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1 Introduction

The aim of our article is the investigation of the behavior of the weak solutions to the Robin
problem for quasi-linear elliptic second-order equations with the variable p(x)-Laplacian in
a neighborhood of an angular or a conical boundary point of the bounded cone. Boundary
value problems for elliptic second order equations with a non-standard growth in function
spaces with variable exponents have been an active investigations in recent years. We refer to
[7] for an overview and the recent papers [1, 9, 10] and reference therein. Differential equa-
tions with variable exponents-growth conditions arise from the nonlinear elasticity theory,
electrorheological fluids, etc. There are many essential differences between the variable expo-
nent problems and the constant exponent problems. In the variable exponent problems, many
singular phenomena occurred and many special questions were raised. V. Zhikov [11, 12]
has gave examples of the Lavrentiev phenomenon for the variational problems with variable
exponent.

Most of the works devoted to the quasi-linear elliptic second-order equations with the
variable p(x)-Laplacian refers to the Dirichlet problem in smooth bounded domains (see [7]).
Concerning the Robin problem for such equations we know only a few articles [2, 5, 6, 8],
but in these works a domain is smooth and lower order terms depend only on (x, u) and
do not depend on |∇u|. Our article [3] is deduced to the Robin problem in a cone for such
equations with a singular p(x)-power gradient lower order term. The present article is the
continuation of [3]. Here we describe qualitatively the behavior of the weak solution near
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a conical point, namely we derive the sharp estimate of the type |u(x)| = O(|x|κ) (cf. §3.1)
for the weak solution modulus (for the solution decrease rate) of our problem near a conical
boundary point. As well as, we establish the comparison principle for weak solutions.

The Robin boundary conditions appear in the solving Sturm–Liouville problems which are
used in many contexts of science and engineering: for example, in electromagnetic problems,
in heat transfer problems and for convection-diffusion equations (Fick’s law of diffusion). The
Robin problem plays a major role in the study of reflected shocks in transonic flow. Important
applications of this problem is the capillary problem.

Let C be an open cone in Rn, n ≥ 2, with the vertex at the origin O and let Br be an open
ball with radius r centered at O. We use the following standard notations:

• Sn−1 : a unit sphere in Rn centered at O;

• (r, ω), ω = (ω1, ω2, . . . , ωn−1) : the spherical coordinates of x ∈ Rn with pole O:

x1 = r cos ω1,

x2 = r cos ω2 sin ω1,
...

xn−1 = r cos ωn−1 sin ωn−2 . . . sin ω1,

xn = r sin ωn−1 sin ωn−2 . . . sin ω1;

• Ω : a domain on the unit sphere Sn−1 with the smooth boundary ∂Ω obtained by the
intersection of the cone C with the sphere Sn−1;

• ∂Ω = ∂C∩ Sn−1;

• Gd
0 ≡ C∩ Bd = {(r, ω) | 0 < r < d; ω ∈ Ω};

• Γd
0 ≡ ∂C∩ Bd = {(r, ω) | 0 < r < d; ω ∈ ∂Ω};

• Ωd = Gd
0 ∩ {|x| = d}.

We investigate the behavior in a neighborhood of the origin O of solutions to the Robin
problem with the boundary condition on the lateral surface of the cone:{

−4p(x)u + b(u,∇u) = f (x), x ∈ Gd0
0 ,

|∇u|p(x)−2 ∂u
∂−→n + γ

|x|p(x)−1 u|u|p(x)−2 = 0, x ∈ Γd0
0 ,

(RQL)

where 0 < d0 � 1 (d0 is fixed) and

4p(x)u ≡ div
(
|∇u|p(x)−2∇u

)
. (1.1)

We will work under the following assumptions:

(i) 1 < p− ≤ p(x) ≤ p+ = p(0) < n, ∀x ∈ Gd0
0 ;

(ii) the Lipschitz condition: p(x) ∈ C0,1(Gd0
0 ) =⇒ 0 ≤ p+ − p(x) ≤ L|x|, ∀x ∈ Gd0

0 ; where
L is the Lipschitz constant for p(x).
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(iii) | f (x)| ≤ f0|x|β(x), f0 ≥ 0, β(x) > p+−1
p+−1+µ (p(x)− 1) λ − p(x); ∀x ∈ Gd0

0 ;
γ = const ≥ 1, 0 ≤ µ < 1 and λ is the least positive eigenvalue of problem (NEVP)
(see below);

(iv) the function b(u, ξ) is differentiable with respect to the u, ξ variables in M = R×Rn and
satisfy in M the following inequalities:

