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Abstract. In this paper, we consider the following nonhomogeneous Klein–Gordon–
Maxwell system{

−∆u + V(x)u− (2ω + φ)φu = f (x, u) + h(x), x ∈ R3,
∆φ = (ω + φ)u2, x ∈ R3,

where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth
at infinity. The nonlinearity considered here is weaker than the local (AR) condition
and the (Je) condition of Jeanjean. The existence of two solutions is proved by the
Mountain Pass Theorem and Ekeland’s variational principle.
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1 Introduction and main results

In this paper we consider the following nonhomogeneous Klein–Gordon–Maxwell system{
−∆u + V(x)u− (2ω + φ)φu = f (x, u) + h(x), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,
(KGM)

where ω > 0 is a constant. We are interested in the existence of two nontrivial solutions
for system (KGM) under more general nonlinearity f , which doesn’t satisfy the (local) (AR)
condition or the (Je) condition of Jeanjean.

It is well known that such system has been firstly studied by Benci and Fortunato [5] as a
model which describes nonlinear Klein–Gordon fields in three dimensional space interacting
with the electrostatic field. For more details on the physical aspects of the problem we refer
the readers to see [6] and the references therein. The case of h ≡ 0, that is the homogeneous
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case, has been widely studied in recent years. In 2002, Benci and Fortunato [6] considered for
the following Klein–Gordon–Maxwell system{

−∆u + [m2 − (ω + φ)2]φu = f (x, u), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,
(1.1)

for the pure power of nonlinearity, i.e., f (x, u) = |u|q−2u, where ω and m are constants. By
using a version of the mountain pass theorem, they proved that (1.1) has infinitely many
radially symmetric solutions under |m| > |ω| and 4 < q < 6. In [16], D’Aprile and Mugnai

covered the case 2 < q < 4 assuming
√

q−2
2 m > ω > 0. Later, the authors in [3] gave a small

improvement with 2 < q < 4. Azzollini and Pomponio [2] obtained the existence of a ground
state solution for (1.1) under one of the conditions

(i) 4 ≤ q < 6 and m > ω;

(ii) 2 < q < 4 and m
√

q− 2 > ω
√

6− q.

Soon afterwards, it is improved by Wang [25]. Motivated by the methods of Benci and For-
tunato, Cassani [8] considered (1.1) for the critical case by adding a lower order perturbation:{

−∆u + [m2 − (ω + φ)2]φu = µ|u|q−2u + |u|2∗−2u, x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,
(1.2)

where µ > 0 and 2∗ = 6. He showed that (1.2) has at least a radially symmetric solution
under one of the following conditions:

(i) 4 < q < 6, |m| > |ω| and µ > 0;

(ii) q = 4, |m| > |ω| and µ is sufficiently large.

It is improved by the result in [9] provided one of the following conditions is satisfied:

(i) 4 < q < 6, |m| > |ω| > 0 and µ > 0;

(ii) q = 4, |m| > |ω| > 0 and µ is sufficiently large;

(iii) 2 < q < 4, |m|
√

q−2
2 > |ω| > 0 and µ is sufficiently large.

Subsequently, Wang [24] generalized the result of [9]. Recently, the authors in [10] proved
the existence of positive ground state solutions for the problem (1.2) with a periodic potential
V, that is, {

−∆u + V(x)u + [m2 − (ω + φ)2]φu = µ|u|q−2u + |u|2∗−2u, x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3.

In [20], Georgiev and Visciglia introduced a system like homogeneous (KGM) with potentials,
however they considered a small external Coulomb potential in the corresponding Lagrangian
density. Cunha [14] considered the existence of positive ground state solutions for (KGM) with
periodic potential V(x). Other related results about homogeneous Klein–Gordon–Maxwell
system can be found in [15, 17–19, 23].

Next, we consider the nonhomogeneous case, that is h 6≡ 0. In [12], Chen and Song proved
that (KGM) had two nontrivial solutions if f (x, t) satisfies the local (AR) condition:
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(CS) There exist µ > 2 and r0 > 0 such that F (x, t) := 1
µ f (x, t)t− F(x, t) ≥ 0 for every x ∈ R3

and |t| ≥ r0, where F(x, t) =
∫ t

0 f (x, s)ds.

Xu and Chen [26] studied the existence and multiplicity of solutions for system (KGM) for
the pure power of nonlinearity with f (x, u) = |u|q−2u. They also assumed that V(x) ≡ 1 and
h(x) is radially symmetric. For more results on the nonhomogeneous case see [11] and the
references therein.

