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Abstract. The ratio-dependent predator–prey model exhibits rich interesting dynamics
due to the singularity of the origin. It is one of prototypical pattern formation models.
Stocking in ratio-dependent predator–prey models is relatively an important research
subject from both ecological and mathematical points of view. In this paper, we study
the temporal, spatial patterns of a ratio-dependent predator–prey diffusive model with
linear stocking rate of prey species. For the spatially homogeneous model, we derive
conditions for determining the direction of Hopf bifurcation and the stability of the bi-
furcating periodic solution by the center manifold and the normal form theory. For the
reaction-diffusion model, firstly it is shown that Turing (diffusion-driven) instability oc-
curs, which induces spatial inhomogeneous patterns. Then it is demonstrated that the
model exhibits Hopf bifurcation which produces temporal inhomogeneous patterns.
Finally, the non-existence and existence of positive non-constant steady-state solutions
are established. We can see spatial inhomogeneous patterns via Turing instability, tem-
poral periodic patterns via Hopf bifurcation and spatial patterns via the existence of
positive non-constant steady state. Moreover, numerical simulations are performed to
visualize the complex dynamic behavior.

Keywords: ratio-dependent, stocking rate, Hopf bifurcation, Turing instability, steady-
state, pattern.
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1 Introduction

One of important ecological fields is the dynamics between predators and prey. Since the
first differential equation model of predator–prey type was found by Lotka [18] and Volterra
[27] in 1920s, various kinds of predator–prey models have been proposed and studied. Some
of these models are those with Holling types I, II, III and IV functional responses and have
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been intensively investigated, for example in [6, 13, 23, 30]. The Holling type II (or Michaelis–
Menten) model is of the form

du
dt

= ru
(

1− u
K

)
− c1uv

m + u
,

dv
dt

= v
(
−d +

c2u
m + u

)
,

(1.1)

where u, v stand for prey and predator density, respectively. r, K, c1, m, c2, d are positive con-
stants that stand for prey intrinsic growth rate, carrying capacity, capturing rate, half cap-
turing saturation constant, conversion rate, predator death rate, respectively. While many of
the mathematicians working in mathematical biology may regard these as important contri-
butions that mathematics had for ecology, they are very controversial among ecologists up to
this day. Indeed, some ecologists may simply view it as a problem [2, 4], because they are not
in line with many field observations [2, 3, 12].

Recently there is a growing evidences [3, 5, 10] that in some situations, especially when
predator have to search for food (and therefore have to share or compete for food), a more
suitable general predator–prey theory should be based on the so called ratio-dependent the-
ory, which can be roughly stated as that the per capita predator growth rate should be a
function of the ratio of prey to predator abundance. This is supported by numerous field
and laboratory experiments and observations [2, 3]. Compared with Holling type functional
responses, the ratio-dependent type functional response is more suitable to describe the inter-
action between the predator and prey.

The ratio-dependent predator–prey model have been studied by many researchers and
very rich dynamics have been observed, see [1, 9, 24, 26, 32] and references therein. Now, we
focus our attention on the following ratio-dependent predator–prey model

du
dt

= ru
(

1− u
K

)
− c1uv

mv + u
,

dv
dt

= v
(
−d +

c2u
mv + u

)
.

(1.2)

The term c1u
mv+u is called the ratio-dependent Holling type II functional response, and is

derived from p(u/v), where p is the Holling type II prey-dependent functional response
defined by

p(u) =
c1u

m + u
. (1.3)

We refer to [11] and the references therein for the study of the predator–prey system (1.1).
However, more realistic and suitable predator–prey systems should rely on the ratio-dependent
functional responses. Roughly speaking, the per capita predator growth rate should be a
function of the ratio of prey to predator abundance. Hence, the prey-dependent functional
response p(u) given in (1.3) would be replaced by the ratio-dependent functional response
p(u/v).

The dynamics of the model (1.2) has been studied extensively [7, 14, 29, 31]. These re-
searches on the ratio-dependent predator–prey model (1.2) revealed rich interesting dynamics
such as deterministic extinction, existence of multiple attractors, and existence of a stable limit
cycle. Especially, it was shown in [7], [14], and [29] that the model (1.2) has very complicated
dynamics close to the origin: There exist numerous kinds of topological structures in a neigh-
borhood of the origin, including parabolic orbits, elliptic orbits, hyperbolic orbits, and any
combination thereof, depending on the different values of parameters.
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In realistic ecology, the activities of harvesting or stocking often occur in fishery, forestry,
and wildlife management. For example, certain number of animals are removed per year by
hunting. It leads one to add harvesting rates or stocking rates into some models, see [8,20,33].

In this paper, we insert a linear stocking rate δ of prey into the first equation (1.2) and
study the bifurcation dynamics of the following ratio-dependent predator–prey system with
linear stocking rate

du
dt

= ru
(

1− u
K

)
− c1uv

mv + u
+ δu,

dv
dt

= v
(
−d +

c2u
mv + u

)
.

(1.4)

In [19], M. Lei investigated the permanence of a class of Holling III-Tanner predator–prey
diffusion system with stocking rate and time delay, the existence of positive periodic solu-
tion by using comparability theorem, coincidence degree theory. They obtained the sufficient
conditions which guarantee permanent of the system and existence of the positive periodic
solution of the periodic system. In [28], Z. Wang et al. considered a nonautonomous predator–
prey system with Holling III functional responses and stocking rate. They proved that the
system is uniformly permanent under suitable condition. Furthermore, sufficient criteria are
established for existence, uniqueness and global asymptotic stability of periodic solution by
establishing Lyapunov function. Anorexia predator–prey system under constant stocking rate
of prey is discussed. The local behaviour and global behaviour of feasible equilibrium points
were studied and the conditions of the existence and non-existence of limit cycle are obtained.

For simplicity, using the scaling: u → u/K, v → mv/K, t → rt, one can change the model
(1.4) into the following equivalent system

du
dt

= u(1− u)− αuv
u + v

+ hu,

dv
dt

= v
(
−γ +

βu
u + v

)
,

(1.5)

where α = c1/(rm), β = c2/r, γ = d/r, h = δ/r.
When the densities of the prey and predator are spatially inhomogeneous in a bounded

domain, and the prey and predator move randomly-described as Brownian random motion,
we need consider the following reaction-diffusion model corresponding model (1.5). In this
paper, we investigate the temporal, spatial and temporospatial patterns of the following dif-
fusive ratio-dependent predator–prey model with prey stocking

∂u
∂t
− d14u = u(1− u)− αuv

u + v
+ hu, x ∈ Ω, t > 0,

∂v
∂t
− d24v = v

(
−γ +

βu
u + v

)
, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.6)

where Ω ⊂ Rn(n ≥ 1) is a smooth bounded domain, ν is the outward unit normal vector
on ∂Ω. d1, d2, α, β, γ, h are all positive constants. u0(x) and v0(x) are nonnegative smooth
functions and u0(x) + v0(x) > 0.
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To study the stationary patterns, we need consider the steady-state problem associated
with (1.6)

−d14u = u(1− u)− αuv
u + v

+ hu, x ∈ Ω,

−d24v = v
(
−γ +

βu
u + v

)
, x ∈ Ω,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(1.7)

This paper is organized as follows. In Section 2, we investigate the existence, direction and
stability of the Hopf bifurcation for the model (1.5) by applying the Poincaré–Andronov–Hopf
bifurcation theorem. In Section 3, we first consider the Turing (diffusion-driven) instability
of the reaction-diffusion model (1.6) when the spatial domain is a bounded interval, which
will produce spatial inhomogeneous patterns. Then we study the existence and direction of
Hopf bifurcation and the stability of the bifurcating periodic solution, which is a spatially
inhomogeneous periodic solution of (1.6). In Section 4, we first give a priori estimates for
the positive steady-state solutions of the model (1.7), then consider the existence and non-
existence of positive non-constant steady states of (1.7). Moreover, numerical simulations are
presented to verify and illustrate the above theoretical results. The paper ends with a brief
discussion.