(iv)a |b(u, ξ)| ≤ δ|u|−1|ξ|p(x) + b0|u|p(x)−1, 0 ≤ δ < µ; if µ > 0;

(iv)b b(u, ξ) ≥ ν|u|−1|ξ|p(x) − b0|u|p(x)−1, ν > 0; if µ = 0;

(iv)c

√
n
∑

i=1

∣∣ ∂b(u,ξ)
∂ξi

∣∣2 ≤ b1|u|−1|ξ|p(x)−1; ∂b(u,ξ)
∂u ≥ b2|u|−2|ξ|p(x); b0 ≥ 0, b1 ≥ 0, b2 ≥ 0;

(iiv) the spherical region Ω ⊂ Sn−1 is invariant with respect to rotations in Sn−2.

We consider the functions class

N
1,p(x)
−1,∞ (Gd0

0 ) =

{
u
∣∣∣∣ u(x) ∈ L∞(G

d0
0 ) and

∫
Gd0

0

〈
|x|−p(x)|u|p(x) + |u|−1|∇u|p(x)

〉
dx < ∞

}

which was introduced in [4]. It is obvious that N
1,p(x)
−1,∞ (Gd0

0 ) ⊂W1,p(x)(Gd0
0 ).

Definition 1.1. The function u is called a weak bounded solution of problem (RQL) provided
that u(x) ∈ N

1,p(x)
−1,∞ (Gd0

0 ) and satisfies the integral identity

Q(u, η) :≡
∫

Gd0
0

〈
|∇u|p(x)−2uxi ηxi + b (u,∇u) η

〉
dx + γ

∫
Γd0

0

r1−p(x)u|u|p(x)−2ηdS

−
∫

Ωd0

|∇u|p(x)−2 ∂u
∂r

ηdΩd =
∫

Gd0
0

f (x)η(x)dx (II)

for all η(x) ∈ N
1,p(x)
−1,∞ (Gd0

0 ).

Remark 1.2. It is easy to verify that the above assumptions (i), (iii), (iv) ensure the existence
of integrals over Gd

0 and Γd
0. Therefore, Definition 1.1 is correct.

Main result is the following statement.

Theorem 1.3. Let u be a weak bounded solution of problem (RQL), M0 = sup
x∈Gd0

0
|u(x)| (see [3])

and let λ be the least positive eigenvalue of problem (NEVP) (see Section 2). Suppose that (i)–(iiv)
hold. Then there exist d̃ ∈ (0, d0) and a constant C0 > 0 depending only on λ, d0, M0, p+, p−, L, n,
(µ− δ), ν, b0, f0 and such that

|u(x)| ≤ C0|x|κ , κ =
p+ − 1

p+ − 1 + µ
λ; ∀x ∈ Gd̃

0 . (1.2)

2 Nonlinear eigenvalue problem

To prove the main result we shall consider the nonlinear eigenvalue problem for
ψ(ω) ∈ C2(Ω) ∩ C1(Ω):

−divω

(
(λ2ψ2 + |∇ωψ|2)(p+−2)/2∇ωψ

)
= λ (λ(p+ − 1) + n− p+) (λ2ψ2 + |∇ωψ|2)(p+−2)/2ψ, ω ∈ Ω,

(λ2ψ2 + |∇ωψ|2)(p+−2)/2 ∂ψ

∂−→ν + γ
(

p+−1+µ
p+−1

)p+−1
· ψ|ψ|p+−2 = 0, ω ∈ ∂Ω,

(NEVP)
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where |∇ωψ| denotes the projection of the vector∇ψ onto the tangent plane to the unit sphere
at the point ω :

∇ωψ =

{
1
√

q1

∂ψ

∂ω1
, . . . ,

1
√

qn−1

∂ψ

∂ωn−1

}
,

|∇ωψ|2 =
n−1

∑
i=1

1
qi

(
∂ψ

∂ωi

)2

, q1 = 1, qi = (sin ω1 · · · sin ωi−1)
2, i ≥ 2

and −→ν denotes the exterior normal to ∂C at points of ∂Ω.
If we rename ω = ω1, ω′ = (ω2, . . . , ωn−1), then, by assumption (iiv), we can assume

that ψ(ω1, ω′) does not depend on ω′. Therefore, our problem (NEVP) is equivalent to the
following

(
λ2ψ2 + (p+ − 1)ψ′2

)
ψ′′(ω) + (n− 2) cot ω

(
λ2ψ2 + ψ′2

)
ψ′(ω)

+λ (λ(2p+ − 3) + n− p+)ψ′2ψ(ω)

+λ3 (λ(p+ − 1) + n− p+)ψ3(ω) = 0, ω ∈
(
−ω0

2 , ω0
2

)
,

±(λ2ψ2 + ψ′2)(p+−2)/2ψ′(ω) + γ
(

p+−1+µ
p+−1

)p+−1
· ψ(ω)|ψ(ω)|p+−2

∣∣∣
ω=± ω0

2

= 0.

