Electronic Journal of Qualitative Theory of Differential Equations

Stable solitary waves for a class of nonlinear Schrödinger system with quadratic interaction

Guoqing Zhang ${ }^{\boxtimes}$ and Tongmo Gu
College of Sciences, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

Received 29 June 2018, appeared 4 December 2018
Communicated by Dimitri Mugnai

Abstract

We consider the existence and orbital stability of bound state solitary waves and ground state solitary waves for a class of nonlinear Schrödinger system with quadratic interaction in $\mathbb{R}^{n}(n=2,3)$. The existence of bound state and ground state solitary waves are studied by variational arguments and Concentration-compactness Lemma. In additional, we also prove the orbital stability of bound state and ground state solitary waves.

Keywords: bound (ground) state solitary waves, quadratic interaction, variational arguments.

2010 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction

In this paper, we consider the following system of nonlinear Schrödinger equations

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2 m} \Delta u=\lambda v \bar{u}, \quad(x, t) \in \mathbb{R}^{n+1} \tag{1.1}\\
i \partial_{t} v+\frac{1}{2 M} \Delta v=\mu u^{2}, \quad(x, t) \in \mathbb{R}^{n+1}
\end{array}\right.
$$

where u and v are complex-valued wave fields, m and M are positive constants, λ and μ are complex constants, and \bar{u} is the complex conjugate of u.

Such systems have interesting applications in several branches of physics, such as in the study of interactions of waves with different polarizations $[1,11]$. The Cauchy problem for System 1.1 has been studied from the point of view of small data scattering [6,7]. In 2013, Hayashi, Ozawa and Tanaka [8] studied the well-posedness of Cauchy problem for System 1.1 with large data. In particular, System 1.1 is regarded as a non-relativistic limit of the system of nonlinear Klein-Gordon equations

$$
\begin{cases}\frac{1}{2 c^{2} m} \partial_{t}^{2} u-\frac{1}{2 m} \Delta u+\frac{m c^{2}}{2} u=-\lambda v \bar{u}, & (x, t) \in \mathbb{R}^{n+1}, \tag{1.2}\\ \frac{1}{2 c^{2} M} \partial_{t}^{2} v-\frac{1}{2 M} \Delta v+\frac{M c^{2}}{2} v=-\mu u^{2}, & (x, t) \in \mathbb{R}^{n+1}\end{cases}
$$

[^0]under the mass resonance condition $M=2 m$, where c is the speed of light.
Assume $\lambda=c \bar{\mu}, c>0, \lambda \neq 0$ and $\mu \neq 0$, we introduce new functions ($\widetilde{u}, \widetilde{v}$) defined by
$$
\widetilde{u}(x, t)=\sqrt{\frac{c}{2}}|\mu| u\left(\sqrt{\frac{1}{2 m}} x, t\right), \quad \widetilde{v}(x, t)=-\frac{\lambda}{2} v\left(\sqrt{\frac{1}{2 m}} x, t\right),
$$
and System (1.1) satisfies
\[

$$
\begin{cases}i \partial_{t} \widetilde{u}+\Delta \widetilde{u}=-2 \widetilde{v} \widetilde{\bar{u}}, & (x, t) \in \mathbb{R}^{n+1}, \tag{1.3}\\ i \partial_{t} \widetilde{v}+\frac{m}{M} \Delta \widetilde{v}=-\widetilde{u}^{2}, & (x, t) \in \mathbb{R}^{n+1},\end{cases}
$$
\]

Using the ansatz $(\widetilde{u}(x, t), \widetilde{v}(x, t))=\left(e^{i \omega t} \phi(x), e^{i 2 \omega t} \psi(x)\right), \phi(x), \psi(x) \not \equiv 0$ with $\omega>0$, System (1.3) becomes

$$
\begin{cases}-\Delta \phi+\omega \phi=2 \phi \psi, & x \in \mathbb{R}^{n}, \tag{1.4}\\ -\kappa \Delta \psi+2 \omega \psi=\phi^{2}, & x \in \mathbb{R}^{n},\end{cases}
$$

where $\kappa=\frac{m}{M}$.
Let $L^{p}\left(\mathbb{R}^{n}\right)$ denote the usual Lebesgue space with the norm $|u|_{p}=\left(\int_{\mathbb{R}^{n}}|u|^{p} d x\right)^{\frac{1}{p}}$. The space $H^{1}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right), \nabla u \in L^{2}\left(\mathbb{R}^{n}\right)\right\}$ with the corresponding norm $\|u\|=$ $\left(\int_{\mathbb{R}^{n}}|\nabla u|^{2}+|u|^{2} d x\right)^{\frac{1}{2}}$, and $H_{r}^{1}\left(\mathbb{R}^{n}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{n}\right) ; u\right.$ is radially symmetric $\}$.

Recently, as $2 \leq n \leq 5$, Hayashi, Ozawa and Tanaka [8] obtained the existence of radially symmetric ground states for System (1.4) by using rearrangement method, Pohozaev identity and the Sobolev compact embedding $H_{r}^{1}\left(\mathbb{R}^{n}\right) \subset L^{3}\left(\mathbb{R}^{n}\right)$.

In this paper, firstly, we prove the existence of bound states for System (1.4) by using the Concentration-compactness Lemma and direct methods in the critical points theory. Secondly, we discuss the general case for System (1.4), i.e.,

$$
\begin{cases}-\Delta \phi+\lambda_{1} \phi=2 \phi \psi, & x \in \mathbb{R}^{n}, \tag{1.5}\\ -\kappa \Delta \psi+\lambda_{2} \psi=\phi^{2}, & x \in \mathbb{R}^{n},\end{cases}
$$

where $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$. By using the Concentration-compactness Lemma, variational arguments and rearrangement result of Shibata [13], we obtain the existence of ground states for System (1.5). In particular, if $\lambda_{1}=\frac{1}{2} \lambda_{2}>0$, then System (1.5) can be reduced to System (1.4) and the existence of ground states for System (1.4) is obtained in [8]. Furthermore, we also prove the orbital stability of bound states and ground states.

