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Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

Dedicated to Professor J. Kato on his 60th birthday

1. Introduction

Our aim is studing the asymptotic behaviour of the solutions of the equation

ẋ(t) = −a(t)x(t) + a(t)x(pt) , (1.1)

where a(t) is a nonnegative continuous scalar function on R+ := [0 ,∞) and 0 < p < 1

is a constant. This equation is a special case of the so called pantograph equations

arising in industrial applications [5,11]. The only solution of equation (1.1) with initial

data x(0) = x0 is x(t) ≡ x0. However, if t0 > 0 and ϕ(t) is a given continuous function

on [pt0 , t0] then the solution x(t) with x(s) = ϕ(s) for s ∈ [pt0 , t0] is defined for t→ ∞
and it differs from any constant solution if ϕ is not constant.

Equation (1.1) can be transformed to the equation

ẏ(t) = −a1(t)y(t) + a1(t)y(t− h) , (1.2)

by y(t) = x(et), where p = e−h and a1(t) = a(et)et or to the equation

ż(t) = −a2(t)z(t) + a2(t)z(p(t)) , (1.3)

with a given retardation p(t) choosing the transformation z(t) = x(g(t)), where g(t)

satisfies the equation pg(t) = g(p(t)) and a2(t) = a(g(t))ġ(t). Therefore some results
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can be concluded for the equation (1.1) from results for (1.2), (1.3) or their general-

izations.

T. Krisztin [9] investigated the equation

ẋ(t) = f(t, xt)

with infinite delay. The application of his result for (1.1) gives that if
∫ t

pt
a(s) ds is

bounded on R+ then all solution of (1.1) tends to a constant as t→ ∞.

N. G. De Bruijn [3, 4] studied linear scalar equation

w(t)ẋ(t) = −c(t)x(t) + d(t)x(t− 1) + r(t) .

From his results it can be proved that if

∞
∑

n=1

exp{−
∫ p−n

p−(n−1)

a(u) du} = ∞

then every solution of (1.1) has a finite limit if t → ∞. On the other hand if a(t)

is twice continuously differentiable and there exists a continuous nonincreasing pos-

itive function Φ such that
∫∞

1
Φ(s) ds < ∞ and for w(t) := 1/a(t) the conditions

w(t), |w′(t)|, |w′′(t)| < etΦ(t) hold, then there exists a continuous periodic function

ψ of period 1 and a positive constant c such that

|x(t) − ψ

{

log t

log 1/p
−
∫ t1/ log(1/p)

1

1/a(s) ds

}

| < c

∫ ∞

log t/ log(1/p)−1

Φ(s) ds .

The scalar equation

ẋ(t) = −ax(t) + bx(pt) ,

(where a and b are constants, a > 0) is also studied. The exact asymptotic behaviour

of the solutions as t → ∞ is known [1, 2, 8]. In the special case a = b the follow-

ing assertion is proved. For any solution x(t) there exists an infinitely many times

differentiable, periodic function ψ of period 1 such that

|x(t) − ψ(log t)| → 0 as t→ ∞. (1.5)

We give an extension of the last results for (1.1). We need some light monotonicity

like conditions for a(t) that restrict too fast changes of a(t). Our condition works for
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the function a(t) = tα if α > −1, or for the function a(t) = a+ sin bt, if the constants

a, b satisfies |b| < (a − b)2. We show by an example that ψ may be non-constant

function. In the proof of the results we need to know the decay rate of solutions. This

argument works for more general equation. Therefore in the second part of the article

we study the equation

ẋ(t) = −a(t)x(t) + b(t)x(p(t))

and give conditions such that

|x(t)| ≤ C

tk
t ∈ [t0,∞),

(or a similar) estimate is true. Estimation of such type was given by J. Kato [6,7] and

his results were sharpened by T. Krisztin [10]. However these results and our ones in

this paper cannot be compared and methods are different, too.

2. An asymptotic estimate of the solutions

Let us consider the equation

ẋ(t) = −a(t)x(t) + b(t)x(p(t)), (2.1)

where a(t), b(t), p(t) are continuous functions on R+, p(t) ≤ t and limt→∞ p(t) = ∞.