(OEVP)

2.1 Properties of the (OEVP) eigenvalue and corresponding eigenfunction

First of all, we note that any two eigenfunctions are scalar multiples of each other if they solve
problem for the same λ. Therefore, without loss of generality we can assume ψ

(ω0
2

)
= 1.

Next, we observe that the following two cases are possible: either ψ(−ω) = −ψ(ω) or
ψ(−ω) = ψ(ω). In Section 2 [4], it was shown that we obtain the least positive eigenvalue λ∗

if ψ(−ω) = ψ(ω); then ψ′(−ω) = −ψ′(ω) =⇒ ψ′(0) = 0, ψ(0) 6= 0, as well as the following
inequalities for eigenvalue and for the corresponding eigenfunction:

λ (λ(p+ − 1) + n− p+) > 0; 0 < λ∗ <
π

ω0
; (2.1)

1 ≤ ψ(ω) ≤ ψ0 = const(n, p, λ, ω0) (2.2)

hold.
Now we define the function y(ω) = ψ′(ω)

ψ(ω)
, ψ(0) 6= 0 and let y0 = y

(ω0
2

)
. From (OEVP)

we obtain the Cauchy problem
(
(p+ − 1)y2 + λ2) y′(ω) + (p+ − 1)y4 + (n− 2) cot ω

(
y2 + λ2) y(ω)

+λ (2λ(p+ − 1) + n− p+) y2 + λ3 (λ(p+ − 1) + n− p+) = 0, ω ∈
(
0, ω0

2

)
,

y(0) = 0.

(CP)

and the following equation for λ :

y0
〈
λ2 + y2

0
〉 p+−2

2 = −γ

(
p+ − 1 + µ

p+ − 1

)p+−1

. (λ)

Since

(p+ − 1)y4 + λ (2λ(p+ − 1) + n− p+) y2 + λ3 (λ(p+ − 1) + n− p+)

= (p+ − 1)(y2 + λ2)

(
y2 + λ2 +

n− p+
p+ − 1

λ

)
,
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the (CP) equation can be rewritten as follows

y′(ω)

y2 + λ2 = − (n− 2) cot ω

(p+ − 1)y2 + λ2 · y(ω)− (p+ − 1)(y2 + λ2) + (n− p+)λ
(p+ − 1)y2 + λ2 , ω ∈

(
0,

ω0

2

)
. (2.3)

By Lemma 2.2 [4], we have

y(ω) ≤ 0, |y(ω)| ≤ z0 = const(n, λ, ω0, p+), ∀ω ∈ [0, ω0/2]. (2.4)

Proposition 2.1. If assumption (i) is satisfied and γ ≥ 1 (see assumption (iii)), then(
κ
λ

√
λ2 + y2

0

)p(x)−p(0)

≤ 1, ∀x ∈ Γd
0, (2.5)

where κ is defined by (1.2).

Proof. We rewrite (λ) with regard to (1.2): |y0| = γλ
κ , if p+ = 2;√

λ2 + y2
0 =

(
γ
|y0|

) 1
p+−2 ·

(
λ
κ
) p+−1

p+−2 , if p+ 6= 2.
(2.6)

Case p+ = 2.

The inequality (2.5) is true if p(x) ≡ 2. Now, let 1 < p(x) ≤ p+ = 2, ∀x ∈ Γd
0. From (λ)

we have

|y0| = γ(1 + µ) =
γλ

κ =⇒ κ
λ

√
λ2 + y2

0 ≥
κ
λ
|y0| = γ ≥ 1

(p(x)− p+) ln
(
κ
λ

√
λ2 + y2

0

)
≤ 0 =⇒ (2.5) is true.

Case p+ > 2.

From (λ) and (2.6) it follows that

|y0| ≤
λ

κ · γ
1

p+−1 and
√

λ2 + y2
0 ≥

λ

κ · γ
1

p+−1 =⇒

(p(x)− p+) ln
(
κ
λ

√
λ2 + y2

0

)
≤ p(x)− p+

p+ − 1
ln γ ≤ 0 =⇒ (2.5) is true.

Case p+ < 2.