Remark 1.1. In contrast to results in [8], we obtain the existence of bound states in the whole space $H^{1}\left(\mathbb{R}^{n}\right)$. Since the embedding $H^{1}\left(\mathbb{R}^{n}\right) \subset L^{3}\left(\mathbb{R}^{n}\right)$ is only continuous, we apply the Concentration-compactness Lemma and variational arguments to obtain the existence of bound states.

2 Preliminaries and main results

In this section, we state our main results in this paper.
Now, we define the functionals I, J and $Q: H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& I(\phi, \psi)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left(|\nabla \phi|^{2}+\kappa|\nabla \psi|^{2}\right) d x-\int_{\mathbb{R}^{n}} \phi^{2} \psi d x, \quad \forall(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right), \\
& J(\phi, \psi)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left(|\nabla \phi|^{2}+\kappa|\nabla \psi|^{2}\right) d x, \quad \forall(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right),
\end{aligned}
$$

and

$$
Q(\phi, \psi)=\frac{\omega}{2}\left(\int_{\mathbb{R}^{n}}|\phi|^{2} d x+2 \int_{\mathbb{R}^{n}}|\psi|^{2} d x\right), \quad \forall(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)
$$

It is obvious that I, J and $Q \in C^{1}\left(H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right), \mathbb{R}\right)$. Hence, (ϕ, ψ) is a weak solution of System (1.4) if and only if (ϕ, ψ) is a critical point of the functional $S:=I+Q$.

Let $M_{N}=\left\{(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right): Q(\phi, \psi)=N,|\phi|_{2}^{2},|\psi|_{2}^{2}>0\right\}$ for some $N>0$, and the minimizing problem

$$
\begin{equation*}
I_{N}=\inf \left\{I(\phi, \psi) ;(\phi, \psi) \in M_{N}\right\} . \tag{2.1}
\end{equation*}
$$

Besides, for every $N>0$, let P_{N} denote the set of bound states of System (1.4), that is,

$$
P_{N}=\left\{(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right) ; I(\phi, \psi)=I_{N} \text { and }(\phi, \psi) \in M_{N}\right\},
$$

which generates the solitary waves of System (1.1).
Theorem 2.1. Let $n=2,3$. Then we have:
(1) For all $N>0$, there exists $\left(\phi_{N}, \psi_{N}\right) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ a solution of

$$
\begin{gather*}
\left(\phi_{N}, \psi_{N}\right) \in M_{N} \tag{2.2}\\
I\left(\phi_{N}, \psi_{N}\right)= \\
\min \left\{I(\phi, \psi) ;(\phi, \psi) \in M_{N}\right\} .
\end{gather*}
$$

(2) If $\left(\phi_{N}, \psi_{N}\right)$ is a solution of the minimizing problem (2.2), then there exists a Lagrange multiplier $\sigma_{\mathrm{N}}>0$ such that

$$
\begin{cases}-\Delta \phi+\sigma_{N} \omega \phi=2 \phi \psi, & x \in \mathbb{R}^{n}, \tag{2.3}\\ -\kappa \Delta \psi+2 \sigma_{N} \omega \psi=\phi^{2}, & x \in \mathbb{R}^{n},\end{cases}
$$

where σ_{N} is given by

$$
\begin{equation*}
\sigma_{N}=\frac{\frac{2}{n} J\left(\phi_{N}, \psi_{N}\right)-I_{N}}{N} . \tag{2.4}
\end{equation*}
$$

(3) The set
$\Sigma:=\left\{\left(N, \sigma_{N}\right) ; N>0, \sigma_{N}\right.$ is a Lagrange multiplier of the minimizing problem (2.2) $\}$
is a closed graph in $(0,+\infty) \times(0,+\infty)$. In particular, if Σ is a function, then it is continuous and there exists $N_{0}>0$ such that $\sigma_{N_{0}}=1$. So, $\left(\phi_{N_{0}}, \psi_{N_{0}}\right)$ is a bound state of System (1.4).

Next, we define the set

$$
M_{\alpha, \beta}=\left\{(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right):|\phi|_{2}^{2}=\alpha,|\psi|_{2}^{2}=\beta\right\}
$$

for any $\alpha, \beta>0$, and the minimizing problem

$$
I_{\alpha, \beta}=\inf \left\{I(\phi, \psi) ;(\phi, \psi) \in M_{\alpha, \beta}\right\} .
$$

Besides, for any $\alpha, \beta>0$, let

$$
G_{\alpha, \beta}=\left\{(\phi, \psi) \in M_{\alpha, \beta} ; I(\phi, \psi)=I_{\alpha, \beta}\right\},
$$

which denotes the set of ground states of System (1.5).

Theorem 2.2.

(1) For any $\alpha, \beta>0$, any minimizing sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1} \subset H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ with respect to $I_{\alpha, \beta}$ is pre-compact. That is, taking a subsequence, there exist $(\phi, \psi) \in M_{\alpha, \beta}$ and $\left\{y_{n}\right\}_{n \geq 1} \subset \mathbb{R}^{n}$ such that $\phi_{n}\left(\cdot-y_{n}\right) \rightarrow \phi, \psi_{n}\left(\cdot-y_{n}\right) \rightarrow \psi$ in $H^{1}\left(\mathbb{R}^{n}\right)$ as $n \rightarrow \infty$.
(2) Let $\left(\lambda_{1}, \lambda_{2}\right)$ be the Lagrange multiplier associated with (ϕ, ψ) on $M_{\alpha, \beta}$, we have $\lambda_{1}>0$.
(3) If $(\phi, \psi) \in G_{\alpha, \beta}$, we have $(|\phi|,|\psi|) \in G_{\alpha, \beta}$. One also has $\left(\phi^{*}, \psi^{*}\right) \in G_{\alpha, \beta}$ whenever $(\phi, \psi) \in G_{\alpha, \beta}$ and $\phi^{*}, \psi^{*}>0$, where f^{*} represents the symmetric decreasing rearrangement of the function f.
Definition 2.3. For any $N>0$, the set P_{N} is stable if for any $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that if $\left(\phi_{0}, \psi_{0}\right) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ verifies

$$
\inf _{\left(\phi_{N}, \psi_{N}\right) \in P_{N}}\left\|\left(\phi_{0}, \psi_{0}\right)-\left(\phi_{N}, \psi_{N}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}<\delta(\varepsilon),
$$

then the solution $(\phi(t), \psi(t))$ of the System (1.1) with $\phi(0)=\phi_{0}, \psi(0)=\psi_{0}$ satisfies

$$
\sup _{t \in \mathbb{R}} \inf _{\left(\phi_{N}, \psi_{N}\right) \in P_{N}}\left\|(\phi(t), \psi(t))-\left(\phi_{N}, \psi_{N}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}<\varepsilon
$$