2 Dynamics of the ODE model

Let

f1(u, v) = u(1− u)− αuv
u + v

+ hu, f2(u, v) = v
(
−γ +

βu
u + v

)
.

It is easy to know that model (1.5) has a free equilibrium (1 + h, 0) and the unique positive
equilibrium U∗ = (u∗, v∗) =

( αγ+β(1+h−α)
β ,

( β−γ
γ

)
u∗
)

if and only if

(H1) β > γ, h > max
{

0, α− 1− αγ

β

}
.

In this section, we mainly discuss the existence, direction and stability of the Hopf bifur-
cation in the model (1.5). The Jacobian matrix of model (1.5) at U∗ as follows

J =
(

a11 a12

a21 a22

)
,

where

a11 =
(α− h− 1)β2 − αγ2

β2 , a12 = −αγ2

β2 < 0,

a21 =
(γ− β)2

β
> 0, a22 =

(γ− β)γ

β
< 0.

The characteristic polynomial is

P(λ) = λ2 − Υλ + Θ,

where

Υ = α− γ− h− 1 +
γ2

β2 (β− α), Θ =
γ(β− γ)(αγ + β(1 + h− α))

β2 .

For the Jacobian matrix J, we have the following conclusions.
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Lemma 2.1.

(1) Θ > 0 if (H1) holds.

(2) a11 > 0 if the following assumption holds

(H2) h < α− 1− αγ2

β2 .

By the standard linearization method, we can easily prove the following theorem.

Theorem 2.2. Free equilibrium (1 + h, 0) of (1.5) is locally asymptotically stable if β < γ and is
unstable if β > γ.

Theorem 2.3. Suppose that (H1) holds. The unique positive equilibrium U∗ of (1.5) is locally asymp-
totically stable if

(H31) h > α− γ− 1 +
γ2

β2 (β− α) , h0

and is unstable if

(H32) h < h0.

To analyze the Hopf bifurcation of (1.5) occurring at U∗, we take h as the bifurcation param-
eter. In fact, h plays an important role in determining the stability of the interior equilibrium
and the existence of Hopf bifurcation. Clearly, h0 > 0 if and only if

(H4) (γ + 1)β2 + αγ2 < αβ2 + βγ2).

Let λ(h) = φ(h)± iϕ(h) be a pair of complex roots of P(λ) = 0 when h near h0. Then

φ(h) =
Υ
2

, ϕ(h) =
1
2

√
−4a12a21 − (a11 − a22)2.

Furthermore, we can verify

φ(h0) = 0, φ′(h0) = −
1
2
< 0.

This means that the transversality condition holds. By the Poincaré–Andronov–Hopf bifurca-
tion theorem [17], we know that (1.5) undergoes a Hopf bifurcation at U∗ as h passes through
the h0.

To understand the detailed property of the Hopf bifurcation, we need a further analysis
for the normal form of the model (1.5). Being more specific, we use the framework [16] to
analysis the direction and stability of the Hopf bifurcation of the model (1.5).

We translate the positive equilibrium U∗ to the origin by the transformation ũ = u−u∗, ṽ =

v− v∗. For the sake of convenience, we still denote ũ and ṽ by u and v. Thus, the local system
(1.5) is transformed into

du
dt

= (u + u∗)(1− (u + u∗))− α(u + u∗)(v + v∗)
(u + u∗) + (v + v∗)

+ h(u + u∗),

dv
dt

= (v + v∗)
(
−γ +

β(u + u∗)
(u + u∗) + (v + v∗)

)
.

(2.1)
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Rewrite the system (2.1) as 
du
dt
dv
dt

 = J
(

u
v

)
+

(
f (u, v, δ)

g(u, v, δ)

)
, (2.2)

where

f (u, v, δ) = a1u2 + a2uv + a3v2 + a4u3 + a5u2v + a6uv2 + a7v3 + · · · ,

g(u, v, δ) = b1u2 + b2uv + b3v2 + b4u3 + b5u2v + b6uv2 + b7v3 + · · · ,

and

a1 = −1 +
αv∗2

(u∗ + v∗)3 , a2 = − 2αu∗v∗

(u∗ + v∗)3 , a3 =
αu∗2

(u∗ + v∗)3 , a4 = − αv∗2

(u∗ + v∗)4 ,

a5 =
2αu∗v∗ − αv∗2

(u∗ + v∗)4 , a6 =
2αu∗v∗ − αu∗2

(u∗ + v∗)4 , a7 = − αu∗2

(u∗ + v∗)4 ,

b1 = − βv∗2

(u∗ + v∗)3 , b2 =
2βu∗v∗

(u∗ + v∗)3 , b3 = − βu∗2

(u∗ + v∗)3 , b4 =
βv∗2

(u∗ + v∗)4 ,

b5 =
βv∗2 − 2βu∗v∗

(u∗ + v∗)4 , b6 =
βu∗2 − 2βu∗v∗

(u∗ + v∗)4 , b7 =
βu∗2

(u∗ + v∗)4 .

Set the matrix

P :=
(

N 1
M 0

)
,

where M = − a21
ϕ , N = a22−a11

2ϕ . It is easy to obtain that

P−1 JP = Φ(h) :=
(

φ(h) −ϕ(h)
ϕ(h) φ(h)

)
.

Let
M0 := M|h=h0 , N0 := N|h=h0 , ϕ0 := ϕ(h0). (2.3)

By the transformation (u, v)T = P(x, y)T, the system (2.2) becomes
dx
dt
dy
dt

 = Φ(h)
(

x
y

)
+

(
f 1(x, y, h)
g1(x, y, h)

)
, (2.4)

where

f 1(x, y, h) =
1
M

g(Nx + y, Mx, h)

=

(
N2

M
b1 + Nb2 + Mb3

)
x2 +

(
2N
M

b1 + b2

)
xy +

b1

M
y2

+

(
N3

M
b4 + N2b5 + NMb6 + M2b7

)
x3 +

(
3N2

M
b4 + 2Nb5 + Mb6

)
x2y

+

(
3N
M

b4 + b5

)
xy2 +

b4

M
y3 + · · · ,
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g1(x, y, h) = f (Nx + y, Mx, h)− N
M

g(Nx + y, Mx, h)

=

(
N2a1 + NMa2 + M2a3 −

N3

M
b1 − N2b2 − NMb3

)
x2

+

(
2Na1 + Ma2 −

2N2

M
b1 − Nb2

)
xy +

(
a1 −

N
M

b1

)
y2

+

(
N3a4 + M3a7 + N2Ma5 + NM2a6 −

N4

M
b4 − N3b5 −MN2b6 + NM2b7

)
x3

+

(
3N2a4 + 2NMa5 + M2a6 −

3N3

M
b4 − 2N2b5 − NMb6

)
x2y

+

(
3Na4 + Ma5 −

3N2

M
b4 − Nb5

)
xy2 +

(
a4 −

N
M

b4

)
y3 + · · · .

