Ll∗ (Ω)

≤ C7 + C8‖un‖. (3.4)

Now, by ( f1), for given ε > 0, there exists a constant Cε > 0 such that

| f (x, t)| ≤ Cε + ε|t|l∗−1, for x ∈ Ω and t ∈ R (3.5)

and
|F(x, t)| ≤ Cε +

ε

l∗
|t|l∗ , for x ∈ Ω and t ∈ R. (3.6)

Consequently, by (3.4) and (3.6), we have

Iλ(un) =
∫

Ω
Φ(|∇un|)dx− λ

l∗

∫
Ω
|un|l

∗
dx−

∫
Ω

F(x, un)dx

≥ η1(‖un‖)−
λ + ε

l∗
‖un‖l∗

Ll∗ (Ω)
− Cε|Ω|

≥ η1(‖un‖)−
λ + ε

l∗
C8‖un‖ −

λ + ε

l∗
C7 − Cε|Ω|
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and
η1(‖un‖) ≤

λ + ε

l∗
C8‖un‖+ C(ε). (3.7)

This implies that {un} is bounded.

By (2.6), (2.7), (2.11) and Lemma 3.1, we obtain

Corollary 3.2. If {un} ⊂W1,Φ
0 (Ω) is a (PS)c sequence of Iλ, then the sequences

{ ∫
Ω Φ(|∇un|)dx

}
and

{ ∫
Ω |un|l

∗
dx
}

are bounded.

Next, we use the concentration-compactness type principle which is analogous to
Lemma 4.2 of Fukagai, Ito and Narukawa [5]. This will be the keystone that enables us to
verify that Iλ satisfies the (PS)c condition. First, we will recall a measure theory result as
follows.

Let {un} ⊂ W1,Φ
0 (Ω) be the (PS)c sequence. Lemma 3.1 and Corollary 3.2 show that

{un}, {
∫

Ω Φ(|∇un|)dx} and {
∫

Ω |un|l
∗
dx} are bounded. Otherwise, we know that LΦ(Ω) and

Ll∗(Ω) are reflexive Banach spaces. Then there exist two nonnegative measures µ, ν ∈ M(Ω),
the space of Radon measures and a subsequence of {un}, still denoted by {un}, such that

Φ(|∇un|) ⇀ µ, inM(Ω), (3.8)

|un|l
∗
⇀ ν, inM(Ω). (3.9)

Lemma 3.3. Assume that (φ1)–(φ3) hold. Let {un} o f Iλ be a Palais–Smale sequence such that
un ⇀ u in W1,Φ

0 (Ω) and Φ(|∇un|) ⇀ µ, |un|l
∗
⇀ ν in M(Ω), where µ, ν are two nonnegative

measures on Ω. Then there exist an at most countable set J and a family {xj}j∈J of distinct points in
Ω such that

(i) ν = |u|l∗ + ∑
j∈J

νjδxj ,

where {νj}j∈J is a family of positive constants and δxj is the Dirac measure of mass 1 concentrated at
xj;

(ii) µ ≥ Φ(|∇u|) + ∑
j∈J

µjδxj ,

where {µj}j∈J is a family of positive constants, satisfying νj ≤ max
{

Sl∗
4 µ

l∗
l

j , Sl∗
4 µ

l∗
m
j

}
for all j ∈ J.

Proof. The proof of Lemma 3.3 is similar to Lemma 4.2 in Fukagai, Ito and Narukawa [5], we
omit the details here.

Lemma 3.4. Assume that (φ1)–(φ3) and ( f1)–( f2) hold. For a given 0 < λ < ∞, let {un} ⊂
W1,Φ

0 (Ω) be a Palais–Smale sequence of Iλ. Considering J given by Lemma 3.3, then for each j ∈ J, we
have either νj = 0 or

νj ≥ min


(

l
λSl

4

) l∗
l∗−l

,
(

l
λSm

4

) l∗
l∗−m

 .