Besides, we can also define the set $G_{\alpha, \beta}$ is stable in the same way.
Theorem 2.4. Let $n=2,3$, the sets P_{N} and $G_{\alpha, \beta}$ are stable.
Now, we recall the rearrangement results of Shibata [13] as presented in [9]. Let u be a Borel measureable function on \mathbb{R}^{n}. Then u is said to vanish at infinity if $\left|\left\{x \in \mathbb{R}^{n} ;|u(x)|>s\right\}\right|<\infty$ for every $s>0$. Here $|\cdot|$ stands for the n-dimensional Lebesgue measure. Considering two Borel functions u, v which vanish at infinity in \mathbb{R}^{n}, we define for $s>0$, set $A^{\star}(u, v ; s):=$ $\left\{x \in \mathbb{R}^{n} ;|x|<r\right\}$ where $r \geq 0$ is chosen so that

$$
\left|B_{r}(0)\right|=\left|\left\{x \in \mathbb{R}^{n} ;|u(x)|>s\right\}\right|+\left|x \in \mathbb{R}^{n} ;|v(x)|>s\right\} \mid
$$

and $\{u, v\}^{\star}$ by

$$
\{u, v\}^{\star}(x):=\int_{0}^{\infty} \chi_{A^{\star}(u, v ; s)}(x) d s
$$

where $\chi_{A}(x)$ is a characteristic function of the set $A \subset \mathbb{R}^{n}$.
Lemma 2.5 ([9, Lemma A.1]).
(1) The function $\{u, v\}^{\star}(x)$ is radially symmetric, non-increasing and lower semi-continuous. Moreover, for each $s>0$ there holds $\left\{x \in \mathbb{R}^{n} ;\{u, v\}^{\star}>s\right\}=A^{\star}(u, v ; s)$.
(2) Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be non-decreasing, lower semi-continuous, continuous at 0 and $\Phi(0)=0$. Then $\{\Phi(u), \Phi(v)\}^{\star}=\Phi\left(\{u, v\}^{\star}\right)$.
(3) $\left|\{u, v\}^{\star}\right|_{p}^{p}=|u|_{p}^{p}+|v|_{p}^{p}$ for $1 \leq p<\infty$.
(4) If $u, v \in H^{1}\left(\mathbb{R}^{n}\right)$, then $\{u, v\}^{\star} \in H^{1}\left(\mathbb{R}^{n}\right)$ and $\left|\nabla\{u, v\}^{\star}\right|_{2}^{2} \leq|\nabla u|_{2}^{2}+|\nabla v|_{2}^{2}$. In addition, if $u, v \in\left(H^{1}\left(\mathbb{R}^{n}\right) \cap C^{1}\left(\mathbb{R}^{n}\right)\right) \backslash\{0\}$ are radially symmetric, positive and non-increasing, then we have

$$
\int_{\mathbb{R}^{n}}\left|\nabla\{u, v\}^{\star}\right|^{2} d x<\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{n}}|\nabla v|^{2} d x
$$

(5) Let $u_{1}, u_{2}, v_{1}, v_{2} \geq 0$ be Borel measurable functions which vanish at infinity, then we have

$$
\int_{\mathbb{R}^{n}}\left(u_{1} u_{2}+v_{1} v_{2}\right) d x \leq \int_{\mathbb{R}^{n}}\left\{u_{1}, v_{1}\right\}^{\star}\left\{u_{2}, v_{2}\right\}^{\star} d x
$$

3 Bound states

Let $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1}$ be a minimizing sequence for the minimizing problem (2.1), that is, the sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1} \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ satisfies $Q\left(\phi_{n}, \psi_{n}\right) \rightarrow N$ and $I\left(\phi_{n}, \psi_{n}\right) \rightarrow I_{N}$, as $n \rightarrow \infty$. Then, we have

Lemma 3.1. As $n=2,3$, there exists $B>0$ such that $\left\|\left(\phi_{n}, \psi_{n}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} \leq B$ for all n, and the functional I is bounded below on M_{N}.

Proof. By the Gagliardo-Nirenberg inequality, we have

$$
\left(\int_{\mathbb{R}^{n}}|\phi|^{3} d x\right)^{\frac{1}{3}} \leq C\left(\int_{\mathbb{R}^{n}}|\nabla \phi|^{2} d x\right)^{\frac{n}{12}}\left(\int_{\mathbb{R}^{n}}|\phi|^{2} d x\right)^{\frac{1}{2}-\frac{n}{12}}
$$

Hence, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \phi^{2} \psi d x & \leq\left(\int_{\mathbb{R}^{n}}\left(\phi^{2}\right)^{\frac{3}{2}} d x\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{n}}|\psi|^{3} d x\right)^{\frac{1}{3}}=\left(\int_{\mathbb{R}^{n}}|\phi|^{3} d x\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{n}}|\psi|^{3} d x\right)^{\frac{1}{3}} \\
& \leq C\left(\int_{\mathbb{R}^{n}}|\nabla \phi|^{2} d x\right)^{\frac{n}{6}}\left(\int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d x\right)^{\frac{n}{12}} .
\end{aligned}
$$

Since $n=2,3$, we have $\frac{n}{6}+\frac{n}{12}<1$. Thus, I is coercive and in particular $I_{N}>-\infty$. By the coerciveness of I on M_{N}, the sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1}$ is bounded in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$. Thus, there exists $B>0$ such that $\left\|\left(\phi_{n}, \psi_{n}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} \leq B$ for all n.