Motivated by above works, in the present paper we consider system (KGM) with more
general assumptions on f and without any radially symmetric assumptions on f and h. More
precisely, we assume

(V) V ∈ C(R3, R) satisfies V0 = infx∈R3 V(x) > 0. Moreover, for every M > 0, meas{x ∈ R3 :
V(x) ≤ M} < +∞, where meas denotes the Lebesgue measures;

( f1) f ∈ C(R3 ×R, R) and there exist C1 > 0 and p ∈ (2, 6) such that

| f (x, t)| ≤ C1(|t|+ |t|p−1);

( f2) f (x, t) = o(t) uniformly in x as |t| → 0;

( f3) There exist θ > 2 and D1, D2 > 0 such that F(x, t) ≥ D1|t|θ − D2, for a.e. x ∈ R3 and
every t sufficiently large;

( f4) There exist C2, r0 are two positive constants and µ > 2 such that

F (x, t) :=
1
µ

f (x, t)t− F(x, t) ≥ −C2|t|2, |t| ≥ r0;

(H) h ∈ L2(R3), h(x) ≥ 0, h(x) 6≡ 0.

Before giving our main results, we give some notations. Let H1(R3) be the usual Sobolev
space endowed with the standard scalar and norm

(u, v)H =
∫

R3
(∇u∇v + uv)dx; ‖u‖2

H =
∫

R3
(|∇u|2 + |u|2)dx.

D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm

‖u‖2
D := ‖u‖2

D1,2(R3) =
∫

R3
|∇u|2dx.

The norm on Ls = Ls(R3) with 1 < s < ∞ is given by |u|ss =
∫

R3 |u|sdx.
Under condition (V), we define a new Hilbert space

E :=
{

u ∈ H1(R3) :
∫

R3
(|∇u|2 + V(x)u2)dx < ∞

}
with the inner product

〈u, v〉 =
∫

R3
(∇u · ∇v + V(x)uv) dx
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and the norm ‖u‖ = 〈u, u〉1/2. Obviously, the embedding E ↪→ Ls(R3) is continuous, for any
s ∈ [2, 2∗]. Consequently, for each s ∈ [2, 6], there exists a constant ds > 0 such that

|u|s ≤ ds‖u‖, ∀u ∈ E. (1.3)

Furthermore, it follows from the condition (V) that the embedding E ↪→ Ls(R3) is compact
for any s ∈ [2, 6) (see [4]).

System (KGM) has a variational structure. In fact, we consider the functional J : E ×
D1,2(R3)→ R defined by

J (u, φ) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx− 1

2

∫
R3
|∇φ|2dx− 1

2

∫
R3
(2ω + φ)φu2dx

−
∫

R3
F(x, u)dx−

∫
R3

h(x)udx.

The solutions (u, φ) ∈ E × D1,2(R3) of system (KGM) are the critical points of J . As it is
pointed in [12], the functional J is strongly indefinite and is difficult to investigate. By using
the reduction method described in [7], we are led to the study of a new functional I(u) (I(u)
is defined in (2.1)) which does not present such strongly indefinite nature.

Now we can state our main result.

Theorem 1.1. Suppose (V), ( f1)–( f4) and (H) hold. Then there exists a positive constant m0 such
that system (KGM) admits at least two different solutions u0, ũ0 in E satisfying I(u0) < 0 and
I(ũ0) > 0 if |h|2 < m0.

Remark 1.2. It is well known that, the (AR) condition is employed not only to prove that the
Euler–Lagrange function associated has a mountain pass geometry, but also to guarantee that
the Palais–Smale sequences, or Cerami sequences are bounded.

Compared with the local (AR) condition (CS), in our paper F (x, t) may have negative
values.

Another widely used condition is the following condition introduced by Jeanjean [22].

(Je) There exists θ ≥ 1 such that θF1(x, t) ≥ F1(x, st) for all s ∈ [0, 1] and t ∈ R, where
F1(x, t) := 1

4 f (x, t)t− F(x, t).

We can observe that when s = 0, then F1(x, t) ≥ 0, but for our condition ( f4), F (x, t) may
assume negative values.

In [1,13], the authors studied the Schrödinger–Poisson equation by assuming the following
global condition to replace the (AR) condition:

(ASS) There exists 0 ≤ β < α such that t f (t) − 4F(t) ≥ −βt2, for all t ∈ R, where α is a
positive constant such that α ≤ V(x).