From (λ) and (2.6) we obtain that

|y0| = γ

(
λ

κ

)p+−1 (√
λ2 + y2

0

)2−p+
≥ γ

(
λ

κ

)p+−1

|y0|2−p+ |y0| ≥
λ

κ · γ
1

p+−1 =⇒

and
√

λ2 + y2
0 = γ

1
p+−2

(
λ

κ

) p+−1
p+−2

|y0|
1

2−p+ ≥ λ

κ · γ
1

p+−1 =⇒

(p(x)− p+) ln
(
κ
λ

√
λ2 + y2

0

)
≤ p(x)− p+

p+ − 1
ln γ ≤ 0 =⇒ (2.5) is true.
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3 Comparison principle

In Gd
0 ⊂ G we consider the second order quasi-linear degenerate operator Q of the form

Q(u, η) ≡
∫
Gd

0

〈
Ai(x, ux)ηxi + b(x, u, ux)η(x)

〉
dx +

∫
Γd

0

γ(ω)

rp(x)−1
u|u|p(x)−2η(x)ds

−
∫

Ωd

Ai(x, ux) cos(r, xi)η(x)dΩd; γ(ω) ≥ γ0 > 0 (3.1)

for u(x) ∈ N
1,p(x)
−1,∞ (Gd

0) and for all non-negative η(x) belonging to N
1,p(x)
−1,∞ (Gd

0) under the fol-
lowing assumptions:

functions Ai(x, ξ), b(x, u, ξ) are Carathéodory, continuously differentiable with respect to the
u, ξ variables in M = G×R×Rn and satisfy in M the following inequalities:

(i) ∂Ai(x,ξ)
∂ξ j

ζiζ j ≥ κp|ξ|p(x)−2ζ2, ∀ζ ∈ Rn \ {0}; κp > 0;

(ii)

√
n
∑

i=1

∣∣∣∣ ∂b(x,u,ξ)
∂ξi

∣∣∣∣2 ≤ b1|u|−1|ξ|p(x)−1; ∂b(x,u,ξ)
∂u ≥ b2|u|−2|ξ|p(x); b1 ≥ 0, b2 ≥ 0;

(iii) p(x) ≥ p− > 1.

Proposition 3.1. Let Q satisfy assumptions (i)–(iii) and functions u, w ∈ N
1,p(x)
−1,∞ (Gd

0) satisfy the
inequality

Q(u, η) ≤ Q(w, η) (3.2)

for all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0). Assume also that the inequality

u(x) ≤ w(x) on Ωd (3.3)

holds. Then u(x) ≤ w(x) in Gd
0 .

Proof. Let us define z = u− w and uτ = τu + (1− τ)w, τ ∈ [0, 1]. Then we have

0 ≥ Q(u, η)−Q(w, η)

=
∫
Gd

0

〈
ηxi zxj

∫ 1

0

∂Ai(x, uτ
x)

∂uτ
xj

dτ + ηzxi

∫ 1

0

∂b(x, uτ, uτ
x)

∂uτ
xi

dτ + ηz
∫ 1

0

∂b(x, uτ, uτ
x)

∂uτ
dτ

〉
dx

−
∫

Ωd

(∫ 1

0

∂Ai(x, uτ
x)

∂uτ
xj

dτ

)
cos(r, xi) · zxj η(x)dΩd

+
∫
Γd

0

γ(ω)

rp(x)−1

(∫ 1

0

∂(uτ|uτ|p(x)−2)

∂uτ
dτ

)
z(x)η(x)ds (3.4)

for all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0) .
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Now, we introduce the sets

(Gd
0)

+ := {x ∈ Gd
0 | u(x) > w(x)} ⊂ Gd

0 ,

(Γd
0)

+ := {x ∈ Γd
0 | u(x) > w(x)} ⊂ Γd

0

and assume that (Gd
0)

+ 6= ∅, (Γd
0)

+ 6= ∅. Let k ≥ 1 be any odd number. We choose
η = max{(u− w)k, 0} as a test function in the integral inequality (3.4). We have

∫ 1

0

∂(uτ|uτ|p(x)−2)

∂uτ
dτ = (p(x)− 1)

∫ 1

0
|uτ|p(x)−2dτ > 0.

Then, by assumptions (i)–(iii) and η
∣∣
Ωd
= 0, we obtain from (3.4) that

∫
(Gd

0 )
+

{
kκpzk−1

(∫ 1

0
|∇uτ|p(x)−2dτ

)
|∇z|2 + b2zk+1

(∫ 1

0
|uτ|−2|∇uτ|p(x)dτ

)}
dx

≤ b1 ·
∫

(Gd
0 )

+

zk
(∫ 1

0
|uτ|−1|∇uτ|p(x)−1dτ

)
|∇z|dx. (3.5)

By the Cauchy inequality,

b1zk|∇z||uτ|−1|∇uτ|p(x)−1 =

(
|uτ|−1z

k+1
2 |∇uτ|

p(x)
2

)
·
(

b1z
k−1

2 |∇z||∇uτ|
p(x)

2 −1
)

≤ ε

2
|uτ|−2zk+1|∇uτ|p(x) +

b2
1

2ε
zk−1|∇z|2|∇uτ|p(x)−2, ∀ε > 0.