Lemma 3.2. For any $N>0, I_{N}<0$ and I_{N} is continuous with respect to N.
Proof. Let $A(\phi)=\frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla \phi|^{2} d x, B(\psi)=\frac{\kappa}{2} \int_{\mathbb{R}^{n}}|\nabla \psi|^{2} d x$, and $C(\phi, \psi)=\int_{\mathbb{R}^{n}} \phi^{2} \psi d x$, hence,

$$
I(\phi, \psi)=A(\phi)+B(\psi)-C(\phi, \psi) .
$$

Now let $(\phi(x), \psi(x)) \in M_{N}$ be fixed. For any $b>0$, we define $\phi_{\theta}(x)=\theta^{\frac{b n}{2}} \phi\left(\theta^{b} x\right), \psi_{\theta}(x)=$ $\theta^{\frac{b n}{2}} \psi\left(\theta^{b} x\right)$, then $\left(\phi_{\theta}(x), \psi_{\theta}(x)\right) \in M_{N}$ as well. We have the following scaling laws:

$$
\begin{aligned}
& A\left(\phi_{\theta}(x)\right)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\theta^{\frac{b n}{2}} \nabla \phi\left(\theta^{b} x\right)\right|^{2} d x=\theta^{2 b} A(\phi(x)), \\
& B\left(\psi_{\theta}(x)\right)=\frac{\kappa}{2} \int_{\mathbb{R}^{n}}\left|\theta^{\frac{b n}{2}} \nabla \psi\left(\theta^{b} x\right)\right|^{2} d x=\theta^{2 b} B(\psi(x)),
\end{aligned}
$$

and

$$
C\left(\phi_{\theta}(x), \psi_{\theta}(x)\right)=\int_{\mathbb{R}^{n}} \theta^{b n} \phi^{2}\left(\theta^{b} x\right) \theta^{\frac{b n}{2}} \psi\left(\theta^{b} x\right) d x=\theta^{\frac{b n}{2}} C(\phi(x), \psi(x)) .
$$

So, we get

$$
I\left(\phi_{\theta}(x), \psi_{\theta}(x)\right)=\theta^{2 b} A+\theta^{2 b} B-\theta^{\frac{b n}{2}} C .
$$

Since $n=2,3$, we have $\frac{b n}{2}<2 b$. Letting $\theta \rightarrow 0$, then $I\left(\phi_{\theta}(x), \psi_{\theta}(x)\right) \rightarrow 0^{-}$. Hence, we prove $I_{N}<0$.

In order to prove that I_{N} is a continuous function, we assume $N_{n}=N+o(1)$. From the definition of $I_{N_{n}}$, for any $\varepsilon>0$, there exists $\left(\phi_{n}, \psi_{n}\right) \in M_{N_{n}}$ such that

$$
\begin{equation*}
I\left(\phi_{n}, \psi_{n}\right) \leq I_{N_{n}}+\varepsilon . \tag{3.1}
\end{equation*}
$$

Setting

$$
\left(u_{n}, v_{n}\right):=\left(\sqrt{\frac{N}{N_{n}}} \phi_{n}, \sqrt{\frac{N}{N_{n}}} \psi_{n}\right),
$$

we have that $\left(u_{n}, v_{n}\right) \in M_{N}$ and

$$
\begin{equation*}
I_{N} \leq I\left(u_{n}, v_{n}\right)=I\left(\phi_{n}, \psi_{n}\right)+o(1) . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we obtain

$$
I_{N} \leq I_{N_{n}}+\varepsilon+o(1)
$$

Reversing the argument, we obtain similarly that

$$
I_{N_{n}} \leq I_{N}+\varepsilon+o(1) .
$$

Therefore, since $\varepsilon>0$ is arbitrary, we deduce that $I_{N_{n}}=I_{N}+o(1)$.
Lemma 3.3. $\frac{I_{N}}{N}$ is decreasing in $(0,+\infty)$.
Proof. For $(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$, we define $\left(\phi_{\theta}(x), \psi_{\theta}(x)\right):=\left(\theta^{b} \phi\left(\theta^{a} x\right), \theta^{b} \psi\left(\theta^{a} x\right)\right)$, $\forall \theta>0$. Choosing $a, b>0$, such that $2 b-n a=1$, it follows that $Q\left(\phi_{\theta}(x), \psi_{\theta}(x)\right)=\theta Q(\phi, \psi)$ and we can write

$$
\begin{equation*}
I\left(\phi_{\theta}(x), \psi_{\theta}(x)\right)=\theta^{2 a+1} I(\phi, \psi)+\theta^{2 a+1} \int_{\mathbb{R}^{n}} \phi^{2} \psi d x-\theta^{b+1} \int_{\mathbb{R}^{n}} \phi^{2} \psi d x . \tag{3.3}
\end{equation*}
$$

We can choose $a, b>0$ such that $2 b-n a=1, b>2 a$ and it follows from (3.3) that

$$
I\left(\phi_{\theta}(x), \psi_{\theta}(x)\right)<\theta^{2 a+1} I(\phi, \psi), \quad \forall \theta>1 .
$$

Since $(\phi(x), \psi(x)) \in M_{N} \Leftrightarrow\left(\phi_{\theta}(x), \psi_{\theta}(x)\right) \in M_{\theta N}, \forall \theta, N>0$, it follows that

$$
I_{\theta N}<\theta^{2 a+1} I_{N}<\theta I_{N}, \quad \forall \theta>1 .
$$

Thus,

$$
\frac{I_{\theta N}}{\theta N}<\frac{I_{N}}{N}, \quad \forall \theta>1
$$

Lemma 3.4. For any $N>0$ and $\lambda \in(0, N)$, we have $I_{N}<I_{\lambda}+I_{N-\lambda}$.
Proof. Thanks to the following well-known inequality: $\forall a, b, A, B>0$,

$$
\min \left\{\frac{a}{A}, \frac{b}{B}\right\} \leq \frac{a+b}{A+B} \leq \max \left\{\frac{a}{A}, \frac{b}{B}\right\},
$$

where the equalities hold if and only if $\frac{a}{A}=\frac{b}{B}$, we get

$$
\frac{\left(-I_{\lambda}\right)+\left(-I_{N-\lambda}\right)}{\lambda+N-\lambda} \leq \max \left\{\frac{-I_{\lambda}}{\lambda}, \frac{-I_{N-\lambda}}{N-\lambda}\right\} .
$$