Notice that we only need the local condition ( f4) in order to get nontrivial solutions.
In [23], Li and Tang used the following condition to get infinitely many solutions for

homogeneous system (KGM):

(LT) There exist two positive constants D3 and r0 such that 1
4 f (x, t)t− F(x, t) ≥ −D3|t|2, if

|t| ≥ r0.
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Obviously, our condition ( f4) is weaker than (LT). Therefore, it is interesting to consider
the nonhomogeneous system (KGM) under the conditions ( f3) and ( f4).

Remark 1.3. As it is pointed in [14], many technical difficulties arise to the presence of a non-
local term φ, which is not homogeneous as it is in the Schrödinger–Poisson systems. Hence, a
more careful analysis of the interaction between the couple (u, φ) is required.

Throughout this paper, letters Ci, di, Li, Mi, i = 1, 2, 3 . . . will be used to denote various
positive constants which may vary from line to line and are not essential to the problem. We
denote the weak convergence by “⇀” and the strong convergence by “→”. Also if we take a
subsequence of a sequence {un}, we shall denote it again by {un}.

The paper is organized as follows. In Section 2, we will introduce the variational setting
for the problem and give some related preliminaries. We give the proof of our main result in
Section 3.

2 Variational setting and compactness condition

By [3], we know that the signs of ω is not relevant for the existence of solutions, so we can
assume that ω > 0.

Evidently, the properties of φu plays an important role in the study of J . So we need the
following technical results.

Proposition 2.1. For any u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3) which satisfies

∆φ = (φ + ω)u2 in R3.

Moreover, the map Φ : u ∈ H1(R3) 7→ φu ∈ D1,2(R3) is continuously differentiable, and

(i) −ω ≤ φu ≤ 0 on the set {x ∈ R3|u(x) 6= 0};

(ii) ‖φu‖2
D ≤ C‖u‖2 and

∫
R3 φuu2dx ≤ C|u|412/5 ≤ C‖u‖4.

The proof is similar to Proposition 2.1 in [21] by using the fact E ↪→ Ls(R3), for any
s ∈ [2, 6] is continuous.

Multiplying −4φu + φuu2 = −ωu2 by φu and integration by parts, we obtain∫
R3
(|∇φu|2 + φ2

uu2)dx = −
∫

R3
ωφuu2dx.

By the above equality and the definition of J , we obtain a C1 functional I : E→ R given by

I(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx− 1

2

∫
R3

ωφuu2dx−
∫

R3
F(x, u)dx−

∫
R3

h(x)udx (2.1)

and its Gateaux derivative is

〈I′(u), v〉 =
∫

R3
(∇u · ∇v + V(x)uv)dx−

∫
R3
(2ω + φu)φuuvdx−

∫
R3

f (x, u)vdx−
∫

R3
h(x)vdx

for all v ∈ E. Here we use the fact that (4− u2)−1[ωu2] = φu.
Now we will prove the function I has the mountain pass geometry.

Lemma 2.2. Let h ∈ L2(R3). Suppose (V), ( f1) and ( f2) hold. Then there exist some positive
constants ρ, α, m0 such that I(u) ≥ α for all u ∈ E satisfying ‖u‖ = ρ and h satisfying |h|2 < m0.
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Proof. By ( f2), for any ε > 0, there exists δ > 0 such that | f (x, t)| ≤ ε|t| for all x ∈ R3 and
|t| ≤ δ. By ( f1), we obtain

| f (x, t)| ≤ C1(|t|+ |t|p−1) ≤ C1

(
|t|| t

δ
|p−2 + |t|p−1

)
= C1

(
1

δp−2 + 1
)
|t|p−1, for |t| ≥ δ, a.e. x ∈ R3.

Then for all t ∈ R and a.e. x ∈ R3 we have

| f (x, t)| ≤ ε|t|+ C1

(
1

δp−2 + 1
)
|t|p−1 =: ε|t|+ Cε|t|p−1

and

|F(x, t)| ≤ ε

2
|t|2 + Cε

p
|t|p. (2.2)

Therefore, due to (2.2), Proposition 2.1 and the Hölder inequality, we obtain

I(u) ≥ 1
2
‖u‖2 − ε

2

∫
R3
|u|2dx− Cε

p

∫
R3
|u|pdx− |h|2|u|2

≥ 1
2
‖u‖2 − ε

2
d2

2‖u‖2 − Cε

p
dp

p‖u‖p − d2|h|2‖u‖

= ‖u‖
{(

1
2
− ε

2
d2

2

)
‖u‖ − Cε

p
dp

p‖u‖p−1 − d2|h|2
}

.