Hence, taking ε = 2b2, we obtain from (3.5) the inequality(
kκp −

b2
1

4b2

) ∫
(Gd

0 )
+

zk−1|∇z|2
(∫ 1

0
|∇uτ|p(x)−2dτ

)
dx ≤ 0. (3.6)

Choosing the odd number k ≥ max
(
1; b2

1
2b2κp

)
, in view of z(x) ≡ 0 on ∂(Gd

0)
+, we get from

(3.6) that z(x) ≡ 0 in (Gd
0)

+. We got a contradiction to our definition of the set (Gd
0)

+, this
completes the proof.

Remark 3.2. For the p(x)-Laplacian assumption (i) is satisfied with

κp =

{
1, if p(x) ≥ 2;

p− − 1, if 1 < p− ≤ p(x) < 2.

3.1 Barrier function and eigenvalue problem (OEVP)

We shall study the barrier function w(r, ω) 6≡ 0 as a solution of the auxiliary problem:
−4p+w = µw−1|∇w|p+ , x ∈ Gd

0 ,

|∇w|p+−2 ∂w
∂−→n + γ

|x|p+−1 w|w|p+−2 = 0, x ∈ Γd
0,

0 < d ≤ d0.

(BFP)
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By direct calculations, we derive a solution of this problem in the form

w = w(r, ω) = rκψκ/λ(ω), κ =
p+ − 1

p+ − 1 + µ
λ, (BF)

where (λ, ψ(ω)) is the solution of the eigenvalue problem (OEVP). For this function we cal-
culate with regard to y(ω) = ψ′(ω)

ψ(ω)
:

∂w
∂r

= κrκ−1ψκ/λ(ω);
∂w
∂ω

=
κ
λ

rκψ
κ
λ−1(ω)ψ′(ω);

|∇w| = κ
λ

rκ−1ψ
κ
λ−1(ω)

√
λ2ψ2(ω) + ψ′2(ω) =

κ
λ

rκ−1ψ
κ
λ (ω)

√
λ2 + y2(ω).

(3.7)

Proposition 3.3. w ∈ N
1,p(x)
−1,∞ (Gd

0).

Proof. From (BF) and (2.2) it follows that w ∈ L∞(Gd
0). Next,∫

Gd
0

r−p(x)wp(x)dx =
∫
Gd

0

r(κ−1)p(x)ψ
κ
λ p(x)(ω)dx.

By r ≤ d� 1 and assumption (i), we have

r(κ−1)p(x) ≤ r(κ−1)p− , if κ ≥ 1;

r(κ−1)p(x) ≤ r(κ−1)p+ , if κ ≤ 1;

ψ
κ
λ p(x)(ω) ≤ ψ

p+
0 in virtue of (2.2) and κ ≤ λ.

Hence it follows that∫
Gd

0

r−p(x)wp(x)dx ≤ ψ
p+
0 meas Ω ·


d(κ−1)p−+n

(κ−1)p−+n , if κ ≥ 1;

d(κ−1)p++n

(κ−1)p++n , if κ ≤ 1.
(3.8)

From (3.7) with regard to (2.4) we obtain that∫
Gd

0

w−1|∇w|p(x)dx =
∫
Gd

0

(κ
λ

)p(x)
r(p(x)−1)κ−p(x)ψ(p(x)−1) κλ−p(x)(ω)

(
λ2ψ2(ω) + ψ′

2
(ω)

)p(x)/2
dx

≤ ψ
p+−1
0

∫
Gd

0

r(p(x)−1)κ−p(x) (λ2 + y2(ω)
)p(x)/2

dx

≤ ψ
p+−1
0

∫
Gd

0

r(p(x)−1)κ−p(x) (λ2 + z2
0
)p(x)/2

dx.

Since
√

λ2 + z2
0 = const(n, λ, ω0, p+) and p(x) ∈ [p−, p+], we have(

λ2 + y2(ω)
)p(x)/2 ≤ C1 = const(n, λ, ω0, p+, p−).