Proof. Let us first define ψ ∈ C∞
0 (RN) such that ψ(x) = 1 in B(0, 1

2 ), supp(ψ) ⊂ B(0, 1) and
0 ≤ ψ(x) ≤ 1, ∀x ∈ RN . For each j ∈ J and ε > 0, let us define

ψε(x) = ψ

(
x− xj

ε

)
, ∀x ∈ RN .
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Then {unψε(x)} ⊂ W1,Φ
0 (Ω) is bounded in W1,Φ

0 (Ω). From the fact that I′λ(un)→ 0, it follows
that

〈I′λ(un), unψε〉 = on(1),

i.e., ∫
Ω

φ(|∇un|)∇un∇(unψε) = λ
∫

Ω
|un|l

∗
ψεdx +

∫
Ω

f (x, un)unψεdx + on(1). (3.10)

By (φ3)′′, we obtain∫
Ω

φ(|∇un|)∇un∇(unψε)dx =
∫

Ω
φ(|∇un|)|∇un|2ψεdx +

∫
Ω

φ(|∇un|)(∇un∇ψε)undx

≥ l
∫

Ω
Φ(|∇un|)ψεdx +

∫
Ω

φ(|∇un|)(∇un∇ψε)undx.
(3.11)

It is obvious that

l
∫

Ω
Φ(|∇un|)ψεdx +

∫
Ω

φ(|∇un|)(∇un∇ψε)undx

≤ λ
∫

Ω
|un|l

∗
ψεdx +

∫
Ω

f (x, un)unψεdx + on(1).
(3.12)

On the one hand, by Lemma 3.1, we know that the Palais–Smale sequence {un} ⊂W1,Φ
0 (Ω)

of Iλ is bounded. Taking a subsequence of {un} if necessary, we may suppose that

un ⇀ u in W1,Φ
0 (Ω), (3.13)

un → u in LΦ(Ω), (3.14)

un → u a.e. in Ω. (3.15)

Moreover, from (2.3), (2.10) and (2.11) it is easy to see that∫
Ω

Φ̃(φ(|∇un|)∇un)dx ≤
∫

Ω
Φ(2|∇un|)dx ≤ η2(2)

∫
Ω

Φ(|∇un|)dx ≤ η2(2)η2(‖un‖).

Clearly, the sequence {φ(|∇un|)∇un} is bounded in LΦ̃(Ω). Thus, there exists a subsequence
{un} such that for some ω̃1 ∈ LΦ̃(Ω, RN)

φ(|∇un|)∇un ⇀ ω̃1 in LΦ̃(Ω, RN). (3.16)

Therefore, since supp(∇ψε) ⊂ B(xj, ε), (3.14) and (3.16), we have

lim
n→∞

∫
Ω

φ(|∇un|)(∇un∇ψε)undx =
∫

Ω
(ω̃1∇ψε)udx. (3.17)

On the other hand, we will prove

lim
n→∞

∫
Ω

f (x, un)unψεdx =
∫

Ω
f (x, u)uψεdx. (3.18)

First, we show the following claim.

Claim 1 : { f (x, un)} is bounded in LΦ̃∗
(Ω).

In fact, from (2.12), (3.5), Corollary 3.2, 42-condition and the convexity of Φ̃∗, there exist
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constants C9, C10 > 0 such that∫
Ω

Φ̃∗( f (x, un))dx ≤ C9

∫
Ω

Φ̃∗(|un|l
∗−1)dx + C10

∫
Ω

Φ̃∗(Cε)dx

≤ C9Φ̃∗(1)
∫
{x∈Ω;|un|≥1}

|un|(l
∗−1)l̃∗dx + C9

∫
{x∈Ω;|un|<1}

Φ̃∗(1)dx

+ C10

∫
Ω

Φ̃∗(Cε)dx

≤ C9Φ̃∗(1)
∫

Ω
|un|l

∗
dx + C9

∫
Ω

Φ̃∗(1)dx + C10

∫
Ω

Φ̃∗(Cε)dx

< ∞.

Therefore, the claim is proved.
By (3.5), (3.13)–(3.15) and Claim 1, we are now in a position to obtain (3.18).
Now, according to (3.8), (3.9), (3.17), (3.18) and letting n→ ∞ in (3.12), it follows that

l
∫

Ω
ψεdµ +

∫
Ω
(ω̃1∇ψε)udx ≤ λ

∫
Ω

ψεdν +
∫

Ω
f (x, u)uψεdx. (3.19)

Next, we will prove that the second term of the left-hand side converges 0 as ε→ 0.
By I′λ(un)→ 0, we have for any v ∈W1,Φ

0 (Ω)

〈I′λ(un), v〉 =
∫

Ω
(φ(|∇un|)∇un∇v− λ|un|l

∗−2unv− f (x, un)v)dx = on(1). (3.20)

Moreover, from Claim 1, there is a subsequence {un} such that

λ|un|l
∗−1 + f (x, un) ⇀ ω̃2 in LΦ̃∗

(Ω), (3.21)

for some ω̃2 ∈ LΦ̃∗
(Ω). Hence, by (3.16), (3.20) and (3.21), we conclude∫

Ω
(ω̃1∇v− ω̃2v)dx = 0,

for any v ∈W1,Φ
0 (Ω). Substituting v = uψε, we have∫

Ω
(ω̃1∇(uψε)− ω̃2uψε)dx = 0,

i.e., ∫
Ω
(ω̃1∇ψε)udx = −

∫
Ω
(ω̃1∇u− ω̃2u)ψεdx.