Let us define the function

m(t) := inf{s : p(s) > t}

on R+. Then t ≤ m(t), p(m(t)) = t and m(t) is increasing. Let be given t0 ≥ 0 such

that p(t0) < t0 and introduce the qualities

q−1 = inf{p(s) : s ≥ t0}, q0 = t0, qn = m(qn−1), n = 1, 2, . . . , q∞ = lim
n→∞

qn

and the intervals

In := [qn−1, qn], n = 0, 1, 2, . . . .
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Then ∪∞
n=1In = [t0, q∞), and p(q∞) = q∞, if q∞ < ∞. Moreover we also have

p(In+1) ⊂ ∪n
k=0Ik. For a given function ρ : R+ → (0, ∞) having bounded differential

on finite intervals let us introduce the numbers

ρn := max
t∈In

ρ(t)

∫ t

qn−1

exp{
∫ s

t

a(z) dz}ρ−2(s)ρ̇(s) ds n = 1, 2, . . . .

Since

∫

a(s) exp{
∫ s

t
a(z) dz}

ρ(s)
ds =

exp{
∫ s

t
a(z) dz}

ρ(s)
+

∫

ρ̇(s) exp{
∫ s

t
a(z) dz}

ρ2(s)
ds (2.2)

and a(t) is nonnegative, we get for t ∈ In that

0 ≤ρ(t)
∫ t

qn−1

a(s) exp{
∫ s

t
a(z) dz}

ρ(s)
ds+ ρ(t)

exp{
∫ qn−1

t
a(z) dz}

ρ(qn−1)
=

= 1 + ρ(t)

∫ t

qn−1

ρ̇(s) exp{
∫ s

t
a(z) dz}

ρ2(s)
ds .

(2.3)

Hence 0 ≤ 1 + ρn for all n = 1, 2, . . ..

Theorem 1. Suppose that there exists a differentiable function ρ : [q−1, q∞) →
(0, ∞) such that ρ̇(t) is locally bounded,

|b(t)|ρ(t) ≤ a(t)ρ(p(t)) t ∈ [t0, q∞) (2.4)

and

P :=

∞
∏

n=1

(1 + ρn) <∞.

If M0 := maxt∈I0 ρ(t)|x(t)|, then

|x(t)| ≤ M0P

ρ(t)
, t ∈ [t0, q∞).

Proof. Introduce the function

y(t) := x(t)ρ(t).

Then y(t) satisfies the equation

ẏ(t) = −
(

a(t) − ρ̇(t)

ρ(t)

)

y(t) +
b(t)ρ(t)

ρ(p(t))
y(p(t))
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which is equivalent to

d

dt

(

y(t) exp{
∫ t

t0
a(s)ds}

ρ(t)

)

=
y(p(t))b(t) exp{

∫ t

t0
a(s)ds}

ρ(p(t))
.

Integrating this equality on [qn, t] and using (2.4) we get

y(t) exp{
∫ t

t0
a(s)ds}

ρ(t)
≤
y(qn) exp{

∫ qn

t0
a(s)ds}

ρ(qn)
+

∫ t

qn

a(s) exp{
∫ s

t0
a(z)dz}

ρ(s)
|y(p(s))|ds .

Let mn := maxt∈In
|y(t)| n = 0, 1, 2, 3, . . . and Mn := max{m0, m1, . . . , mn}. Since

|y(p(t))| ≤Mn for t ∈ In+1, we have

|y(t)| ≤Mn

ρ(t) exp{
∫ qn

t
a(s) ds}

ρ(qn)
+Mnρ(t)

∫ t

qn

a(s) exp{
∫ s

t
a(z) dz}

ρ(s)
ds

for all t ∈ In+1, n = 0, 1, 2, . . . . Using the formula (2.3) we get

|y(t)| ≤ Mn

(

1 + ρ(t)

∫ t

qn

ρ̇(s) exp{
∫ s

t
a(z) dz}

ρ2(s)
ds

)

≤Mn(1 + ρn+1)

for all t ∈ In+1. Hence Mn+1 ≤Mn(1 + ρn+1) for all n = 0, 1, 2, . . . that implies

Mn ≤M0

n+1
∏

k=1

(1 + ρk) ≤M0

∞
∏

k=1

(1 + ρk) .

This inequality is equivalent to the assertion of the theorem.

Corollary 1. Suppose there exist 0 < Q ≤ 1, 0 < p1 ≤ p2 < 1, m > 0, 0 ≤ α < 1 and

t0 > 0 such that

(1 − α) log
1

p2
log

1

p1
> log

1

Q

(

log
1

p1
− log

1

p2

)

p1t ≤ p(t) ≤ p2t , |b(t)| ≤ a(t)Q ,mt−α ≤ a(t) t ∈ [p1t0,∞) .