Without loss of generality, we assume $\frac{-I_{\lambda}}{\lambda}$ is larger than $\frac{-I_{N-\lambda}}{N-\lambda}$, then

$$
\frac{\left(-I_{\lambda}\right)+\left(-I_{N-\lambda}\right)}{N} \leq \frac{-I_{\lambda}}{\lambda} .
$$

By Lemma 3.3, we have

$$
I_{\lambda}+I_{N-\lambda} \geq \frac{N}{\lambda} I_{\lambda}>I_{N}
$$

Proof of Theorem 2.1. Our proof is divided into five steps:
Step 1. The minimizing problem (2.2) has a solution. By Lemma 3.1, the sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$. If

$$
\sup _{y \in \mathbb{R}^{n}} \int_{B_{\mathbb{R}}(y)}\left(\left|\phi_{n}\right|^{2}+\left|\psi_{n}\right|^{2}\right) d x=o(1),
$$

for some $R>0$, the $\phi_{n} \rightarrow 0, \psi_{n} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{n}\right)$ for $2<p<2^{*}$, see [11,12]. This is incompatible with the fact that $I_{N}<0$, see Lemma 3.2. Thus, the vanishing of minimizing sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}$ does not exist. Besides, Lemma 3.4 prevents their dichotomy. According to Concentration-compactness Lemma, only concentration exists, and we get a solution (ϕ_{N}, ψ_{N}) of the minimizing problem (2.2).
Step 2. There exists a positive Lagrange multiplier σ_{N}. Let $\left(\phi_{N}, \psi_{N}\right)$ a solution of the minimizing problem (2.2). From the Lagrange Multiplier Theorem, there exists $\theta \in \mathbb{R}$ such that $I^{\prime}\left(\phi_{N}, \psi_{N}\right)=\theta Q^{\prime}\left(\phi_{N}, \psi_{N}\right)$, that means

$$
\begin{align*}
-\Delta \phi_{N}-2 \phi_{N} \psi_{N} & =\theta \omega \phi_{N} \tag{3.4}\\
-\kappa \Delta \psi_{N}-\phi_{N}^{2} & =2 \theta \omega \psi_{N} .
\end{align*}
$$

By multiply the above equations respectively by ϕ_{N}, ψ_{N} and integrating on \mathbb{R}^{n}, we get

$$
\begin{equation*}
I_{N}-\frac{1}{2} \int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N} d x=\theta N \tag{3.5}
\end{equation*}
$$

Since $I_{N}<0, \forall N>0$, we obtain easily from (3.5) that $\theta<0$.
For any $\lambda, c>0$, we consider

$$
\left(\phi_{\lambda}(x), \psi_{\lambda}(x)\right):=\left(\lambda^{\frac{c n}{2}} \phi_{N}\left(\lambda^{c} x\right), \lambda^{\frac{c n}{2}} \psi_{N}\left(\lambda^{c} x\right)\right)
$$

then $\left(\phi_{\lambda}(x), \psi_{\lambda}(x)\right) \in M_{N}$ and $I\left(\phi_{N}, \psi_{N}\right)=\min _{\lambda>0} I\left(\phi_{\lambda}(x), \psi_{\lambda}(x)\right)$. In particular,

$$
\begin{equation*}
0=\left.\frac{d}{d \lambda} I\left(\phi_{\lambda}(x), \psi_{\lambda}(x)\right)\right|_{\lambda=1}=2 c J\left(\phi_{N}, \psi_{N}\right)-\frac{c n}{2} \int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N} d x . \tag{3.6}
\end{equation*}
$$

Merging (3.5) and (3.6), we get

$$
I_{N}-\frac{2}{n} J\left(\phi_{N}, \psi_{N}\right)=\theta N,
$$

which implies that $\theta<0$ and the Lagrange multiplier

$$
\begin{equation*}
\sigma_{N}=-\theta=\frac{\frac{2}{n} J\left(\phi_{N}, \psi_{N}\right)-I_{N}}{N}>0 \tag{3.7}
\end{equation*}
$$

Step 3. There exist $\gamma(n)>0$ such that

$$
\begin{equation*}
-\frac{I_{N}}{N}<\sigma_{N}<\gamma(n)-\frac{I_{N}}{N} . \tag{3.8}
\end{equation*}
$$

Since $I\left(\phi_{N}, \psi_{N}\right)<0$, we get from Hölder's inequality and the Gagliardo-Nirenberg inequality that

$$
\begin{align*}
J\left(\phi_{N}, \psi_{N}\right) & <\int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N} d x \leq \frac{1}{2}\left(\left|\phi_{N}\right|_{3}^{4}+\left|\psi_{N}\right|_{2}^{3}\right) \\
& \leq C\left(\left|\nabla \phi_{N}\right|_{2}^{\frac{2 n}{3}}\left|\phi_{N}\right|_{2}^{4-\frac{2 n}{3}}+\left|\nabla \psi_{N}\right|_{2}^{\frac{n}{3}}\left|\psi_{N}\right|_{2}^{2-\frac{n}{3}}\right) \tag{3.9}\\
& \leq C\left(J\left(\phi_{N}, \psi_{N}\right)^{\frac{n}{3}}+J\left(\phi_{N}, \psi_{N}\right)^{\frac{n}{6}}\right) \rho(N),
\end{align*}
$$

where $C>0$ and $\rho(N):=\max \left\{N^{\left(2-\frac{n}{3}\right)}, N^{\left(1-\frac{n}{6}\right)}\right\}$.
Let $f:(0, \infty) \rightarrow \mathbb{R}$ the function defined by

$$
f(s):=\frac{s}{s^{\frac{n}{3}}+s^{\frac{n}{6}}}
$$

and we know $f^{\prime}(s)>0, \forall s>0$ and $\lim _{s \rightarrow 0^{+}} f(s)=0$. So, we can rewrite (3.9) as

$$
\begin{equation*}
J\left(\phi_{N}, \psi_{N}\right)<f^{-1}(C \rho(N)) \tag{3.10}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \rho(s)=s^{\left(1-\frac{n}{6}\right)} \quad \text { if } s \leq 1, \quad \text { and } \quad f(s) \geq \frac{1}{2} s^{\left(1-\frac{n}{6}\right)} \quad \text { if } s \leq 1 \text {, } \\
& \rho(s)=s^{\left(2-\frac{n}{3}\right)} \quad \text { if } s \geq 1, \quad \text { and } \quad f(s) \geq \frac{1}{2} s^{\left(1-\frac{n}{3}\right)} \quad \text { if } s \geq 1 .
\end{aligned}
$$