Noting ω̃1∇u− ω̃2u ∈ L1(Ω), we see that the right-hand side tends to 0 as ε→ 0. Evidently,

lim
ε→0

∫
Ω
(ω̃1∇ψε)udx = 0. (3.22)

Furthermore, by (3.5) and Lemma 3.1, we have∫
Ω
| f (x, u)u|dx ≤ Cε

∫
Ω
|u|dx + ε

∫
Ω
|u|l∗dx ≤ Cε‖u‖L1(Ω) + εS4‖u‖l∗ < ∞.

This implies that

lim
ε→0

∫
Ω

f (x, u)uψεdx = 0. (3.23)
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Consequently, by (3.22) and (3.23), letting ε→ 0 in (3.19), we obtain for each j ∈ J

lµj ≤ λνj.

By Lemma 3.3, we get

min{S−l∗ l
4 νl

j , S−l∗m
4 νm

j } ≤ µl∗
j ≤

(
λ

l

)l∗

νl∗
j ,

i.e., νj = 0 or

νj ≥ min


(

l
λSl

4

) l∗
l∗−l

,
(

l
λSm

4

) l∗
l∗−m

 .

Lemma 3.5. Assume that (φ1)–(φ3) and ( f1)–( f2) hold. Let {un} ⊂ W1,Φ
0 (Ω) be a (PS)c sequence

of Iλ. Then, given M > 0, there exists λ∗ > 0 such that Iλ satisfies (PS)c condition for all 0 < c < M,
provided 0 < λ < λ∗.

Proof. Since {un} is a (PS)c sequence of Iλ and 0 < c < M, taking n→ ∞ in (3.1), we obtain

λ

(
1
θ
− 1

l∗

) ∫
Ω

dν ≤ c + C1|Ω|+ C0|Ω|1−
σ
l∗

(∫
Ω

dν

) σ
l∗

< M + C1|Ω|+ C0|Ω|1−
σ
l∗

(∫
Ω

dν

) σ
l∗

.

(3.24)

Therefore, if we choose

λ∗ = min

lS−
1
l

4 , lS−
1
m

4 ,
(

d1

M + d2

) l∗−l
l−σ

S
− l(l∗−σ)

l−σ

4 ,
(

d1

M + d2

) l∗−m
m−σ

S
−m(l∗−σ)

m−σ

4

 ,

where d1 = l
l∗−σ
l−σ ( 1

θ −
1
l∗ )

l∗−l
l−σ and d2 = C1|Ω|+ C0|Ω|1−

σ
l∗ , then we have from (3.24)

∫
Ω

dν < min


(

l
λSl

4

) l∗
l∗−l

,
(

l
λSm

4

) l∗
l∗−m

 , (3.25)

for all 0 < λ < λ∗.
As a consequence of this fact and Lemma 3.4, we conclude that for each j ∈ J, νj = 0 and

lim
n→∞

∫
Ω
|un|l

∗
dx =

∫
Ω
|u|l∗dx.

Thus, there exists u ∈W1,Φ
0 (Ω) such that, up to subsequence,

un → u in Ll∗(Ω). (3.26)

Next, from 〈I′λ(un), (un − u)〉 = on(1), we have

lim
n→∞

∫
Ω
(φ(|∇un|)∇un∇(un − u)− λ|un|l

∗−2un(un − u)− f (x, un)(un − u))dx = 0. (3.27)

Hence, we can derive from (3.13)–(3.15), (3.18), (3.26) and (3.27) that

lim
n→∞

∫
Ω

φ(|∇un|)∇un∇(un − u)dx = 0.

Moreover, by (3.13) and Lemma 5 in [8], we conclude that

un → u in W1,Φ
0 (Ω).
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4 Proof of Theorem 1.2

In order to verify Theorem 1.2, we need to prove that Lemma 2.6 is applicable in our situation,
namely the functional Iλ on W1,Φ

0 (Ω) satisfies the hypotheses (I1) and (I2).
First, since E = W1,Φ

0 (Ω) is a separable and reflexive Banach space, then there exist a
Schauder basis {ei}i∈N ⊂ E and {e∗j }j∈N ⊂ E∗ such that

(ei, e∗j ) = δij =

{
1, i = j,

0, i 6= j,

and
E = span{ei|i ∈N}, E∗ = span{e∗j |j ∈N}.