If k = logQ/ log p1, x : [p1t0,∞) → R is a solution of (2.1) on [t0,∞) then

|x(t)| ≤ MC

tk
t ∈ [t0,∞) , (2.5)
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where C =
∏∞

n=0(1 + k
mt1−α

0 pk
1

(

pk+1−α
2

pk
1

)n

) and M = maxt∈[p1t0,t0) t
k|x(t)|.

Proof. First of all we remark that the product in the definition of C exists since

pk+1−α
2 /pk

1 < 1 by the definition of k. The relations p(m(t)) = t and p1t ≤ p(t) ≤ p2t

imply that
t

p2
≤ m(t) ≤ t

p1
. Hence

t0

pn
2
≤ qn ≤ t0

pn
1
. Also

|b(t)| ≤ a(t)Q = a(t)pk
1 ≤ a(t)

(

p(t)

t

)k

and hence (2.4) is valid with ρ(t) = tk. Moreover

ρn+1 ≤ max
t∈In+1

ktk
∫ t

qn

e

∫

s

t
mz−α dz

sk+1
ds ≤

≤ max
t∈In+1

ktke−m(1−α)−1t1−α

∫ t

t0p−n
2

em(1−α)−1s1−α

sk+1
ds =

= max
t∈In+1

ktke−m(1−α)−1t1−α

∫ t1−α

(t0p−n
2 )1−α

em(1−α)−1u

(1 − α)u(k+1−α)(1−α)−1 du ≤

≤ k

1 − α

(

t0

pn+1
1

)k (
t0
pn
2

)−(k+1−α)

max
t∈In+1

∫ t1−α

(t0p−n
2 )1−α

em(1−α)−1(u−t1−α) du ≤

≤ k

t1−α
0 mpk

1

(

pk+1−α
2

pk
1

)n

So, Theorem 1 implies the assertion.

Corollary 2. Suppose that p(t) = k
√
t, a ≤ a(t) and |b(t)| ≤ θa(t) hold on the interval

[t0,∞), where t0 > 1, k > 1, 0 < a, 0 < θ < 1 are constants. Then there exists a

positive constant C such that for any solution of (2.1) on
(

k
√
t0,∞

)

we have

|x(t)| ≤ CM(log t)

log θ
log k (t ∈ [t0,∞)) ,

where M = max{|x(t)| : t ∈ [ k
√
t0, t0]}.

Proof. Apply again Theorem 1 by ρ(t) = logα t, where α = − log θ/ log k. Then

q−1 = k
√
t0, qn = tk

n

0 for n = 0, 1, 2, . . . and

ρ(t)

∫ t

qn−1

exp

∫ s

t

a(z)dz ρ̇(s)ρ−2(s)ds ≤ kαn logα t0

∫ t

tkn−1

0

e−a(t−s) α

s logα+1 s
ds ≤
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≤ αkα

tk
n−1

0 kn−1 log t0

1 − e−a(t−tkn−1

0 )

a

Hence

ρn ≤ αkα

tk
n−1

0 kn−1 a log t0

that is
∏∞

n=1(1 + ρn) <∞ and the assertion follows with

C =

∞
∏

n=1

(1 +
αkα

tk
n−1

0 kn−1 a log t0
).

Remark. If a ≤ a(t) and |b(t)| ≤ θa(t), where 0 < a and 0 < θ < 1 then Corollary 1

and Corollary 2 imply that

if p(t) = pt, 0 < p < 1 then |x(t)| ≤MC1t
−

log θ
log p , (2.6)

if p(t) =
k
√
t, 1 < k then |x(t)| ≤MC2(log t)

log θ
log k (2.7)

for t ≥ t0. T. Krisztin [10] applied his results for the cases pt ≤ p(t) and k
√
t ≤ p(t)

and he gave the conditions

if p(t) ≥ pt, 0 < p < 1 then |x(t)| ≤MC3t
p(p−1) log µ , (2.8)

if p(t) ≥ k
√
t, 1 < k then |x(t)| ≤MC4(log t)

−
logµ
log p (2.9)

for t ≥ t0, where µ ∈
(

1, 1
θ

)

. It is easy to see, that (2.6) and (2.7) are sharper than (2.8)

and (2.9). On the other hand we required that p(t) is far from t, and the assumptions

that p(t) = pt and p(t) = k
√
t cannot be changed to p(t) ≥ pt and p(t) ≥ k

√
t. Therefore,

our results and the ones in Krisztin’s paper are independent.