Let ε = 1
2d2

2
and g(t) = t

4 −
Cε
p dp

ptp−1 for t ≥ 0. Because 2 < p < 6, we can see that there

exists a positive constant ρ such that m̃0 := g(ρ) = maxt≥0 g(t) > 0. Taking m0 := 1
2d2

2
m̃0, then

it follows that there exists a positive constant α such that I(u)|‖u‖=ρ ≥ α for all h satisfying
|h|2 < m0. The proof is complete.

Lemma 2.3. Assume that (V), ( f1)–( f4) are satisfied, then there exists a function u0 ∈ E with
‖u0‖ > ρ such that I(u0) < 0, where ρ is given in Lemma 2.2.

Proof. By ( f3), there exist L1 > 0 large enough and M1 > 0, such that

F(x, t) ≥ M1|t|θ , for |t| ≥ L1. (2.3)

By (2.2), we get that

|F(x, t)| ≤ C3(1 + |t|p−2)|t|2, where C3 = max
{

ε

2
,

Cε

p

}
, (2.4)

and then

|F(x, t)| ≤ C3(1 + Lp−2
1 )|t|2, when |t| ≤ L1. (2.5)

By (2.3) and (2.5), we have

F(x, t) ≥ M1|t|θ −M2|t|2, for all t ∈ R, (2.6)

where M2 = M1Lθ−2
1 + C3(1 + Lp−2

1 ).
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Thus, by Proposition 2.1, taking u ∈ E, u 6= 0 and t > 0 we have

I(tu) =
t2

2
‖u‖2 − t2

2

∫
R3

ωφtuu2dx−
∫

R3
F(x, tu)dx− t

∫
R3

h(x)udx

≤ t2

2
‖u‖2 +

t2

2

∫
R3

ω2u2dx−M1tθ
∫

R3
|u|θdx + M2t2

∫
R3

u2dx− t
∫

R3
h(x)udx,

thus I(tu)→ −∞ as t→ +∞ and θ > 2. The lemma is proved by taking u0 = t0u with t0 > 0
large enough and u 6= 0.

Lemma 2.4. Under assumptions (V), ( f1)–( f4) and (H), any sequence {un} ⊂ E satisfying

I(un)→ c > 0, 〈I′(un), un〉 → 0

is bounded in E. Moreover, {un} has a strongly convergent subsequence in E.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that, up to sub-
sequences, we have ‖un‖ → +∞ as n → +∞. Let vn = un

‖un‖ , then {vn} is bounded. Going if
necessary to a subsequence, for some v ∈ E, we obtain that

vn ⇀ v in E,

vn → v in Ls, 2 ≤ s < 6,

vn(x)→ v(x) a.e. in R3.

Let Λ = {x ∈ R3 : v(x) 6= 0}. Suppose that meas(Λ) > 0, then |un(x)| → +∞ as n → ∞ for
a.e. x ∈ Λ. By (1.3) and (2.6), we obtain

∫
R3

F(x, un)

‖un‖θ
dx ≥ M1

∫
R3
|vn|θdx−M2

|un|2
‖un‖θ

≥ M1

∫
R3
|vn|θdx− M2d2

2
‖un‖θ−2 → M1

∫
Λ
|v|θdx > 0 as n→ ∞. (2.7)

By Proposition 2.1, as from (2.4) and (2.6) it follows that 2 < θ ≤ p < 6, so we can obtain that∣∣∣∣∫
R3

ωφun u2
n

‖un‖θ
dx
∣∣∣∣ ≤ ω2|un|22

‖un‖θ
≤ ω2d2

2
‖un‖θ−2 → 0 as n→ ∞.

Since h ∈ L2(R3), we can obtain that∣∣∣∣∫
R3

h(x)un

‖un‖θ
dx
∣∣∣∣ ≤ |h|2|un|2

‖un‖θ
≤ |h|2d2

‖un‖θ−1 → 0 as n→ ∞.