From the above inequality we obtain that∫
Gd

0

w−1|∇w|p(x)dx ≤ C1ψ
p+−1
0

∫
Gd

0

r(p(x)−1)κ−p(x)dx

= C1ψ
p+−1
0

∫
Gd

0

r(κ−1)(p(x)−p+) · r(κ−1)p+−κdx. (3.9)
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Now, by assumptions (i)–(ii) and r � 1, we derive

r(κ−1)(p(x)−p+) ≤
{

r(1−κ)Lr, if κ > 1,

1, if κ ≤ 1.

Using the well known inequality

rα| ln r| ≤ 1
αe

, ∀α > 0, 0 < r < 1, (3.10)

where e is the Euler number, we establish for κ > 1 the inequality

r(1−κ)Lr ≤ e
L(κ−1)

e , 0 < r < 1.

Thus, from (3.9) it follows that

∫
Gd

0

w−1|∇w|p(x)dx ≤ C1ψ
p+−1
0 e

L(κ−1)
e meas Ω · dκ(p+−1)+n−p+

κ(p+ − 1) + n− p+
.

4 The proof of the main Theorem 1.3.

Let A > 1, and let w(r, ω) be the barrier function defined above. By the definition of the
operator Q in (I I), we have

Q(Aw, η) ≡
∫
Gd

0

〈
Ap(x)−1|∇w|p(x)−2wxi ηxi + b (Aw, A∇w) η(x)

〉
dx

+ γ
∫
Γd

0

Ap(x)−1r1−p(x)wp(x)−1η(x)dS−
∫

Ωd

Ap(x)−1|∇w|p(x)−2 ∂w
∂r

η(x)dΩd

(4.1)

for all d ∈ (0, d0) and all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0). Integrating by parts, we obtain that

∫
Gd

0

Ap(x)−1|∇w|p(x)−2wxi ηxi dx

= −
∫
Gd

0

d
dxi

〈
Ap(x)−1|∇w|p(x)−2wxi

〉
η(x)dx +

∫
Γd

0

Ap(x)−1|∇w|p(x)−2 dw
dn

η(x)dS

+
∫

Ωd

Ap(x)−1|∇w|p(x)−2 ∂w
∂r

η(x)dΩd.

Hence and (4.1), with regard to problem (BFP), it follows that

Q(Aw, η) = JGd
0
+ JΓd

0
, (4.2)
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where

JGd
0
≡
∫
Gd

0

〈
µAp(x)−1w−1|∇w|p(x) − Ap(x)−1|∇w|p+−2wxi

d|∇w|p(x)−p+

dxi

− ∂Ap(x)−1

∂xi
wxi |∇w|p(x)−2 + b (Aw, A∇w)

〉
η(x)dx;

JΓd
0
≡ γ

∫
Γd

0

(
Aw
r

)p(x)−1
〈

1−
(

r|∇w|
w

)p(x)−p+
〉

η(x)dS.

(4.3)

At first, we assert that JΓd
0
≥ 0. Indeed, by (3.7),(

r|∇w|
w

) ∣∣∣∣∣
Γd

0

=
κ
λ

√
λ2 + y2

0

and desired inequality follows from Proposition 2.1. Thus, from (4.2) it follows that

Q(Aw, η) ≥ JGd
0
. (4.4)

Further, we proceed to the estimating of integral JGd
0
. Setting W(x) = |∇w|p(x)−p+ , we calculate

ln W(x) = (p(x)− p+) ln |∇w|, =⇒ 1
W(x)

· ∂W
∂xi

=
∂p
∂xi

ln |∇w|+ p(x)− p+
|∇w| · d|∇w|

dxi
=⇒

d
dxi

(
|∇w|p(x)−p+

)
= |∇w|p(x)−p+

〈
∂p
∂xi

ln |∇w|+ p(x)− p+
|∇w| · d|∇w|

dxi

〉
.

Similarly,
d

dxi

(
Ap(x)−1

)
= Ap(x)−1 ∂p

∂xi
ln A.

By (4.3), we obtain that

JGd
0
≥
∫
Gd

0

{
Ap(x)−1|∇w|p(x)−2

〈
µw−1|∇w|2 − (∇p · ∇w)(ln A + ln |∇w|)

− p(x)− p+
|∇w| · wxi

d|∇w|
dxi

〉
+ b (Aw, A∇w)

}
η(x)dx.

(4.5)

Passing to polar coordinates, we calculate

wxi

d|∇w|
dxi

=
∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω
.

Now, by (4.4)–(4.5) with regard to assumption (iv), we obtain that

Q(Aw, η) ≥
∫
Gd

0

Ap(x)−1

{
|∇w|p(x)−2

〈
σw−1|∇w|2 − (∇p · ∇w)(ln A + ln |∇w|)

− p(x)− p+
|∇w| ·

(
∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω

)〉
− b0wp(x)−1

}
η(x)dx,

(4.6)
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with

σ =

{
µ− δ, if µ > 0;

ν, if µ = 0.