The polar coordinates form of (2.4) is as the following

τ̇ = φ(h)τ + a(h)τ3 + · · · ,

θ̇ = ϕ(h) + c(h)τ2 + · · · ,
(2.5)

then it follows from the Taylor expansion of (2.5) at δ = δ0 that

τ̇ = φ′(h0)(h− h0)τ + a(h0)τ
3 + o((h− h0)

2τ, (h− h0)τ
3, τ5),

θ̇ = ϕ(h0) + ϕ′(h0)(h− h0) + c(h0)τ
2 + o((h− h0)

2, (h− h0)τ
2, τ4).

(2.6)

In order to determine the stability of the Hopf bifurcation periodic solution, we need to cal-
culate the sign of the coefficient a(h0), which is given by

a(h0) =
1

16

(
f 1
xxx + f 1

xyy + g1
xxy + g1

yyy

)
+

1
16ϕ0

[
f 1
xy( f 1

xx + f 1
yy)− g1

xy(g1
xx + g1

yy)− f 1
xxg1

xx + f 1
yyg1

yy

]
,

(2.7)

where all partial derivatives are evaluated at the bifurcation point (x, y, h) = (0, 0, h0), and

f 1
xxx(0, 0, h0) = 6

(
N3

0
M0

b4 + N2
0 b5 + N0M0b6 + M2

0b7

)
, f 1

xyy(0, 0, h0) = 2
(

3N0

M0
b4 + b5

)
,

g1
xxy(0, 0, h0) = 2

(
3N2

0 a4 + 2N0M0a5 + M2
0a6 −

3N3
0

M0
b4 − 2N2

0 b5 − N0M0b6

)
,

g1
yyy(0, 0, h0) = 6

(
a4 −

N0

M0
b4

)
, f 1

xx(0, 0, h0) = 2
(

N2
0

M0
b1 + N0b2 + M0b3

)
,

f 1
xy(0, 0, h0) =

2N0

M0
b1 + b2, f 1

yy(0, 0, h0) =
2

M0
b1,

g1
xx(0, 0, h0) = 2

(
N2

0 a1 + N0M0a2 + M2
0a3 −

N3
0

M0
b1 − N2

0 b2 − N0M0b3

)
,

g1
xy(0, 0, h0) = 2N0a1 + M0a2 −

2N2
0

M0
b1 − N0b2, g1

yy(0, 0, h0) = 2
(

a1 −
N0

M0
b1

)
.

Thus, we can determine the value and sign of a(h0) in (2.7).
Recall that σ2 = − a(h0)

φ′(h0)
and φ′(h0) = − 1

2 < 0, form the Poincaré–Andronov–Hopf bifurca-
tion theorem, we can summarize our results as follows.
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Theorem 2.4. Suppose that (H1) and (H4) hold. Then model (1.5) undergoes a Hopf bifurcation at
U∗ when h = h0.

(1) The direction of the Hopf bifurcation is subcritical and the bifurcated periodic solutions are or-
bitally asymptotically stable if a(h0) < 0;

(2) The direction of the Hopf bifurcation is supercritical and the bifurcated periodic solutions are
unstable if a(h0) > 0.

To illustrate Theorem 2.4, we give some simple numerical examples.

Example 2.5. (1) We choose the coefficients in the system (1.5) as follows

α = 4, β = 1, γ = 0.5. (2.8)

It is easy to see that (H4) holds and the critical point h0 = 1.75. Set h = 1.5, then U∗ =
(0.5, 0.5), Υ = 0.25 > 0, Θ = 0.125 > 0, i.e. (H1), (H32) hold and so U∗ is unstable.

Set h = 2.5 and the parameters in (2.8) satisfy (H1). Then U∗ = (1.5, 1.5), Υ = −0.75 <

0, Θ = 0.375 > 0, by Theorem 2.3, U∗ is locally asymptotically stable. Besides, a(h0) ≈
−1.407 < 0 and σ2 ≈ −1.407 < 0. By Theorem 2.4, Hopf bifurcation occurs at h = h0, the
Hopf bifurcation is subcritical and the bifurcating periodic solutions are stable.

(2) If we choose

α = 1.7, β = 1, γ = 0.4. (2.9)

It is easy to see that (H4) holds and the critical point h0 = 0.188, U∗ = (0.168, 0.252), a(δ0) ≈
0.227 > 0 and σ2 ≈ 0.227 > 0. By Theorem 2.4, Hopf bifurcation occurs at h = h0, the Hopf
bifurcation is supercritical and the bifurcating periodic solutions are unstable.

3 Turing instability and bifurcations in the reaction-diffusion model

In this section, we mainly discuss the stability of positive equilibrium and the existence, stabil-
ity and direction of the Hopf bifurcation for the reaction diffusion system (1.6). For simplicity,
we shall take the spatial domain Ω as the one-dimensional interval Ω = (0, π), and consider

ut − d1uxx = u(1− u)− αuv
u + v

+ hu, x ∈ (0, π), t > 0,

vt − d2vxx = v
(
−γ +

βu
u + v

)
, x ∈ (0, π), t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, π).

(3.1)

It is well known that the operator u → −uxx with no-flux boundary condition has eigen-
values and eigenfunctions as follows:

µ0 = 0, φ0 =

√
1
π

, µi = i2, φi(x) =

√
2
π

cos ix, for i = 1, 2, 3, . . .
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3.1 Diffusive effects on the interior equilibrium point

Theorem 3.1. Assume that the conditions (H1) and h > α− 1− αγ2

β2 hold. Then the unique positive
equilibrium U∗ in (3.1) is uniformly asymptotically stable.

Proof. Let D = diag(d1, d2), U = (u, v) , L = D4+ JU(U∗). Then the linearized system of
(3.1) at U∗ is

Ut = LU, (3.2)

and the eigenvalues of the operator L are the eigenvalues of the matrix −µiD+ JU(U∗), ∀i ≥ 1.
The characteristic equation of −µiD + JU(U∗) is

ϕi(λ) , |λI + µiD− JU(U∗)| = λ2 + Aiλ + Bi = 0,

where
Ai = µi(d1 + d2)− Υ, Bi = µ2

i d1d2 − a11µid2 − a22µid1 + Θ,

and Υ, Θ be defined as in the Section 2.
If h > α− 1− αγ2

β2 , then a11 < 0, Ai > 0 and Bi > 0. The roots λi,1 and λi,2 of ϕi(λ) = 0 all
have negative real parts.

We claim that there exists a positive constant δ̄ such that

Re{λi,1}, Re{λi,2} ≤ −δ̄, ∀i ≥ 1. (3.3)

In fact, let λ = µiζ, then
ϕi(λ) = µ2

i ζ2 + Aiµiζ + Bi , ϕi(ζ),

and

lim
i→∞

ϕi(ζ)

µ2
i

= ζ2 + (d1 + d2)ζ + d1d2 , ϕ(ζ).

Notice that ϕ(ζ) = 0 has two negative roots −d1 and −d2. Thus, Re{ζ1}, Re{ζ2} ≤ −d =

−min{d1, d2}. By continuity, there exists an i0 such that the two roots ζi,1, ζi,2 of ϕi(ζ) = 0
satisfy Re{ζi,1}, Re{ζi,2} ≤ −d/2, ∀i ≥ i0. In turn, Re{λi,1}, Re{λi,2} ≤ −d/2 , ∀i ≥ i0.