By the definition of I, we have

0 = lim
n→+∞

I(un)

‖un‖θ

= lim
n→+∞

[
1

2‖un‖θ−2 −
∫

R3

ωφun u2
n

2‖un‖θ
dx−

∫
R3

F(x, un)

‖un‖θ
dx−

∫
R3

h(x)un

‖un‖θ
dx
]

< 0,
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which is a contradiction. Therefore, meas(Λ) = 0, which implies v(x) = 0 for almost every
x ∈ R3. By ( f1) and (2.4), we have for all x ∈ R3 and |t| ≤ r0,

| f (x, t)t− µF(x, t)| ≤ | f (x, t)t|+ µ|F(x, t)|
≤ C1(|t|2 + |t|p) + µC3(1 + |t|p−2)t2 ≤ C6(1 + |t|p−2)t2

≤ C6(1 + rp−2
0 )t2,

where C6 := 2 max{C1, µC3}. Together with ( f4), we obtain

f (x, t)t− µF(x, t) ≥ −C7t2, for all (x, t) ∈ R3 ×R. (2.8)

By h ∈ L2(R3), we can also obtain the following∣∣∣∣∫
R3

h(x)un

‖un‖2 dx
∣∣∣∣ ≤ |h|2|un|2

‖un‖2 ≤ |h|2d2

‖un‖
→ 0 as n→ ∞. (2.9)

Case i. 2 < µ < 4. By (2.8), (2.9), Proposition 2.1 and 2 < µ < 4, we have

µI(un)− 〈I′(un), un〉
‖un‖2

=
(µ

2
− 1
)
+
∫

R3

f (x, un)un − µF(x, un)

‖un‖2 dx +
(

2− µ

2

) ∫
R3

ωφun u2
n

‖un‖2 dx

+
∫

R3

φ2
un

u2
n

‖un‖2 dx + (1− µ)
∫

R3

h(x)un

‖un‖2 dx

≥
(µ

2
− 1
)
− C7|vn|22 +

(
2− µ

2

) ∫
R3

ωφun u2
n

‖un‖2 dx + (1− µ)
∫

R3

h(x)un

‖un‖2 dx

≥
(µ

2
− 1
)
− C7|vn|22 −

(
2− µ

2

)
ω2|vn|22 + (1− µ)

∫
R3

h(x)un

‖un‖2 dx

→ µ

2
− 1 as n→ ∞.

Then we get 0 ≥ 1
2 −

1
µ , which contradicts with µ > 2.

Case ii. µ ≥ 4. By (2.8), (2.9), Proposition 2.1 and µ ≥ 4, we have

µI(un)− 〈I′(un), un〉
‖un‖2 ≥

(µ

2
− 1
)
− C7|vn|22 +

(
2− µ

2

) ∫
R3

ωφun u2
n

‖un‖2 dx + (1− µ)
∫

R3

h(x)un

‖un‖2 dx

≥
(µ

2
− 1
)
− C7|vn|22 + (1− µ)

∫
R3

h(x)un

‖un‖2 dx

→ µ

2
− 1 as n→ ∞.

Then we have 0 ≥ 1
2 −

1
µ , which contradicts with µ ≥ 4. Therefore {un} is a bounded in E.

Now we shall prove {un} contains a convergent subsequence. Without loss of generality,
passing to a subsequence if necessary, there exists u ∈ E such that un ⇀ u in E. By using the
embedding E ↪→ Ls(R3) are compact for any s ∈ [2, 6), un → u in Ls(R3) for 2 ≤ s < 6 and
un(x)→ u(x) a.e. x ∈ R3. So by (2.2) and the Hölder inequality, we have∫

R3
( f (x, un)− f (x, u))(un − u)dx → 0 as n→ +∞.
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By an easy computing, we can get that

〈I′(un)− I′(u), un − u〉 → 0 as n→ ∞

and ∫
R3
[(2ω + φun)φun un − (2ω + φu)φuu](un − u)dx

= 2ω
∫

R3
[(φun un − φuu)(un − u)dx +

∫
R3
[(φ2

un
un − φ2

uu)(un − u)dx → 0

as n→ +∞. Indeed, by the Hölder inequality, the Sobolev inequality and Proposition 2.1, we
can get ∣∣∣∣∫

R3
(φun − φu)(un − u)undx

∣∣∣∣ ≤ |(φun − φu)(un − u)|2|un|2

≤ |φun − φu|6|un − u|3|un|2
≤ C‖φun − φu‖D|un − u|3|un|2,

where C is a positive constant. Since un → u in Ls(R3) for 2 ≤ s < 6, we get∣∣∣∣∫
R3
(φun − φu)(un − u)undx

∣∣∣∣→ 0 as n→ +∞,

and ∣∣∣∣∫
R3

φu(un − u)(un − u)dx
∣∣∣∣ ≤ |φu|6|un − u|3|un − u|2 → 0 as n→ +∞.