By a straightforward calculation we see that there exists $C_{1}>0$ such that

$$
\begin{aligned}
& f^{-1}(C \rho(N)) \leq C_{1} N \quad \text { if } N \leq 1 \\
& f^{-1}(C \rho(N)) \leq C_{1} N^{\left(\frac{6-n}{3-n}\right)} \quad \text { if } N \geq 1
\end{aligned}
$$

Hence, we obtain from (3.10) that

$$
J\left(\phi_{N}, \psi_{N}\right)<C_{1} N, \quad \forall N>0
$$

Let $\gamma(n)=\frac{2 C_{1}}{n}$, (3.8) holds.
Step 4. Σ is closed in $(0,+\infty) \times(0,+\infty)$. For all $\left(\phi_{N}, \psi_{N}\right)$ solution of the minimizing problem (2.2), we define

$$
\sigma\left(\phi_{N}, \psi_{N}\right):=\frac{1}{N}\left(\frac{2}{n} J\left(\phi_{N}, \psi_{N}\right)-I_{N}\right)
$$

$$
\Sigma_{N}:=\left\{\sigma\left(\phi_{N}, \psi_{N}\right) ;\left(\phi_{N}, \psi_{N}\right) \text { solution of the minimizing problem }(2.2)\right\} .
$$

Then it is easy to see that $\Sigma=\left\{\left(N, \sigma_{N}\right) ; N>0, \sigma_{N} \in \Sigma_{N}\right\}$.
Let $\left(N_{n}, \sigma_{n}\right) \in \Sigma$ such that $\left(N_{n}, \sigma_{n}\right) \rightarrow(N, \sigma), N>0$. By definition, there exists $\left(\phi_{n}, \psi_{n}\right) \in$ $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ such that $Q\left(\phi_{n}, \psi_{n}\right)=N_{n}, I\left(\phi_{n}, \psi_{n}\right)=I_{N_{n}}$ and

$$
\sigma_{n}=\frac{1}{N_{n}}\left(\frac{2}{n} J\left(\phi_{n}, \psi_{n}\right)-I_{N_{n}}\right)
$$

By Lemmas 3.1 and $3.2,\left\{\left(\phi_{n}, \psi_{n}\right)\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$. If we define

$$
\left(u_{n}, v_{n}\right):=\left(\sqrt{\frac{N}{N_{n}}} \phi_{n}, \sqrt{\frac{N}{N_{n}}} \psi_{n}\right)
$$

then $\left\{\left(u_{n}, v_{n}\right)\right\}$ is also bounded in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ and $Q\left(u_{n}, v_{n}\right)=N$. By using the Concentration-compactness Lemma, there exists a subsequence satisfying only one of the following three cases: 1) concentration; 2) vanishing; 3) dichotomy.

By using the argument as in step 1, only concentration exists. Therefore, there exists $\left\{y_{n}\right\}_{n \geq 1} \subset \mathbb{R}^{n}$ and $(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{aligned}
& \phi_{n}\left(\cdot-y_{n}\right) \rightharpoonup \phi, \quad \psi_{n}\left(\cdot-y_{n}\right) \rightharpoonup \psi \text { weakly in } H^{1}\left(\mathbb{R}^{n}\right), \\
& \phi_{n}\left(\cdot-y_{n}\right) \rightarrow \phi, \quad \psi_{n}\left(\cdot-y_{n}\right) \rightarrow \psi \text { in } L^{2}\left(\mathbb{R}^{n}\right) \\
& \int_{\mathbb{R}^{n}} \phi_{n}^{2}\left(\cdot-y_{n}\right) \psi_{n}\left(\cdot-y_{n}\right) d x=\int_{\mathbb{R}^{n}} \phi_{n}^{2} \psi_{n} d x \rightarrow \int_{\mathbb{R}^{n}} \phi^{2} \psi d x .
\end{aligned}
$$

In particular, $Q(\phi, \psi)=N$ and $I(\phi, \psi) \geq I_{N}$. On the other hand,

$$
I\left(\phi_{N}, \psi_{N}\right) \leq \liminf _{n \rightarrow \infty} I\left(\phi_{n}\left(\cdot-y^{n}\right), \psi_{n}\left(\cdot-y^{n}\right)\right)=\lim _{n \rightarrow \infty} I\left(\phi_{n}, \psi_{n}\right)=I_{N} .
$$

So, $I\left(\phi_{N}, \psi_{N}\right)=I_{N}$ and $\left(\phi_{N}, \psi_{N}\right)$ is a solution of the minimizing problem (2.2). Moreover, since

$$
J\left(\phi_{n}, \psi_{n}\right)=I\left(\phi_{n}, \psi_{n}\right)+\int_{\mathbb{R}^{n}} \phi_{n}^{2} \psi_{n} d x \rightarrow I\left(\phi_{N}, \psi_{N}\right)+\int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N}=J\left(\phi_{N}, \psi_{N}\right),
$$

we conclude that

$$
\sigma=\frac{1}{N}\left(\frac{2}{n} J\left(\phi_{N}, \psi_{N}\right)-I_{N}\right) \in \Sigma_{N} .
$$

Step 5. If Σ is a function, then it is continuous and there exists $N_{0}>0$ such that $\sigma_{N_{0}}=1$. In particular, $\left(\phi_{N_{0}}, \psi_{N_{0}}\right)$ is a bound state of System (1.4). This follows easily from Step 4, (3.8) and Lemma 3.3.

4 Ground states

Lemma 4.1. The energy $I_{\alpha, \beta}$ satisfies that
(i) For any $\alpha, \beta>0,-\infty<I_{\alpha, \beta}<0$.
(ii) $I_{\alpha, \beta}$ is continuous with respect to $\alpha, \beta \geq 0$.
(iii) $I_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}} \leq I_{\alpha, \beta}+I_{\alpha^{\prime}, \beta^{\prime}}$ for $\alpha, \alpha^{\prime}, \beta, \beta^{\prime} \geq 0$.