Taking into account (3.7), the Lipschitz condition of p(x) (ii) and ψ′(ω)
ψ(ω)

= y(ω), we directly
calculate:

1)

|(∇p · ∇w)(ln A + ln |∇w|)| ≤ |∇p| · |∇w| · (ln A + | ln |∇w||)
≤ L|∇w| · (ln A + | ln |∇w||);

in virtue of (3.7), (2.2), (2.4), we derive:

| ln |∇w|| ≤
∣∣∣ln κ

λ

∣∣∣+ |κ − 1| · | ln r|+ κ
λ

ψ
κ
λ−1 ln ψ +

1
2
| ln(λ2 + y2(ω))|

≤ ln
λ

κ + ln ψ0 +
1
2
| ln(λ2 + z2

0)|+ |κ − 1| · | ln r|

= ln C1(n, p+, λ, ω0) + |κ − 1| · | ln r|;

(note that C1 ≥ 1 : indeed, by virtue of (BF) and (2.2) λ
κψ0 ≥ 1; from (13) [4] and (2.5) it

follows that
√

λ2 + z2
0 ≥

√
λ2 + y2

0 ≥ λ
κ ≥ 1 =⇒ C1 = λ

κψ0

√
λ2 + z2

0 ≥ 1); using inequality

(3.10) with α = 1
2 , we get that

|∇w| · | ln |∇w|| ≤ κ
λ

rκ−1ψ
κ
λ (ω)

√
λ2 + y2(ω) · (ln C1 + |κ − 1| · ln r)

=
κ
λ

rκ−2ψ
κ
λ (ω)

√
λ2 + y2(ω) ·

(
r ln C1 + (|κ − 1|

√
r) ·
√

r ln r
)

≤ κ
λ

rκ−2ψ
κ
λ (ω)

√
λ2 + y2(ω) · (r ln C1 + |κ − 1|

√
r);

from which we obtain that

|(∇p · ∇w)(ln A + ln |∇w|)| ≤ L
κ
λ

rκ−2ψ
κ
λ (ω)

√
λ2 + y2(ω) · (r ln(AC1) + |κ − 1|

√
r).

2)

∂|∇w|
∂r

=
κ − 1

r
|∇w|;

∂|∇w|
∂ω

= |∇w|
(
κ
λ
+

y′(ω)

λ2 + y2(ω)

)
· y(ω) = |∇w|

(
p+ − 1

p+ − 1 + µ
+

y′(ω)

λ2 + y2(ω)

)
· y(ω),

and by (BF) it follows that

p+ − p(x)
|∇w| ·

(
∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω

)
= κ(p+ − p(x))

w
r2

〈
κ − 1 +

y2

λ

(
p+ − 1

p+ − 1 + µ
+

y′(ω)

λ2 + y2(ω)

)〉
;

using (2.3)–(2.4), we establish that

p+ − 1
p+ − 1 + µ

+
y′(ω)

λ2 + y2(ω)
≥ −λ

(n− p+)
(p+ − 1)y2 + λ2 − µ

p+ − 1
p+ − 1 + µ

· y2 + λ2

(p+ − 1)y2 + λ2

≥ −λ
(n− p+)

(p+ − 1)y2 + λ2 − µ
y2 + λ2

(p+ − 1)y2 + λ2 ;
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hence it follows that

y2

λ

(
p+ − 1

p+ − 1 + µ
+

y′(ω)

λ2 + y2(ω)

)
≥ − 1

λ
· y2

(p+ − 1)y2 + λ2 ·
〈
(n− p+)λ + µ(y2 + λ2)

〉
≥ −n− p+

p+ − 1
− µ(y2 + λ2)

λ(p+ − 1)
;

using (2.4) again, we derive

p+ − p(x)
|∇w| ·

(
∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω

)
≥ −κL

w
r

〈
|κ − 1|+ n− p+

p+ − 1
+

µ(y2 + λ2)

λ(p+ − 1)

〉
≥ −LC0(n, p+, λ, ω0, ν)

w
r

;

3) |w|−1|∇w|2 =
(κ

λ

)2 rκ−2ψ
κ
λ (ω)

(
λ2 + y2(ω)

)
.