Thus we obtain∫
R3
[(φun un − φuu)(un − u)dx

=
∫

R3
(φun − φu)(un − u)undx +

∫
R3

φu(un − u)(un − u)dx → 0

as n→ +∞.
In view of that the sequence {φ2

un
un} is bounded in L3/2(R3), since

|φ2
un

un|3/2 ≤ |φun |26|un|3,

so ∣∣∣∣∫
R3
[(φ2

un
un − φ2

uu)(un − u)dx
∣∣∣∣ ≤ |φ2

un
un − φ2

uu|3/2|un − u|3

≤ (|φ2
un

un|3/2 + |φ2
uu|3/2)|un − u|3 → 0,

as n→ +∞. Thus, we get

‖un − u‖2 = 〈I′(un)− I′(u), un − u〉 −
∫

R3
[(2ω + φun)φun un − (2ω + φu)φuu](un − u)dx

+
∫

R3
( f (x, un)− f (x, u))(un − u)dx → 0 as n→ +∞.

Therefore we get ‖un − u‖ → 0 in E as n→ ∞. The proof is complete.
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3 Proof of main result

Now, we are ready to prove our main result.

Proof of Theorem 1.1. Firstly, we prove that there exists a function u0 ∈ E such that I′(u0) = 0
and I(u0) < 0.

Since h ∈ L2(R3), h ≥ 0 and h 6≡ 0, we can choose a function ϕ ∈ E such that∫
R3

h(x)ϕ(x)dx > 0.

Hence, by Proposition 2.1, θ > 2 and (2.6), we obtain that

I(tϕ) ≤ t2

2
‖ϕ‖2 +

t2

2

∫
R3

ω2ϕ2dx−M1tθ |ϕ|θθ + M2t2|ϕ|22 − t
∫

R3
h(x)ϕdx < 0.

for t > 0 small enough. Thus, we obtain

c0 = inf{I(u) : u ∈ Bρ} < 0,

where ρ > 0 is given by Lemma 2.1, Bρ = {u ∈ E : ‖u‖ < ρ}. By the Ekeland’s variational
principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ I(un) < c0 +
1
n

,

and
I(v) ≥ I(un)−

1
n
‖v− un‖

for all v ∈ Bρ. Then by a standard procedure, we can prove that {un} is a bounded (PS)
sequence of I. Hence, by Lemma 2.4 we know that there exists a function u0 ∈ E such that
I′(u0) = 0 and I(u0) = c0 < 0.

Secondly, we prove that there exists a function ũ0 ∈ E such that I′(ũ0) = 0 and I(ũ0) > 0.
By Lemma 2.2, Lemma 2.3 and the Mountain Pass Theorem, there is a sequence {un} ⊂ E

such that
I(un)→ c̃0 > 0 and I′(un)→ 0.

In view of Lemma 2.4, we know that {un} has a strongly convergent subsequence (still denoted
by {un}) in E. So there exists a function ũ0 ∈ E such that {un} → ũ0 as n→ ∞ and I′(ũ0) = 0
and I(ũ0) > 0. The proof is complete.

Acknowledgements

Lixia Wang is partially supported by the Postdoctoral Science Foundation of China
(2017M611159) and the National Natural Science Foundation of China (11801400, 11571187).

References

[1] C. O. Alves, M. A. S. Souto, S. H. M. Soares, Schrödinger–Poisson equations without
Ambrosetti–Rabinowitz condition, J. Math. Anal. Appl. 377(2011), No. 2, 584–592. https:
//doi.org/10.1016/j.jmaa.2010.11.031; MR2769159

https://doi.org/10.1016/j.jmaa.2010.11.031
https://doi.org/10.1016/j.jmaa.2010.11.031
https://www.ams.org/mathscinet-getitem?mr=2769159


Two solutions for a nonhomogeneous Klein–Gordon–Maxwell system 11

[2] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Klein–Gordon–
Maxwell equations, Topol. Methods Nonlinear Anal. 35(2010), 33–42. MR2677428

[3] A. Azzollini, L. Pisani, A. Pomponio, Improved estimates and a limit case for the
electrostatic Klein–Gordon–Maxwell system, Proc. Roy. Soc. Edinb. Sect. A 141(2011), No. 3,
449–463. https://doi.org/10.1017/S0308210509001814; MR2805612

[4] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic
problem on RN , Comm. Partial Differential Equations 20(2007), 1725–1741. https://doi.
org/10.1080/03605309508821149; MR1349229

[5] V. Benci, D. Fortunato, The nonlinear Klein–Gordon equation coupled with the
Maxwell equations, Nonlinear Anal. 47(2001), No. 9, 6065–6072. https://doi.org/10.
1016/S0362-546X(01)00688-5; MR1970778