Corollary 3. Suppose there exist 0 < p < 1, Q > 1 such that p(t) = pt, |b(t)| ≤ a(t)Q

on [pt0,∞). If k = − logQ/ log p and M = maxt∈[pt0,t0) t
−k|x(t)|, then

|x(t)|

tk ≤ M on

[t0,∞) .

Proof. Now, we have qn = t0/p
n and (2.4) is valid with ρ(t) = t−k. Then

ρ̇(t) ≤ 0, so 1 + ρn ≤ 1 and Theorem 1 can be applied.
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3. The asymptotic behavior

Consider the equation

ẋ(t) = −c(t)x(t) + c(t)x(pt), (3.1)

where 0 < p < 1.

Let c(t) be nonnegative, continuously differentiable on R+. Then the solutions

are twice differentiable and y(t) = ẋ(t) satisfies the equation

ẏ(t) = −
(

c(t) − ċ(t)

c(t)

)

y(t) + pc(t)y(pt) .

Now, we apply the above results to this equation.

Theorem 3. Suppose that c(t) is continuously differentiable on R+ and there exist

t0 > 0, 0 < k ≤ 1, m > 0 and 0 ≤ α < 1 such that

mt−α ≤ c(t) ċ(t) ≤ c2(t)(1 − p1−k) (t ∈ [t0, ∞)) .

Let x(t) be a solution of (3.1) on [pt0, ∞) then

|ẋ(t)| ≤ CM

tk
(t ∈ [

t0

p
, ∞)) ,

where C =
∏∞

n=0

(

1 +
kp(n+1)(1−α)−k

mt1−α
0

)

and M = supt∈[t0,t0/p) t
k|ẋ(t)|.

Proof. Since a(t) = c(t) − ċ(t)

c(t) , b(t) = c(t)p, Q = pk the condition b(t) ≤ a(t)Q

is equivalent to ċ(t) ≤ c2(t)(1− p1−k). Corollary 1 is applicable with p1 = p2 = p and

replacing t0 by
t0

p
.

Now let us transform equation (3.1) in a different way. Let y(t) = ẋ(t)/c(t), then

ẏ(t) = −c(t)y(t) + pc(pt)y(pt).

Theorem 4. Suppose that there exist t0 > 0, 0 < k ≤ 1, m > 0 and 0 ≤ α < 1 such

that

mt−α ≤ c(t) p1−kc(pt) ≤ c(t) (t ∈ [t0, ∞))
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Let x(t) be a solution of (3.1) on [pt0, ∞) then

|ẋ(t)| ≤ CMc(t)

tk
(t ∈ [

t0

p
, ∞)) ,

where C is the same as in Theorem 3 and M = supt∈[t0,t0/p) t
k |ẋ(t)|

c(t) .

Proof. Use Corollaries 1 and 3 as in Theorem 3.

Note that it is only a technical detail that we estimate the derivative on the

interval [t0/p, ∞) in Theorems 3 and 4. If we choose an initial function so that the

solution is continuously differentiable at the point t0, then we can prove a similar

estimate using M as the supremum of the appropriate function on the interval [pt0, t0)

and a little bit different C’s. We will use this comment later.

Note also, that it is easy to see that if x is a solution of (3.1),M0 = supt∈[pt0,t0) x(t)

and m0 = inft∈[pt0,t0) x(t), then

m0 ≤ x(t) ≤ M0 (t ∈ [t0, ∞)) .

Definition. We say that the function x(t) is asymptotically logarithmically periodic,

if x(et) is asymptotically periodic, i.e. there is a periodic function φ(t) such that

|x(et) − φ(t)|→0 as t→∞.

Theorem 5. Suppose that all the conditions of Theorem 3 are satisfied and k > α.

Then all the solutions of equation (3.1) are asymptotically logarithmically periodic.

Proof. Let φ : [pt0, t0]→R be given and consider x(t) = x(t, t0, φ), the solution of

(3.1) starting at t0 with the initial function φ. To simplify our notation let us assume

that t0 = 1, for other t0’s the proof is similar. Let M and C be the constants appearing

in Theorem 3 and hence we have |ẋ(t)| ≤ CM/tk on the interval [1/p,∞).

Let us transform the equation by replacing t = es and x(t) = y(ln(t)) = y(s).