From 1)–3) it follows that

(µ− δ)
|∇w|2

w
− (∇p · ∇w)(ln A + ln |∇w|)− p(x)− p+

|∇w| ·
(

∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω

)
≥
(κ

λ

)2
rκ−2ψ

κ
λ (ω)

(
λ2 + y2(ω)

)
×
〈
(µ− δ)− Ld

κ ln A− Ld
κ ln C1 −

L|κ − 1|
κ

√
d− LC0d

λ2

〉
. (4.7)

Now, we require the fulfilment of the following inequalities:

L
κ ln A · d ≤ 1

5 σ,
Ld
κ ln C1d ≤ 1

5 σ,
L|κ−1|

κ
√

d ≤ 1
5 σ,

LC0
λ2 d ≤ 1

5 σ,

b0d ≤ κ0
10 σ, where κ0 =

{
1, for κ ≥ 1,

κp+ , for κ < 1.

(4.8)

Using (BF), (3.7) and the last inequality of (4.8), we get

|∇w|p(x)−2

〈
σw−1|∇w|2 − (∇p · ∇w)(ln A + ln |∇w|)

− p(x)− p+
|∇w|

(
∂w
∂r
· ∂|∇w|

∂r
+

1
r2

∂w
∂ω
· ∂|∇w|

∂ω

)〉
− b0wp(x)−1

≥ σ

5

(κ
λ

)p(x)
rκ(p(x)−1)−p(x)ψ

κ
λ (p(x)−1)(ω)(λ2 + y2(ω))

p(x)
2 − b0rκ(p(x)−1)ψ

κ
λ (p(x)−1)(ω)

≥ rκ(p(x)−1)−p(x)ψ
κ
λ (p(x)−1)(ω)

(σ

5
κp(x) − b0rp(x)

)
≥
(σ

5
κ0 − b0d

)
r(κ−1)p(x)−κ

≥ σ

10
κ0r(κ−1)p(x)−κ . (4.9)

From (4.6), (4.9) it follows that

Q(Aw, η) ≥ σ

10
κ0

∫
Gd

0

Ap(x)−1r(κ−1)p(x)−κη(x)dx.
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Since p(x) ≥ p− > 1 and A > 1, we have Ap(x)−1 ≥ Ap−−1. Therefore, taking into considera-
tion assumption (iii), the last inequality takes the form

Q(Aw, η) ≥ σ

10
κ0Ap−−1

∫
Gd

0

r(κ−1)p(x)−κη(x)dx ≥ σ

10
κ0Ap−−1

∫
Gd

0

rβ(x)η(x)dx

≥
∫
Gd

0

f0rβ(x)η(x)dx ≥
∫
Gd

0

| f (x)|η(x)dx ≥
∫
Gd

0

f (x)η(x)dx

= Q(u, η), by (I I),

for all non-negative η ∈ N
1,p(x)
−1,∞ (Gd

0), if A > 1 satisfies

A ≥
(

10 f0

σκ0

) 1
p−−1

, (4.10)

Further, we show that u(x) ≤ Aw(x) on Ωd. By (BF) and (2.2),

w(x)|Ωd = dκψκ/λ(ω) ≥ dκ .

In virtue of |u(x)| ≤ M0, ∀x ∈ Gd
0 , we can choose A such that

A ≥ M0

dκ
(4.11)

and therefore
Aw(x)|Ωd ≥ Adκ ≥ M0 ≥ u(x)|Ωd .

Thus, if we choose a small d > 0 according to (4.8) and a large A > 1 according to (4.10)–(4.11)

A ≥ max

{
M0

dκ
,
(

10 f0

σκ0

) 1
p−−1

}
,

then we come to the Comparison Principle

Q(u, η) ≤ Q(Aw, η) in Gd
0 ; u(x) ≤ Aw(x) on Ωd.

For this purpose, we need to check the consistency for the system of two inequalities{
L
κ ln A · d ≤ σ

5 ,

A ≥ M0
dκ .

Indeed, from this system it follows that

ln
(

M0d−κ
)
≤ ln A ≤ 1

d
· κσ

5L
=⇒ d · ln

(
M0d−κ

)
≤ κσ

5L
.

Now, in virtue of

lim
d→+0

d · ln
(

M0d−κ
)
= lim

d→+0

ln M0 −κ ln d
1
d

= κ lim
d→+0

d ln d = −κ lim
d→+0

d = 0,

consequently, there is d̃ > 0 such that for d ∈ (0, d̃) the desired inequality is true.
Thus, the Comparison Principle implies that

u(x) ≤ Aw(x) in Gd̃
0 .

Similarly, we derive the estimate u(x) ≥ −Aw(x) in Gd̃
0 if we replace u(x) with −u(x). By

this and (2.2), we get the required estimate

|u(x)| ≤ Aw(x) ≤ C|x|κ , in Gd̃
0 .
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