[6] V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled
with the Maxwell equations, Rev. Math. Phys. 14(2002), No. 4, 409–420. https://doi.org/
10.1142/S0129055X02001168; MR1901222

[7] V. Benci, D. Fortunato, A. Masiello, L. Pisani, Solitons and the electromagnetic field,
Math. Z. 232(1999), No. 1, 73–102. https://doi.org/10.1007/PL00004759; MR1714281

[8] D. Cassani, Existence and non-existence of solitary waves for the critical Klein–Gordon
equation coupled with Maxwell’s equations, Nonlinear Anal. 58(2004), No. 7–8, 733–747.
https://doi.org/10.1016/j.na.2003.05.001; MR2085333

[9] P. C. Carrião, P. L. Cunha, O. H. Miyagaki, Existence results for the Klein–
Gordon–Maxwell equations in higher dimensions with critical exponents, Commun.
Pure Appl. Anal. 10(2011), No. 2, 709–718. https://doi.org/10.3934/cpaa.2011.10.709;
MR2754298

[10] P. C. Carrião, P. L. Cunha, O. H. Miyagaki, Positive ground state solutions for the
critical Klein–Gordon–Maxwell system with potentials, Nonlinear Anal. 75(2012), No. 10,
4068–4078. https://doi.org/10.1016/j.na.2012.02.023; MR2914593

[11] S. J. Chen, C. L. Tang, High energy solutions for the superlinear Schrödinger–Maxwell
equations, Nonlinear Anal. 71(2009), No. 10, 4927–4934. https://doi.org/10.1016/j.na.
2009.03.050; MR2548724

[12] S. J. Chen, S. Z. Song, Multiple solutions for nonhomogeneous Klein–Gordon–Maxwell
equations on R3, Nonlinear Anal. Real World Appl. 22(2015), 259–271. https://doi.org/
10.1016/j.nonrwa.2014.09.006; MR3280832

[13] H. Y. Chen, S. B. Liu, Standing waves with large frequency for 4-superlinear Schrödinger–
Poisson systems, Ann. Mat. Pura Appl. (4) 194(2015), No. 1, 43–53. https://doi.org/10.
1007/s10231-013-0363-5; MR3303004

[14] P. Cunha, Subcritical and supercritical Klein–Gordon–Maxwell equations without
Ambrosetti–Rabinowitz condition, Differential Integral Equations 27(2014), No. 3–4, 387–
399. MR3161609

https://www.ams.org/mathscinet-getitem?mr=2677428
https://doi.org/10.1017/S0308210509001814
https://www.ams.org/mathscinet-getitem?mr=2805612
https://doi.org/10.1080/03605309508821149
https://doi.org/10.1080/03605309508821149
https://www.ams.org/mathscinet-getitem?mr=1349229
https://doi.org/10.1016/S0362-546X(01)00688-5
https://doi.org/10.1016/S0362-546X(01)00688-5
https://www.ams.org/mathscinet-getitem?mr=1970778
https://doi.org/10.1142/S0129055X02001168
https://doi.org/10.1142/S0129055X02001168
https://www.ams.org/mathscinet-getitem?mr=1901222
https://doi.org/10.1007/PL00004759
https://www.ams.org/mathscinet-getitem?mr=1714281
https://doi.org/10.1016/j.na.2003.05.001
https://www.ams.org/mathscinet-getitem?mr=2085333
https://doi.org/10.3934/cpaa.2011.10.709
https://www.ams.org/mathscinet-getitem?mr=2754298
https://doi.org/10.1016/j.na.2012.02.023
https://www.ams.org/mathscinet-getitem?mr=2914593
https://doi.org/10.1016/j.na.2009.03.050
https://doi.org/10.1016/j.na.2009.03.050
https://www.ams.org/mathscinet-getitem?mr=2548724
https://doi.org/10.1016/j.nonrwa.2014.09.006
https://doi.org/10.1016/j.nonrwa.2014.09.006
https://www.ams.org/mathscinet-getitem?mr=3280832
https://doi.org/10.1007/s10231-013-0363-5
https://doi.org/10.1007/s10231-013-0363-5
https://www.ams.org/mathscinet-getitem?mr=3303004
https://www.ams.org/mathscinet-getitem?mr=3161609


12 L. Wang

[15] T. D’Aprile, D. Mugnai, Non-existence results for the coupled Klein–Gordon–
Maxwell equations, Adv. Nonlinear Stud. 4(2004), 307–322. https://doi.org/10.1515/
ans-2004-0305; MR2079817