Let
max{Re{λi,1}, Re{λi,2}} = −η.

Then η > 0, and (3.3) holds for δ̄ = min{η, d/2}.
This implies that the spectrum of L, which consists of eigenvalues, lies in {Reλ ≤ −δ̄},

and uniform stability of U∗ follows [15]. This completes the proof.

From Lemma 2.1 and Theorem 2.3, we know that the interior equilibrium U∗ of the ODE
model (1.5) is locally asymptotically stable if (H31) holds, that is, Υ < 0. To investigate the
Turing instability of the spatially homogeneous equilibrium U∗ of the diffusive model (3.1),
we need look for the condition of diffusion-driven instability under the assumption (H31). It
is well known that the positive equilibrium U∗ of (3.1) is unstable if ϕi(λ) = 0 has at least one
root with positive real part.

For the sake of convenience, define

φ(µi) := Bi = µ2
i d1d2 − (a11d2 + a22d1)µi + Θ,
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which is a quadratic polynomial with respect to µi. It is necessary to determine the sign of
φ(µi). Clearly, if φ(µi) < 0, then ϕi(λ) = 0 has two real roots in which one is positive and the
other is negative. Notice that if

G(d1, d2) := a11d2 + a22d1 > 0,

then φ(µi) will take the minimum value

min
µi

φ(µi) = Θ− (a11d2 + a22d1)
2

4d1d2
< 0

at the critical value µ∗ > 0, where µ∗ = a11d2+a22d1
2d1d2

.
Define the ratio ρ = d2/d1 and

Λ(d1, d2) = (a11d2 + a22d1)
2 − 4d1d2Θ

= a2
11d2

2 + 2(2a12a21 − a11a22)d1d2 + a2
22d2

1.

Then

Λ(d1, d2) = 0⇔ a2
11ρ2 + 2(2a12a21 − a11a22)ρ + a2

22 = 0,

G(d1, d2) = 0⇔ ρ = − a22

a11
≡ ρ∗.

Recall that Θ > 0 and a12 < 0, a21 > 0, we have

4(2a12a21 − a11a22)
2 − 4a2

11a2
22 = 16a12a21(a12a21 − a11a22) > 0.

Therefore, Λ(d1, d2) = 0 has two positive real roots

ρ1 =
−(2a12a21 − a11a22) + 2

√
a12a21(a12a21 − a11a22)

a2
11

,

ρ2 =
−(2a12a21 − a11a22)− 2

√
a12a21(a12a21 − a11a22)

a2
11

,

and 0 < ρ2 < ρ∗ < ρ1. Moreover, if d2/d1 > ρ1, then min φ(µi) < 0, G(d1, d2) < 0, and U∗ is
unstable. It follows from Theorem 2.4 that the Turing instability occurs. Based on the above
analyze, we have the following Turing instability result.

Theorem 3.2. Assume that the conditions (H1) and (H31) hold(in the case U∗ is stable with respect
to the local model (1.5)). Then there exists an unbounded region

T := {(d1, d2) : d1 > 0, d2 > 0, d2 > ρ1d1}

for ρ1 > 0, such that, for any (d1, d2) ∈ T, U∗ is unstable with respect to the reaction-diffusion model
(3.1), that is, Turing instability occurs.

Example 3.3. (1) We choose the coefficients of the model (3.1) as follows

α = 1.5, β = 1, γ = 0.35, h = 0.2, d1 = 0.015, d2 = 0.25. (3.4)

It is easy to see that the parameters in (3.4) satisfy (H1) and Υ = −0.11125 < 0, i.e.
(H31) holds. The unique positive equilibrium point U∗ ≈ (0.225, 0.4179) in (1.5) is locally
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Figure 3.1: Stable behaviour with d1 = 0.015, d2 = 0.25 for the model (3.1).

asymptotically stable. Furthermore, ρ1 ≈ 18.86 and d2 − ρ1d1 ≈ −0.0329 < 0, so U∗ in (3.1) is
uniformly asymptotically stable (see Fig. 3.1).

(2) Choose

α = 1.5, β = 1, γ = 0.35, h = 0.2, d1 = 0.015, d2 = 0.5. (3.5)

In (3.5), we only change a diffusion coefficient compared with (3.4). In the case, ρ1 ≈ 18.862
and d2 − ρ1d1 ≈ 0.217 > 0. By Theorems 2.3, 3.2, we know that U∗ ≈ (0.225, 0.4179) is stable
with respect to the local model (1.5), and unstable for the diffusive system (3.1). This means
that the Turing instability occurs in (3.1) (see Fig. 3.2).

Figure 3.2: Turing instability with d1 = 0.015, d2 = 0.5 for the model (3.1).

(3) Choose

α = 1.7, β = 3, γ = 1.2, h = 0.2, d1 = 0.01, d2 = 0.5. (3.6)

In (3.6), all coefficients are changed but satisfy (H1) and (H31). Thus, U∗ = (0.18, 0.27) in
(1.5) is locally stable. In this case, ρ1 ≈ 15.65 and d2 − ρ1d1 ≈ 0.3435 > 0. By Theorem 3.2,
Turing instability occurs in the diffusive system (3.1) (see Fig. 3.3).

Remark 3.4. Via numerical simulations, we can see that the model exhibits spatiotemporal
complexity of pattern formation, including stripe, stripe-hole and hole Turing patterns.

For example, in (3.1), fix

α = 1.5, β = 1, γ = 0.35, h = 0.2, d1 = 0.01, d2 = 0.62. (3.7)

By numerical simulation results, we can observe the stripe-hole pattern of u in the model (3.1)
(see Fig. 3.4). Changing the diffusion coefficients d1 = 0.015, d2 = 0.3 in (3.7), hole pattern can
be obtained (see Fig. 3.5).
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Figure 3.3: Turing instability with d1 = 0.01, d2 = 0.5 for the model (3.1).
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Figure 3.4: Stripe-hole pattern of u in the model (3.1).
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Figure 3.5: Hole pattern of u in the model (3.1).

If we fix

α = 3, β = 1.3, γ = 0.2, h = 1.8, d1 = 0.01,

we can see that pattern with d1 = 0.25 is similar to the one with d1 = 0.45, they are all
stripe patterns in (Fig. 3.6). Fig. 3.6 (a) consists of blue stripe on a red background, i.e., the
prey is isolated zones with low population density. While (b) consists of red stripe on a blue
background, i.e., the prey is isolated zones with high population density.

3.2 Diffusive effects on the bifurcation limit cycle

In this subsection, we seek for the related Hopf bifurcation points and consider the stability
of the bifurcating periodic solutions of model (3.1) with spatial domain (0, π). In order to use
framework of the Hopf bifurcation theory [16], we need to complete the following three steps.
Step 1. Linearization analysis.

For (3.1), we introduce the perturbation u = û + u∗, v = v̂ + v∗, and still denote (û, v̂) by
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Figure 3.6: Stripe pattern of u in the model (3.1).