From (3.1) we obtain

ẏ = c(es)es(−y(s) + y(s+ ln(p)) = c(es)es(−y(s) + y(s− h)), (3.2)

where h = − ln(p) (here we use that t0 = 1 and hence the solution y corresponding

to x starts from ln(t0) = 0). We also have ẋ(t) = ẏ(ln(t))/t for t ≥ 1/p and hence

|ẏ(s)| ≤ CMes(1−k) for s ≥ h. Then we use the equation to have

|y(s)− y(s− h)| ≤ CMe−sk

c(es)
∀s ≥ h

EJQTDE, 1998 No. 2, p. 9



Using that k > α it is easy to prove that the sequence

e−(s+ih)k

c(es+ih)
≤ e−(s+ih)ke(s+ih)α/m ≤ e−ih(k−α)/m (s ∈ [0, h])

is summable. Therefore

|y(s+ lh) − y(s+ nh)| ≤ CM
l
∑

i=n+1

e−(s+ih)k

c(es+ih)
∀s ∈ [0, h] and l ≥ n ≥ 0 (3.3)

and hence the function sequence zn(s) := ynh(s) = y(s + nh) (for s ∈ [−h, 0]) is a

Cauchy-sequence in the supremum norm. Thus it converges to a function χ. Consider

χ(s) to be an h-periodic function, and then we have |y(s)−χ(s)|→0 as s→∞. Therefore

all solutions of (3.2) are asymptotically h-periodic, which means that all solutions of

(3.1) are asymptotically logarithmically periodic.

Theorem 6. Suppose that all the conditions of Theorem 4 are satisfied. Then all the

solutions of equation (3.1) are asymptotically logarithmically periodic.

Proof. The proof is very similar to that of Theorem 5. The only difference is

that after the transformation we have

|y(s) − y(s− h)| ≤ CMe−sk ∀s ≥ 0

since the c(t) in the estimate on ẋ(t) and the c(es) coming from (3.2) cancel each other.

The rest of the proof is the same.

In this section we established conditions under which we can prove asymptotical

logarithmical periodic behavior of the solutions of equation (3.1). Both the conditions

of Theorem 3 and 4 are reasonable, they require c(t) not to be too small or decrease

too fast. Clearly, all constant functions are solutions of equation (3.1), and asymptotic

logarithmic periodicity includes the special case of the solutions being asymptotically

constant. We now show by an example that there is an equation of the form (3.1)

which has an asymptotically non-constant solution.

Let c(t) = 1, t0 = 1, k = 1, m = 1, α = 0 in Theorem 6. Let φ : [p, 1]→R be given

(it will be specified later, but it satisfies the condition that the solution is continuously

differentiable at t0 and hence we have an estimate on the derivative on the interval
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[1,∞)). We do the same transformation as we did in the proof of Theorem 6. Then

we have

|y(s) − y(s− h)| ≤ CMe−s ∀s ≥ 0.

By induction we get

|y(s+ lh) − y(s− h)| ≤ CMe−s

1 − e−h
.

Let ψ(s) := φ(es) = φ(t) for t ∈ [p, 1]. Define smax and smin so that ψ(smax) is a

maximum and ψ(smin) is a minimum of ψ in the interval [−h, 0]. The above inequality

gives (as a special case) that

y(smax + lh) ≥ y(smax) − CM
e−(smax+h)

1 − e−h

and

y(smin + lh) ≤ y(smin) + CM
e−(smin+h)

1 − e−h
.

Putting these together we obtain

y(smax + lh) − y(smin + lh) ≥ (y(smax) − y(smin)) − CM
e−(smax+h) + e−(smin+h)

1 − e−h

Now we define φ a little more precisely. Let φ be strictly increasing on the interval

[p, (1 + p)/2] and decreasing on [(1 + p)/2, 1], hence smin = 0, smax = ln((1 + p)/2)

and ψ(smax) − ψ(smin) > 0. Then we have

e−smax + e−smin

1 − e−h
=

3 + p

1 − p2

and hence

y(smax + lh) − y(smin + lh) ≥ ψ(smax) − ψ(smin) − CMp(3 + p)

1 − p2
≥ γ > 0

if we choose p small enough. This shows that y at the shifts of smax and smin differs by

a fixed positive constant and hence y cannot tend to a constant. Since x(t) = y(ln(t)),

we also proved that x does not tend to a constant.
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