[16] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and
Schröinger–Maxwell equations, Proc. Roy. Soc. Edinb. Sect. A 134(2004), No. 5, 893–906.
https://doi.org/10.1017/S030821050000353X; MR2099569

[17] P. d’Avenia, L. Pisani, G. Siciliano, Dirichlet and Neumann problems for Klein–
Gordon–Maxwell systems, Nonlinear Anal. 71 (2009), No.12, 1985–1995. https://doi.
org/10.1016/j.na.2009.02.111; MR2671970

[18] P. d’Avenia, L. Pisani, G. Siciliano, Klein–Gordon–Maxwell system in a bounded do-
main, Discrete Contin. Dyn. Syst. 26(2010), No. 1, 135–159. https://doi.org/10.3934/
dcds.2010.26.135; MR2552782

[19] L. Ding, L. Li, Infinitely many standing wave solutions for the nonlinear Klein–Gordon–
Maxwell system with sign-changing potential, Comput. Math. Appl. 68(2014), No. 5, 589–
595. https://doi.org/10.1016/j.camwa.2014.07.001; MR3245804

[20] V. Georgiev, N. Visciglia, Solitary waves for Klein–Gordon–Maxwell system with ex-
ternal Coulomb potential, J. Math. Pures Appl. 9(2005), No. 7, 957–983. https://doi.org/
10.1016/j.matpur.2004.09.016; MR2144648

[21] X. M. He, Multiplicity of solutions for a nonlinear Klein–Gordon–Maxwell system, Acta
Appl. Math. 130(2014), No. 1, 237–250. https://doi.org/10.1007/s10440-013-9845-0;
MR3180946

[22] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a
Landesman–Lazer-type problem set on RN , Proc. Roy. Soc. Edinb. Sect. A 129(1999), No. 4,
787–809. https://doi.org/10.1017/S0308210500013147; MR1718530

[23] L. Li, C. L. Tang, Infinitely many solutions for a nonlinear Klein–Gordon–Maxwell sys-
tem, Nonlinear Anal. 110(2014), 157–169. https://doi.org/10.1016/j.na.2014.07.019;
MR3259740

[24] F. Z. Wang, Solitary waves for the Klein–Gordon–Maxwell system with critical exponent,
Nonlinear Anal. 74(2011), No. 3,827–835. https://doi.org/10.1016/j.na.2010.09.033;
MR2738634

[25] F. Z. Wang, Ground-state solutions for the electrostatic nonlinear Klein–Gordon–Maxwell
system, Nonlinear Anal. 74(2011), No. 14, 4796–4803. https://doi.org/10.1016/j.na.
2011.04.050; MR2810718

[26] L. P. Xu, H. B. Chen, Existence and multiplicity of solutions for nonhomogeneous Klein–
Gordon–Maxwell equations, Electron. J. Differential Equations 102(2015), 1–12. MR3358474

https://doi.org/10.1515/ans-2004-0305
https://doi.org/10.1515/ans-2004-0305
https://www.ams.org/mathscinet-getitem?mr=2079817
https://doi.org/10.1017/S030821050000353X
https://www.ams.org/mathscinet-getitem?mr=2099569
https://doi.org/10.1016/j.na.2009.02.111
https://doi.org/10.1016/j.na.2009.02.111
https://www.ams.org/mathscinet-getitem?mr=2671970
https://doi.org/10.3934/dcds.2010.26.135
https://doi.org/10.3934/dcds.2010.26.135
https://www.ams.org/mathscinet-getitem?mr=2552782
https://doi.org/10.1016/j.camwa.2014.07.001
https://www.ams.org/mathscinet-getitem?mr=3245804
https://doi.org/10.1016/j.matpur.2004.09.016
https://doi.org/10.1016/j.matpur.2004.09.016
https://www.ams.org/mathscinet-getitem?mr=2144648
https://doi.org/10.1007/s10440-013-9845-0
https://www.ams.org/mathscinet-getitem?mr=3180946
https://doi.org/10.1017/S0308210500013147
https://www.ams.org/mathscinet-getitem?mr=1718530
https://doi.org/10.1016/j.na.2014.07.019
https://www.ams.org/mathscinet-getitem?mr=3259740
https://doi.org/10.1016/j.na.2010.09.033
https://www.ams.org/mathscinet-getitem?mr=2738634
https://doi.org/10.1016/j.na.2011.04.050
https://doi.org/10.1016/j.na.2011.04.050
https://www.ams.org/mathscinet-getitem?mr=2810718
https://www.ams.org/mathscinet-getitem?mr=3358474

	Introduction and main results
	Variational setting and compactness condition
	Proof of main result