(u, v). Then

ut − d1uxx = (u + u∗)(1− (u + u∗))− α(u + u∗)(v + v∗)
(u + u∗) + (v + v∗)

+ h(u + u∗), x ∈ (0, π), t > 0,

vt − d2vxx = (v + v∗)
(
−γ +

β(u + u∗)
(u + u∗) + (v + v∗)

)
, x ∈ (0, π), t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t > 0,

u(x, 0) = u0(x)− u∗, v(x, 0) = v0(x)− u∗, x ∈ (0, π).
(3.8)

Consider the linearization matrix of (3.8) at (0, 0)

L(h) :=

 d1
d2

dx2 + A(h) B(h)

C(h) d2
d2

dx2 + D(h)

 and Li(h) :=

(
A(h)− d1i2 B(h)

C(h) D(h)− d2i2

)
,

where

A(h) =
(α− h− 1)β2 − αγ2

β2 , B(h) = −αγ2

β2 , C(h) =
(γ− β)2

β
, D(h) =

(γ− β)γ

β
.

The characteristic equation of Li(h) is

λ2 − λTi(h) + Di(h) = 0, i = 0, 1, 2, . . . , (3.9)

where {
Ti(h) = A(h) + D(h)− i2(d1 + d2),

Di(h) = d1d2i4 − (A(h)d2 + D(h)d1)i2 + A(h)D(h)− B(h)C(h),
(3.10)

the eigenvalues are determined by λ(h) = Ti(h)±
√

Ti(h)2−4Di(h)
2 , i = 0, 1, 2, . . . .

Step 2. Identify possible Hopf bifurcation values and verify transversality conditions.
To seek for the Hopf bifurcation values hk, we need the following necessary and sufficient

conditions from [16]:

(H5) There exists i ≥ 0 such that

Ti(hk) = 0, Di(hk) > 0, Tj(hk) 6= 0, Dj(hk) 6= 0 for j 6= i (3.11)

and for the unique pair of complex eigenvalues near the imaginary axis φ(h)± iϕ(h),

φ′(hk) 6= 0. (3.12)
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Let λ(h) = φ(h)± ϕ(h) be the roots of (3.9). Obviously, φ(h) = Ti(h)/2. If there exist some
i = 0, 1, 2, . . . such that

(d1 + d2)i2 < A(h), (3.13)

letting hk
i be the roots of Ti(h) = 0, then we have

Ti(hk
i ) = 0, φ′(hk

i ) = −
1
2
< 0 and Tj(hk

i ) 6= 0 for j 6= i.

The transversality condition (3.12) is satisfied. We only need to verify whether Dj(hk
i ) 6= 0 for

i = 0, 1, 2, . . . Here, we obtain a condition on the parameters so that Di(hk
i ) > 0. In fact, if the

following inequality

d1 > −
A(hk

i )d2

D(hk
i )

(3.14)

holds, then
Di(hk

i ) ≥ i4d1d2 − i2(A(hk
i )d2 + D(hk

i )d1) > 0. (3.15)

Hence, the condition (H5) is satisfied, which implies that (3.1) undergoes a Hopf bifurcation at
h = hk

i . Clearly, h = hk
0(= h0) is always the unique value for the Hopf bifurcation of spatially

homogeneous periodic solution to (3.1).

Theorem 3.5. Assume (H1), (H4) and (3.14) hold. Then the model (3.1) undergoes Hopf bifurcations
at hk

i (i ≥ 1) and h0.

Step 3. Verify the sign of the Re(c1(h0)) which is defined by (3.20) later.
Notice that φ′(h0) < 0, adopting the work in [16], we know that if Re(c1(h0)) < 0

(resp. > 0), then the bifurcation periodic solution is stable (resp. unstable) and the bifurcation
is subcritical (resp. supercritical ).

With the condition of Theorem 3.5, it is easy to obtain that all other eigenvalues of L(h0)

have negative real parts and any L(hk
i ), i ≥ 1, has at least one eigenvalues whose real part is

positive. So the bifurcation periodic solutions bifurcating from (0, 0, hk
i ) are unstable.

In order to get the stability and the bifurcation direction of the bifurcation periodic solution
bifurcating from (0, 0, h0), we need to make a further consideration for the bifurcation solution,
where the complex variable calculation will play a critical role.

Let L∗ be the conjugate operator of L defined as (3.2),

L∗U := D∆U + J∗U, (3.16)

where J∗ = JT with the domain D∗L = XC. Let

q :=

(
q1

q2

)
=

 1

− s1

s2
+

ϕ0

s2
i

 ,

where s1 = γ(β−γ)
β , s2 = − αγ2

β2 , and

q∗ :=

(
q∗1
q∗2

)
=

s2

2πϕ0

 ϕ0

s2
+

s1

s2
i

i

 .

For any ξ ∈ D∗L, η ∈ DL, it is not difficult to verify that 〈L∗ξ, η〉 = 〈ξ, Lη〉, L(h0)q =

iϕ0q, L∗(h0)q∗ = −iϕ0q∗, 〈q∗, q〉 = 0, 〈q∗, q〉 = 1, where 〈ξ, η〉 =
∫ π

0 ξ
T

ηdx denotes the inner
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product in L2[(0, π)]× L2[(0, π)]. According to [16], we decompose X = XC ⊕ XS with XC =

{zq + z̄q̄ : z ∈ C} and XS = {ω ∈ X : 〈q∗, ω〉 = 0}.
For any (u, v) ∈ X, there exist z ∈ C and ω = (ω1, ω2) ∈ XS such that

(u, v)T = zq + z̄q̄ + (ω1, ω2)
T, z = 〈q∗, (u, v)T〉.

Thus 
u = z + z̄ + ω1,

v = z
(
− s1

s2
+

ϕ0

s2
i
)
+ z̄
(
− s1

s2
− ϕ0

s2
i
)
+ ω2.

The model (3.1) is reduced to the following system in (z, ω) coordinates:
dz
dt

= iϕ0z + 〈q∗, h̃〉,

dω

dt
= Lω + H(z, z̄, ω),

(3.17)

where
h̃ = h̃(zq + z̄q̄ + ω), H(z, z̄, ω) = h̃− 〈q∗, h̃〉q− 〈q̄∗, h̃〉q̄.

As in [16], we write h̃ in the form

h̃(U) =
1
2

Q(U, U) +
1
6

C(U, U, U) + O(|U|4),

where Q, C are symmetric multi-linear forms and

h̃ =
1
2

Q(q, q)z2 + Q(q, q̄)zz̄ +
1
2

Q(q̄, q̄)z̄2 + O(|z|3, |z| · |ω|, |ω|2),

〈q∗, h̃〉 = 1
2
〈q∗, Q(q, q)〉z2 + 〈q∗, Q(q, q̄)〉zz̄ +

1
2
〈q∗, Q(q̄, q̄)〉z̄2 + O(|z|3, |z| · |ω|, |ω|2),

〈q̄∗, h̃〉 = 1
2
〈q̄∗, Q(q, q)〉z2 + 〈q̄∗, Q(q, q̄)〉zz̄ +

1
2
〈q̄∗, Q(q̄, q̄)〉z̄2 + O(|z|3, |z| · |ω|, |ω|2),

so
H(z, z̄, ω) =

H20

2
z2 + H11zz̄ +

H02

2
z̄2 + O(|z|3, |z| · |ω|, |ω|2),

where

H20 = Q(q, q)− 〈q∗, Q(q, q)〉q− 〈q̄∗, Q(q, q)〉q̄,

H11 = Q(q, q̄)− 〈q∗, Q(q, q̄)〉q− 〈q̄∗, Q(q, q̄)〉q̄,

H02 = Q(q̄, q̄)− 〈q∗, Q(q̄, q̄)〉q− 〈q̄∗, Q(q̄, q̄)〉q̄.