Now, fixing a Schauder basis {ei}i∈N of W1,Φ
0 (Ω), we set

Xk := span{e1, · · · , ek}, Yk :=
k⋂

j=1

Ker e∗j , (4.1)

in such way that E = W1,Φ
0 (Ω) = Xk ⊕Yk, for k ∈N.

Lemma 4.1. Assume that (φ1)–(φ3) hold. If Φ ≤ Ψ� Φ∗, setting

Sk,Ψ := sup{‖u‖LΨ(Ω) : ‖u‖ = 1, u ∈ Yk, k ∈N},

then limk→∞ Sk,Ψ = 0.

Proof. It is clear that 0 ≤ Sk+1,Ψ ≤ Sk,Ψ. Thus we have Sk,Ψ → SΨ ≥ 0, as k → ∞. And for
every k ≥ 0, there exists uk ∈ Yk such that ‖uk‖ = 1 and

‖uk‖LΨ(Ω) >
Sk,Ψ

2
. (4.2)

By definition of Yk, uk ⇀ 0 in W1,Φ
0 (Ω), as k → ∞. By (2.4), we have uk → 0 in LΨ(Ω),

as k→ ∞. Using (4.2), we obtain Sk,Ψ → 0, as k→ ∞. Hence we have proved that SΨ = 0.

Lemma 4.2. Assume that (φ1)–(φ3) and ( f1)–( f3) hold. Then there exist constants k, ρ, λ̃ > 0
and α > 0, such that for any u ∈ Yk with ‖u‖ = ρ and 0 < λ < λ̃,

Iλ|∂Bρ∩Yk ≥ α.

Proof. From ( f3), (2.9), (2.11) and Hölder’s inequality, there exists a constant S4 > 0 such that

Iλ(u) =
∫

Ω

(
Φ(|∇u|)− λ

l∗
|u|l∗ − F(x, u)

)
dx

≥ η1(‖u‖)−
λ

l∗
Sl∗

4 ‖u‖l∗ − C2

∫
Ω
|u|τdx− C3|Ω|

≥ η1(‖u‖)−
λ

l∗
Sl∗

4 ‖u‖l∗ − C2|Ω|1−
τ
l∗ ‖u‖τ

Ll∗ (Ω)
− C3|Ω|.

(4.3)
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By (2.7), Lemma 3.5 and Lemma 4.1, considering Sk,Φ∗ to be chosen posteriorly, for all u ∈ Yk
and ‖u‖ = ρ > 1, we have

Iλ(u) ≥ η1(‖u‖)−
λ

l∗
Sl∗

4 ‖u‖l∗ − C2|Ω|1−
τ
l∗ Sτ

3‖u‖τ
LΦ∗ (Ω) − C3|Ω|

≥ ρl − λ

l∗
Sl∗

4 ρl∗ − C2|Ω|1−
τ
l∗ Sτ

3 Sτ
k,Φ∗ρ

τ − C3|Ω|

≥ ρl(1− C2|Ω|1−
τ
l∗ Sτ

3 Sτ
k,Φ∗ρ

τ−l)− C3|Ω| −
λ

l∗
Sl∗

4 ρl∗ .

Now, by Lemma 4.1 again and taking k sufficiently large, there exists sufficiently small Sk,Φ∗
such that C2|Ω|1−

τ
l∗ Sτ

3 Sτ
k,Φ∗ρ

τ−l ≤ 1
2 , 1

2 ρl − C3|Ω| ≥ 1
4 ρl and ρ = ρ(Sk,Φ∗) > 1.

Consequently, for every u ∈ Yk with ‖u‖ = ρ > 1 and k sufficiently large, there exist
sufficiently small λ̃ > 0 and a constant α > 0 such that

Iλ(u) ≥
1
4

ρl − λ

l∗
Sl∗

4 ρl∗ > α > 0

for 0 < λ < λ̃. Hence, we complete the proof of Lemma 4.2.

Lemma 4.3. Assume that (φ1)–(φ3) and ( f4) hold. Then for given q ∈N, there exist a subspace W of
W1,Φ

0 (Ω) and a constant Mq > 0, independent of λ, such that dim W = q and maxu∈W Iλ(u) < Mq.