Proof. The proofs of (i) and (ii) use the same arguments as in Lemmas 3.1 and 3.2. Next, we prove (iii). Indeed, for $\varepsilon>0$, there exists $(u, v) \in M_{\alpha, \beta} \cap C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $(\phi, \psi) \in M_{\alpha^{\prime}, \beta^{\prime}} \cap C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. By using parallel transformation, we can assume that $(\operatorname{supp} u \cup \operatorname{supp} v) \cap(\operatorname{supp} \phi \cup \operatorname{supp} \psi)=$ \varnothing. Therefore $(u+\phi, v+\psi) \in M_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}}$ and

$$
I_{\alpha+\alpha^{\prime}, \beta+\beta^{\prime}} \leq I(u+\phi, v+\psi)=I(u, v)+I(\phi, \psi) \leq I_{\alpha, \beta}+I_{\alpha^{\prime}, \beta^{\prime}}+2 \varepsilon .
$$

Since $\varepsilon>0$ is arbitrarily, it asserts (iii).
Lemma 4.2. For any minimizing sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1}$ of $I_{\alpha, \beta}$, if $\left(\phi_{n}, \psi_{n}\right) \rightharpoonup(\phi, \psi)$ weakly in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\int_{\mathbb{R}^{n}} \phi_{n}^{2} \psi_{n}-\left(\phi_{n}-\phi\right)^{2}\left(\psi_{n}-\psi\right) d x=\int_{\mathbb{R}^{n}} \phi^{2} \psi d x+o(1) .
$$

Proof. The idea of its proof comes from [5] (see also Lemma 2.3 of [4]). For any a_{1}, a_{2}, b_{1}, $b_{2} \in \mathbb{R}$ and $\varepsilon>0$, we deduce from the mean value theorem and Young's inequality that

$$
\left|\left(a_{1}+a_{2}\right)^{2}\left(b_{1}+b_{2}\right)-a_{1}^{2} b_{1}\right| \leq C \varepsilon\left(\left|a_{1}\right|^{3}+\left|a_{2}\right|^{3}+\left|b_{1}\right|^{3}+\left|b_{2}\right|^{3}\right)+C_{\varepsilon}\left(\left|a_{2}\right|^{3}+\left|b_{2}\right|^{3}\right) .
$$

Denote $a_{1}:=\phi_{n}-\phi, b_{1}:=\psi_{n}-\psi, a_{2}:=\phi, b_{2}:=\psi$. Then

$$
\begin{aligned}
f_{n}^{\varepsilon} & :=\left[\left|\phi_{n}^{2} \psi_{n}-\left(\phi_{n}-\phi\right)^{2}\left(\psi_{n}-\psi\right)-\phi^{2} \psi\right|-C \varepsilon\left(\left|\phi_{n}-\phi\right|^{3}+|\phi|^{3}+\left|\psi_{n}-\psi\right|^{3}+|\psi|^{3} \mid\right)\right]_{+} \\
& \leq\left|\phi^{2} \psi\right|+C_{\varepsilon}\left(|\phi|^{3}+|\psi|^{3}\right),
\end{aligned}
$$

and the dominated convergence theorem yields

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f_{n}^{\varepsilon} d x \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Since

$$
\left|\phi_{n}^{2} \psi_{n}-\left(\phi_{n}-\phi\right)^{2}\left(\psi_{n}-\psi\right)-\phi^{2} \psi\right| \leq f_{n}^{\varepsilon}+C \varepsilon\left(\left|\phi_{n}-\phi\right|^{3}+\left|\psi_{n}-\psi\right|^{3}+|\phi|^{3}+|\psi|^{3} \mid\right),
$$

by the boundedness of $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1}$ in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ and (4.1), it follows that

$$
\int_{\mathbb{R}^{n}} \phi_{n}^{2} \psi_{n}-\left(\phi_{n}-\phi\right)^{2}\left(\psi_{n}-\psi\right) d x=\int_{\mathbb{R}^{n}} \phi^{2} \psi d x+o(1) .
$$

Lemma 4.3. Any minimizing sequence $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}_{n \geq 1} \subset H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ with respect to $I_{\alpha, \beta}$ is, up to translation, strongly convergent in $L^{p}\left(\mathbb{R}^{n}\right) \times L^{\bar{p}}\left(\mathbb{R}^{n}\right)$ for $2<p<2^{*}$.
Proof. Similar to the Step 1 of the proof of Theorem 2.1, we can know that there exists a $\beta_{0}>0$ and a sequence $\left\{y_{n}\right\} \subset \mathbb{R}^{n}$ such that

$$
\sup _{y \in \mathbb{R}^{n}} \int_{B_{R}\left(y_{n}\right)}\left(\left|\phi_{n}\right|^{2}+\left|\psi_{n}\right|^{2}\right) d x \geq \beta_{0}>0,
$$

and we deduce from the weak convergence in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ and the local compactness in $L^{p}\left(\mathbb{R}^{n}\right) \times L^{p}\left(\mathbb{R}^{n}\right)$ that $\left(\phi_{n}\left(x-y_{n}\right), \psi_{n}\left(x-y_{n}\right)\right) \rightharpoonup(\phi, \psi) \neq(0,0)$ weakly in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$. In order to prove that $u_{n}(x):=\phi_{n}(x)-\phi\left(x+y_{n}\right) \rightarrow 0, v_{n}(x):=\psi_{n}(x)-\psi\left(x+y_{n}\right) \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{n}\right)$ for $2<p<2^{*}$, we suppose that there exists a $2<q<2^{*}$ such that $\left(u_{n}, v_{n}\right) \rightarrow(0,0)$ in $L^{p}\left(\mathbb{R}^{n}\right) \times L^{p}\left(\mathbb{R}^{n}\right)$. Note that under this assumption by contradiction there exists a sequence $\left\{z_{n}\right\} \subset \mathbb{R}^{n}$ such that