(3.18)

Furthermore, H20 = H11 = H02 = (0, 0)T, and H(z, z̄, ω) = O(|z|3, |z| · |ω|, |ω|2). It follows
from Appendix A in [16] that the model (3.17) possesses a center manifold, and then we can
write ω in the form

ω =
ω20

2
z2 + ω11zz̄ +

ω02

2
z̄2 + o(|z|3).

Thus, 
ω20 = (2iϕ0 I − L)−1H20,

ω11 = (−L)−1H11,

ω02 = ω̄20.

(3.19)
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This implies that ω20 = ω02 = ω11 = 0.
For later uses, define

c0 := fuuq2
1 + 2 fuvq1q2 + fvvq2

2 = 2a1 + 2a2q2 + 2a3q2
2,

d0 := guuq2
1 + 2guvq1q2 + gvvq2

2 = 2b1 + 2b2q2 + 2b3q2
2,

e0 := fuu|q1|2 + fuv(q1q̄2 + q̄1q2) + fvv|q2|2 = 2a1 + a2(q2 + q̄2) + 2a3|q2|2,

f0 := guu|q1|2 + guv(q1q̄2 + q̄1q2) + gvv|q2|2 = 2b1 + b2(q2 + q̄2) + 2b3|q2|2,

g0 := fuuu|q1|2q1 + fuuv(2|q1|2q2 + q2
1q̄2) + fuvv(2q1|q2|2 + q̄1q2

2) + fvvv|q2|2q2

= 6a4 + 2a5(2q2 + q̄2) + 2a6(2|q2|2 + q2
2) + 6a7|q2|2q2,

j0 := guuu|q1|2q1 + guuv(2|q1|2q2 + q2
1q̄2) + guvv(2q1|q2|2 + q̄1q2

2) + gvvv|q2|2q2

= 6b4 + 2b5(2q2 + q̄2) + 2b6(2|q2|2 + q2
2) + 6b7|q2|2q2,

with all the partial derivatives evaluated at the point (u, v, δ) = (0, 0, h0). Therefore, the reac-
tion diffusion system restricted to the center manifold in z, z̄ coordinates is given by

dz
dt

= iϕ0z +
1
2

φ20z2 + φ11zz̄ +
1
2

φ02z̄2 +
1
2

φ21z2z̄ + o(|z|4),

where
φ20 = 〈q∗, (c0, d0)

T〉, φ11 = 〈q∗, (e0, f0)
T〉, φ21 = 〈q∗, (g0, j0)T〉.

Then some tedious calculations show that

φ20 =
s2

2ϕ0

[(
ϕ0

s2
− s1

s2
i
)

c0 − id0

]
= a1 + b2 −

2b3s1

s2
− a3(s2

1 + ϕ2
0)

s2
2

+
i

ϕ0

(
b2s1 − a1s1 − b1s2 +

a2(ϕ2
0 + s2

1)− b3(s2
1 − ϕ2

0)

s2
− a3s1(s2

1 + ϕ2
0)

s2
2

)
,

φ11 =
s2

2ϕ0

[(
ϕ0

s2
− s1

s2
i
)

e0 − i f0

]
= a1 −

a2s1

s2
+

a3(s2
1 + ϕ2

0)

s2
2

+
i

ϕ0

(
b2s1 − a1s1 − b1s2 +

a2s2
1 − b3(s2

1 + ϕ2
0)

s2
− a3s1(s2

1 + ϕ2
0)

s2
2

)
,

and

φ21 =
s2

2β0

[(
β0

s2
− s1

s2
i
)

g0 − ih0

]
= 3a4 + b5 −

2s1(a5 + b6)

s2
+

(a6 + 3b7)(s2
1 + β2

0)

s2
2

+
i

β0

(
3b5s1 − 3b4s2 − 3a4s1 +

(a5 − b6)(3s2
1 + β2

0)

s2

− 3s1(a6 + b7)(s2
1 + β2

0)

s2
2

+
3a7(β2

0 + s2
1)

2

s3
2

)
.

Furthermore,
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Re(c1(h0) = Re
{

i
2ϕ0

(
φ20φ11 − 2|φ11|2 −

1
3
|φ02|2

)
+

1
2

φ21

}
= − 1

2ϕ0
[Re(φ20)Im(φ11) + Im(φ20)Re(φ11)] +

1
2

Re(φ21).
(3.20)

Based the above analyze and the expression of Re(c1(h0)), we give our main results in this
subsection.

Theorem 3.6. Suppose that (H1), (H4) and (3.14) hold. Then model (3.1) undergoes a Hopf bifurca-
tion at h = h0.

(a) The direction of the Hopf bifurcation is subcritical and the bifurcated periodic solutions are or-
bitally asymptotically stable if Re(c1(h0)) < 0.

(b) The direction of the Hopf bifurcation is supercritical and the bifurcated periodic solutions are
unstable if Re(c1(h0)) > 0.

To illustrate Theorem 3.6, we give two simple numerical examples.

Example 3.7. We choose the coefficients of the system (3.1) as follows

α = 5, β = 3.5, γ = 0.4, d1 = 0.7, d2 = 0.5. (3.21)

We can see that h0 ≈ 3.5804 and the parameters in (3.21) satisfy (H1), (H4). Then d1 +
A(h0)d2
D(h0)

≈ 0.2 > 0, Re(c1(h0)) ≈ 8.069 > 0. By Theorem 3.6, the model (3.1) undergoes a
supercritical Hopf bifurcation at h = h0 and the bifurcated periodic solutions are unstable.

Choosing the following coefficients

α = 4, β = 1, γ = 0.5, d1 = 0.3, d2 = 0.1. (3.22)

In this case h0 = 1.75 and satisfy (H1), (H4). Then d1 +
A(h0)d2
D(h0)

= 0.2 > 0, Re(c1(h0)) ≈
−3.833 < 0. By Theorem 3.6, the model (3.1) undergoes a subcritical Hopf bifurcation at
h = h0 and the bifurcated periodic solutions are stable.

4 Positive nonconstant steady states

In this section, we consider the nonexistence and existence of positive nonconstant steady
states of (1.7).

Let 0 = µ0 < µ1 < µ2 < · · · < µi < · · · be the eigenvalues of the operator −∆ on Ω with
the homogeneous Neumann boundary condition, and E(µi) be the eigenspace corresponding
to µi. Let X = {(u, v) ∈ [C1(Ω̄)]2 : ∂u/∂ν = ∂v/∂ν = 0 on ∂Ω}, {φij : j = 1, 2, . . . , dim E(µi)}
be an orthonormal basis of E(µi) and Xij = {cφij : c ∈ R2}. Then, we decompose X as

X = ⊕∞
i=1Xi, Xi = ⊕

dim E(µi)
j=1 Xij.
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4.1 A priori estimates

In this subsection, by using maximum principle in Lou and Ni [22] and Harnack inequality in
Lin et al. [21], we establish a priori estimates of positive solutions of (1.7).

Theorem 4.1. Assume that (H1) holds. Let (u, v) be any positive solution of (1.7). Then

0 < u(x) < 1 + h, 0 < v(x) <
β− γ

γ
(1 + h), ∀x ∈ Ω̄.