Proof. First, from ( f4), let x0 ∈ Ω0 and r0 > 0 be such that B(x0, r0) ⊂ Ω0 and 0 < |B(x0, r0)| <
|Ω0|

2 . We take u1 ∈ C∞
0 (Ω) with supp(u1) = B(x0, r0). Considering Ω1 := Ω0 \ B(x0, r0),

we have |Ω1| > |Ω0|
2 > 0. Next, let x1 ∈ Ω1 and r1 > 0 be such that B(x1, r1) ⊂ Ω1 and

0 < |B(x1, r1)| < |Ω1|
2 . We take u2 ∈ C∞

0 (Ω) with supp(u2) = B(x1, r1). After a finite number
of steps, we get u1, u2, . . . , uq such that supp(ui) ∩ supp(uj) = ∅ and |supp(ui)| > 0, for all i,
j ∈ {1, 2, . . . , q} and i 6= j.

Let W = span{u1, u2, . . . , uq}. For every u ∈W \ {0}, we have
∫

Ω0
|u|mdx > 0, u = tuv = tv

and v ∈ ∂B(0, 1) ∩W. By (2.10) and (2.11), we obtain

max
u∈W\{0}

Iλ(u) = max
v∈∂B(0,1)∩W

t>0

∫
Ω

(
Φ(t|∇v|)− λ

l∗
|tv|l∗ − F(x, tv)

)
dx

≤ max
v∈∂B(0,1)∩W

t>0

(
η2(t)

∫
Ω

Φ(|∇v|)dx−
∫

Ω
F(x, tv)dx

)

≤ max
v∈∂B(0,1)∩W

t>0

(
η2(t)η2(‖v‖)−

∫
Ω

F(x, tv)dx
)

= max
v∈∂B(0,1)∩W

t>0

(
η2(t)

(
1− 1

η2(t)

∫
Ω

F(x, tv)dx
))

.

(4.4)

Next, in order to prove the lemma, it suffices to show that

lim
|t|→∞

1
|t|m

∫
Ω

F(x, tv)dx > 1 (4.5)

uniformly for v ∈ ∂B(0, 1) ∩W.
In fact, by ( f4), for some positive constant K, there is a constant CK > 0 such that

F(x, s) ≥ K|s|m − CK,
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for any x ∈ Ω0 and every s ∈ R. Evidently, for t > 0 and v ∈ ∂B(0, 1)∩W with
∫

Ω0
|v|mdx > 0,

we have ∫
Ω

F(x, tv)dx =
∫

Ω0

F(x, tv)dx ≥ Ktm
∫

Ω0

|v|mdx− CK|Ω0|.

Moreover, since W is finite dimensional, there exist constants a1, a2 > 0 such that for any
v ∈ ∂B(0, 1) ∩W

a1 ≤ ‖v‖Lm(Ω0) ≤ a2.

It is easy to see that ∫
Ω

F(x, tv)dx ≥ Ktmam
1 − CK|Ω0| (4.6)

and

lim
|t|→∞

1
|t|m

∫
Ω

F(x, tv)dx ≥ Kam
1 .

This implies that the inequality (4.5) is obtained by taking K > 1
am

1
.

Furthermore, by (4.4) and (4.6), we have

max
v∈∂B(0,1)∩W

t>0

Iλ(tv) ≤ max
v∈∂B(0,1)∩W

t>0

(
η2(t)η2(‖v‖)−

∫
Ω

F(x, tv)dx
)

≤ max
t>0

(η2(t)− K|t|mam
1 + CK|Ω0|).

Hence we obtain
lim
|t|→0

Iλ(tv) ≤ CK|Ω0|

uniformly for v ∈ ∂B(0, 1) ∩W.
Therefore, for given q ∈ N, there exists a constant Mq > 0, independent of λ, such that

maxu∈Wq Iλ(u) < Mq.

Proof of Theorem 1.2. Firstly, we will apply Lemma 2.6. We recall that W1,Φ
0 (Ω) = Xk ⊕ Yk,

where Xk and Yk are defined in (4.1). Invoking Lemma 4.2, there exist k ∈ N and λ̃ > 0 such
that for all 0 < λ < λ̃, Iλ satisfies (I1). Secondly, by Lemma 4.3 we obtain Wi+k ⊂ W1,Φ

0 (Ω)

with dimWi+k = i + k = i + dimXk(i ∈ N) and such that for all 0 < λ < λ̃, Iλ satisfies
(I2). Thirdly, by Lemma 3.5, denoting λi = min{λ̃, λ∗}, we have that for all 0 < λ < λi, Iλ

satisfies (I3). Consequently, by ( f5), we have Iλ(0) = 0 and Iλ(u) is even. Hence, we can apply
Lemma 2.6 to conclude that Iλ possesses at least i pairs of nontrivial solutions for λi > 0.
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