If h > α− 1, then

1 + h− α < u(x) < 1 + h,
β− γ

γ
(1 + h− α) < v(x) <

β− γ

γ
(1 + h), ∀x ∈ Ω̄.

Proof. Let (u, v) be a given positive solution of (1.7). First of all, it follows from Maximum
principle in [22] that 0 < u(x) < 1 + h, ∀x ∈ Ω̄. Set v(z0) = maxΩ v(x). By virtue of
maximum principle in [22] again, we have

−γ +
βu(z0)

u(z0) + v(z0)
≥ 0.

Thus

0 < v(x) <
β− γ

γ
(1 + h).

Assume h > α− 1 and denote

u(x0) = min u(x), v(y0) = min v(x)

for some x0, y0 ∈ Ω̄. We obtain

1− u(x0)−
αv(x0)

u(x0) + v(x0)
+ h ≤ 0,

and

−γ +
βu(y0)

u(y0) + v(y0)
≤ 0.

Then

1− u(x0) + h < α, v(y0) ≥
β− γ

γ
u(y0).

So if assumption (H1) and h > α− 1 hold, then

u(x0) > 1 + h− α > 0, v(y0) >
β− γ

γ
(1 + h− α) > 0.

From this and Harnack inequality, we derive the desired estimates. This completes the proof
of the theorem.
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4.2 Nonexistence of positive nonconstant steady states

In this subsection, we apply the energy method to prove the nonexistence of nonconstant posi-
tive steady-state solutions to (1.7). For convenience, let P denote the set of positive parameters
α, β, γ and h.

Theorem 4.2. Under the assumption (H1), let D2 be a fixed positive constant satisfying D2 > β−γ
µ1

.
Then there exists a positive constant D1 = D1(P, D2) such that the model (1.7) has no nonconstant
positive solution provided that d1 ≥ D1 and d2 ≥ D2.

Proof. Denote

u =
1
|Ω|

∫
Ω

u(x)dx, v =
1
|Ω|

∫
Ω

v(x)dx.

Now we prove (u, v) = (ū, v̄) is a unique positive solution of (1.7), i.e. (u, v) = U∗.
Multiplying the first equation of (1.7) by (u − u) and integrating the obtained equation

from Theorem 4.1, we have

d1

∫
Ω
|∇(u− u)|2dx =

∫
Ω
(u− u)2

[
1− (u + u) + h− αv̄

ū + v̄
+

αuv
(u + v)(ū + v̄)

]
dx

−
∫

Ω

αu2

(u + v)(u + v)
(v− v)(u− u)dx

≤ (1 + h + L1)
∫

Ω
(u− u)2dx + L2

∫
Ω
|u− u||v− v|dx.

Similarly,

d2

∫
Ω
|∇(v− v)|2dx =

∫
Ω
(v− v)2

[
βū

ū + v̄
− γ− βuv

(u + v)(ū + v̄)

]
dx

+
∫

Ω

βv2

(u + v)(u + v)
(v− v)(u− u)dx

≤ (β− γ)
∫

Ω
(v− v)2dx + L3

∫
Ω
|u− u||v− v|dx,

where the positive constants L1, L2, L3 dependent on the coefficients P.
Furthermore

d1

∫
Ω
|∇(u− ū)|2dx + d2

∫
Ω
|∇(v− v̄)|2dx

≤
∫

Ω
[(1 + h + L1)(u− u)2 + 2ϑ|u− u||v− v|+ (β− γ)(v− v)2]dx

≤
∫

Ω

[
(u− ū)2

(
1 + h + L1 +

ϑ

ε

)
+ (v− v̄)2(β− γ + ϑε)

]
dx

for ϑ = L2+L3
2 and an arbitrary small positive constant ε, in which the last inequality follows

form the following fact

2ϑ|u− ū||v− v̄| = 2

√
ϑ

ε
|u− ū| ·

√
ϑε|v− v̄| ≤ ϑ

ε
|u− ū|2 + ϑε|v− v̄|2.

By using the Poincaré inequality, we obtain∫
Ω

{
d1µ1(u− ū)2 + d2µ1(v− v̄)2} dx

≤
∫

Ω

[
|∇(u− ū)|2

(
1 + h + L1 +

ϑ

ε

)
+ |∇(v− v̄)|2(β− γ + ϑε)

]
dx.
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Since d2µ1 > β − γ, we can find a sufficiently small ε0 > 0 such that d2µ1 ≥ β − γ + ϑε0.
Finally, by taking D1 = 1

µ1

(
1 + h + L1 +

ϑ
ε0

)
, we can conclude that u = ū and v = v̄. This

completes the proof.

4.3 Existence of positive nonconstant steady states

In this subsection, by using the Leray–Schauder degree theory, we discuss the existence of
positive nonconstant solutions to (1.7) when the diffusion coefficients d1 and d2 vary while the
parameters α, β, γ, h keep fixed.

For simplicity, define F = ( f1, f2)T ( f1, f2 be defined as in the Section 2). Thus, J = FU(U∗)
and the model (1.7) can be written as follows−4U = D−1F(U), x ∈ Ω,

∂U
∂ν

= 0, x ∈ ∂Ω,
(4.1)

where D = diag(d1, d2). Therefore, U solves (4.1) if and only if it satisfies

f̂ (d1, d2, U) := U − (I − ∆)−1{D−1F(U) + U} = 0 on X, (4.2)

where I is the identity matrix, (I − ∆)−1 represents the inverse of I − ∆ with homogeneous
Neumann boundary condition.

A straightforward computation reveals

DU f̂ (d1, d2, U∗) = I − (I − ∆)−1(D−1 J + I).

For each Xi, ξ is an eigenvalue of DU f̂ (d1, d2, U∗) on Xi if and only if ξ(1+ µi) is an eigenvalue
of the matrix

Mi := µi I − D−1 J =

(
µi − d−1

1 a11 − d−1
1 a12

−d−1
2 a21 µi − d−1

2 a22

)
.

Clearly,

det Mi = d−1
1 d−1

2 [d1d2µ2
i + (−d1a22 − d2a11)µi + a11a22 − a12a21],

and

tr Mi = 2µi − d−1
1 a11 − d−1

2 a22.

Define
ĝ(d1, d2, µ) := d1d2µ2 + (−d1a22 − d2a11)µ + a11a22 − a12a21.

Then ĝ(d1, d2, µi) = d1d2 det Mi. If

d1a22 + d2a11 > 2
√

d1d2(a11a22 − a12a21), (4.3)

then ĝ(d1, d2, µ) = 0 has two real roots

µ+(d1, d2) =
d1a22 + d2a11 +

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
,

µ−(d1, d2) =
d1a22 + d2a11 −

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
.
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Let

A = A(d1, d2) = {µ : µ ≥ 0, µ−(d1, d2) < µ < µ+(d1, d2)},
Sp = {µ0, µ1, µ2, . . . },

and let m(µi) be multiplicity of µi. In order to calculate the index of f̂ (d1, d2, ·) at U∗, we need
the following lemma in [25].

Lemma 4.3. Suppose ĝ(d1, d2, µi) 6= 0 for all µi ∈ Sp. Then

index( f̂ (d1, d2, ·), U∗) = (−1)σ,

where

σ =

{
∑µi∈A∩Sp

m(µi), A∩ Sp 6= ∅,

0, A∩ Sp = ∅.
.

In particular, σ = 0 if ĝ(d1, d2, µi) > 0 for all µi ≥ 0.

Form Lemma 4.3, in order to calculate the index of f̂ (d1, d2, ·) at U∗, we need to determine
the range of µ for which ĝ(d1, d2, µ) < 0.

Theorem 4.4. Suppose that (H1) and (H2) hold. If a11
d1
∈ (µk, µk+1) for some k ≥ 1, and σk =

∑k
i=1 m(µi) is odd, then there exists a positive constant D∗ such that for all d2 ≥ D∗, the model (1.7)

has at least one positive nonconstant solution.

Proof. Since (H2) holds, that is a11 > 0, it follows that if d2 is large enough, then (4.3) holds
and µ+(d1, d2) > µ−(d1, d2) > 0. Furthermore,

lim
d2→∞

µ+(d1, d2) =
a11

d1
, lim

d2→∞
µ−(d1, d2) = 0.

As
a11

d1
∈ (µk, µk+1), there exists d0 � 1 such that

µ+(d1, d2) ∈ (µk, µk+1), 0 < µ−(d1, d2) < µ1 ∀d2 ≥ d0. (4.4)

Form Theorem 4.2, we know that there exists d > d0 such that (1.7) with d1 = d and d2 ≥ d
has no positive nonconstant solution. Let d > 0 be large enough such that a11

d1
< µ1. Then

there exists D∗ > d such that

0 < µ−(d1, d2) < µ+(d1, d2) < µ1 for all d2 ≥ D∗. (4.5)

Now we prove that, for any d2 ≥ D∗, (1.7) has at least one positive nonconstant solution.
By way of contradiction, assume that the assertion is not true for some D∗2 ≥ D∗. By using
the homotopy argument, we can derive a contradiction in the sequel. Fixing d2 = D∗2 , for
τ ∈ [0, 1], we define

D(τ) =

(
τd1 + (1− τ)d 0

0 τd2 + (1− τ)D∗

)
,

and consider the following problem−4U = D−1(τ)F(U), x ∈ Ω,
∂U
∂ν

= 0, x ∈ ∂Ω.
(4.6)



22 W. Li, X. Gao and S. Fu

Thus, U is a positive nonconstant solution of (1.7) if and only if it solves (4.6) with τ = 1.
Evidently, U∗ is the unique positive constant solution of (4.6). For any τ ∈ [0, 1], U is a
positive nonconstant solution of (4.6) if and only if

h(U, τ) = U − (I − ∆)−1{D−1(τ)F(U) + U} = 0 on X. (4.7)

Form the discussion above, we know that (4.7) has no positive nonconstant solution when
τ = 0, and we have assumed that there is no such solution for τ = 1 at d2 = D∗2 . Clearly,
h(U, 1) = f̂ (d1, d2, U), h(U, 0) = f̂ (d, D∗, U) and

DU f̂ (d1, d2, U∗) = I − (I − ∆)−1(D−1 J + I),

DU f̂ (d, D∗, U∗) = I − (I − ∆)−1(D̃−1 J + I),

where f̂ (·, ·, ·) is as given in (4.2) and D̃ = diag(d, D∗). From (4.4) and (4.5), we have
A(d1, d2) ∩ Sp = {µ1, µ2, . . . , µk} and A(d, D∗) ∩ Sp = ∅. Since σk is odd, Lemma 4.3 yields

index(h(·, 1), U∗) = index( f̂ (d1, d2, ·), U∗) = (−1)σk = −1,

index(h(·, 0), U∗) = index( f̂ (d, D∗, ·), U∗) = (−1)0 = 1.

From Theorem 4.1, there exist positive constants C = C(d, d1, D∗, D∗2 , P) and C = C(d, D∗, P)
such that the positive solutions of (4.7) satisfy C < u(x), v(x) < C on Ω for all τ ∈ [0, 1].

Define Σ = {(u, v)T ∈ C1(Ω, R2) : C < u(x), v(x) < C, x ∈ Ω}. Then h(U, τ) 6= 0 for all
U ∈ ∂Σ and τ ∈ [0, 1]. By virtue of the homotopy invariance of the Leray–Schauder degree,
we have

deg(h(·, 0), Σ, 0) = deg(h(·, 1), Σ, 0). (4.8)

Notice that both equations h(U, 0) = 0 and h(U, 1) = 0 have a unique positive solution U∗

in Σ, and we obtain

deg(h(·, 0), Σ, 0) = index(h(·, 0), U∗) = 1,

deg(h(·, 1), Σ, 0) = index(h(·, 1), U∗) = −1,

which contradicts (4.8). The proof is complete.

5 Discussion and concluding remarks

Pattern formation in ecological systems has been an important and fundamental topic in ecol-
ogy. The development processes of such patterns are complex. The ratio-dependent predator–
prey model exhibits rich interesting dynamics due to the singularity of the origin. To under-
stand the underlying mechanism for patterns of plants and animals, we study the diffusive
ratio-dependent predator–prey model (1.6) with prey stocking rate under Neumann bound-
ary conditions. In particular, the existence, direction and stability of temporal patterns in (1.6)
and the existence of spatial patterns in (1.6) are established. In virtue of our investigation,
we may hope to reveal some interesting phenomena of pattern formations in ratio-dependent
predator–prey models.

In this paper, we provided detailed analyses on the temporal and spatial patterns in a
ratio-dependent predator–prey diffusive model (1.6) with linear stocking rate of prey species
through qualitative analysis, such as stability theory, normal form and bifurcation technique.
By the condition of (H1), we see that if one considers the model (1.5) with the prey stocking
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rates, then the prey capturing rate α is allowed to be greater than the value β/(β− γ) but the
stocking rate on prey h cannot be too small and must be greater than α− 1− αγ/β > 0. Biolog-
ically, if predators eat less prey, then more preys would be stocked to ensure that the system
has the positive interior equilibrium or the predators and prey can coexist. Noticing that
du∗
dh = dv∗

dh = β > 0, it is easy to see that u∗ and v∗ are both the strictly increasing function of h,
that is, increasing the stock rate of prey species leads to the increasing of the density of both
prey and predator species. The h > 0 in model (1.6) stabilisation the local asymptotic stability
region of the positive equilibrium point at h = 0, and h has a stabilizing effect (see Theorem
2.3 and Theorem 3.1). Spatial and temporal patterns could occur in the reaction-diffusion
model (1.6) via Turing instability, Hopf bifurcation and positive non-constant steady state.
(1) We studied diffusion-induced Turing instability of the positive equilibrium U∗ when the
spatial domain is a bounded interval, it is found that under some conditions Turing instabil-
ity will happen in the system, which produces spatial inhomogeneous patterns (see Theorem
3.2); (2) We also considered the existence and direction of Hopf bifurcation and the stability
of the bifurcating periodic solution in (1.6), which exhibits temporal periodic patterns (see
Theorem 3.6); (3) We established the existence of positive non-constant steady states which
also corresponds to the spatial patterns. Moreover, numerical simulations are also carried out
to illustrate theoretical analysis, from which the theoretical results are verified and patterns
are expected to appear in the model. More interesting and complex behavior (for example,
stripe, stripe-hole and hole Turing patterns on Fig. 3.4, 3.5, 3.6) about such model will further
be explored.
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