$$
\left(u_{n}\left(x-z_{n}\right), v_{n}\left(x-z_{n}\right)\right) \rightharpoonup(u, v) \neq(0,0)
$$

weakly in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$.
Now, combining the Brézis-Lieb Lemma ([10]), Lemma 4.2 and the translational invariance, we conclude

$$
\begin{align*}
I\left(\phi_{n}, \psi_{n}\right) & =I\left(u_{n}\left(x-y_{n}\right), v_{n}\left(x-y_{n}\right)\right)+I(\phi, \psi)+o(1) \tag{4.2}\\
& =I\left(u_{n}\left(x-z_{n}\right)-u, v_{n}\left(x-z_{n}\right)-v\right)+I(u, v)+I(\phi, \psi)+o(1), \\
& \left|\phi_{n}\left(x-y_{n}\right)\right|_{2}^{2}=\left|u_{n}\left(x-z_{n}\right)-u\right|_{2}^{2}+|u|_{2}^{2}+|\phi|_{2}^{2}+o(1),
\end{align*}
$$

and

$$
\left|\psi_{n}\left(x-y_{n}\right)\right|_{2}^{2}=\left|v_{n}\left(x-z_{n}\right)-v\right|_{2}^{2}+|v|_{2}^{2}+|\psi|_{2}^{2}+o(1) .
$$

Let $\alpha^{\prime}:=\alpha-|u|_{2}^{2}-|\phi|_{2}^{2}, \beta^{\prime}:=\alpha-|v|_{2}^{2}-|\psi|_{2}^{2}$, then

$$
\begin{equation*}
\left|u_{n}\left(x-z_{n}\right)-u\right|_{2}^{2}=\alpha^{\prime}+o(1), \quad\left|v_{n}\left(x-z_{n}\right)-v\right|_{2}^{2}=\beta^{\prime}+o(1) . \tag{4.3}
\end{equation*}
$$

Noting that

$$
|u|_{2}^{2} \leq \liminf _{n \rightarrow \infty}\left|u_{n}\left(x-z_{n}\right)\right|_{2}^{2}=\liminf _{n \rightarrow \infty}\left|\phi_{n}\left(x-y_{n}\right)-\phi\right|_{2}^{2}=\alpha-|\phi|_{2}^{2},
$$

then $\alpha^{\prime} \geq 0$. Similarly, $\beta^{\prime} \geq 0$. Recording that $I\left(\phi_{n}, \psi_{n}\right) \rightarrow I_{\alpha, \beta}$, in consideration of (4.3), Lemma 4.1 (ii) and (4.2), we get

$$
\begin{equation*}
I_{\alpha, \beta} \geq I_{\alpha^{\prime}, \beta^{\prime}}+I(u, v)+I(\phi, \psi) . \tag{4.4}
\end{equation*}
$$

We know from the front that $(\phi, \psi) \neq(0,0)$ and $(u, v) \neq(0,0)$. As for ϕ, ψ, u, v, if one of them is identically zero, we have

$$
I_{\alpha, \beta} \geq I_{\alpha^{\prime}, \beta^{\prime}}+I(u, v)+I(\phi, \psi)>I_{\alpha^{\prime}, \beta^{\prime}}+I_{\left.|u|\right|_{2} ^{2},|v|_{2}^{2}}+I_{|\phi|_{2}^{2},\left.\psi\right|_{2} ^{2}} \geq I_{\alpha, \beta}
$$

which is impossible. So, $\phi, \psi, u, v \neq 0$. If $I(u, v)>I_{|u|_{2}^{2},|v|_{2}^{2}}$ or $I(\phi, \psi)>I_{|\phi|_{2}^{2},|\psi|_{2}^{2}}$, we also have a contradiction. Hence $I(u, v)=I_{|u|_{2}^{2},|v|_{2}^{2}}$ and $I(\phi, \psi)=I_{|\phi|_{2}^{2},|\psi|_{2}^{2}}$. We denote by $\phi^{*}, \psi^{*}, u^{*}, v^{*}$ the classical Schwarz symmetric-decreasing rearrangement of ϕ, ψ, u, v. Since

$$
\begin{gathered}
\left|\phi^{*}\right|_{2}^{2}=|\phi|_{2}^{2}, \quad\left|\psi^{*}\right|_{2}^{2}=|\psi|_{2}^{2}, \quad\left|u^{*}\right|_{2}^{2}=|u|_{2}^{2},\left|v^{*}\right|_{2}^{2}=|v|_{2}^{2} \\
I\left(\phi^{*}, \psi^{*}\right) \leq I(\phi, \psi), \quad I\left(u^{*}, v^{*}\right) \leq I(u, v)
\end{gathered}
$$

see [10], we conclude that

$$
I\left(\phi^{*}, \psi^{*}\right)=I_{|\phi| 2_{2}^{2},|\psi|_{2}^{\prime}} \quad I\left(u^{*}, v^{*}\right)=I_{|u|_{2}^{2},\left.v\right|_{2} ^{2}}
$$

Therefore, $\left(\phi^{*}, \psi^{*}\right),\left(u^{*}, v^{*}\right)$ are solutions of the System (1.1) and from standard regularity results we have that $\phi^{*}, \psi^{*}, u^{*}, v^{*} \in C^{2}\left(\mathbb{R}^{n}\right)$.

By Lemma 2.5, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla\left\{\phi^{*}, u^{*}\right\}^{\star}\right|^{2} d x<\int_{\mathbb{R}^{n}}\left(\left|\nabla \phi^{*}\right|^{2}+\left|\nabla u^{*}\right|^{2}\right) d x \leq \int_{\mathbb{R}^{n}}\left(|\nabla \phi|^{2}+|\nabla u|^{2}\right) d x, \\
& \int_{\mathbb{R}^{n}}\left|\nabla\left\{\psi^{*}, v^{*}\right\}^{\star}\right|^{2} d x<\int_{\mathbb{R}^{n}}\left(\left|\nabla \psi^{*}\right|^{2}+\left|\nabla v^{*}\right|^{2}\right) d x \leq \int_{\mathbb{R}^{n}}\left(|\nabla \psi|^{2}+|\nabla v|^{2}\right) d x,
\end{aligned}
$$

and

$$
\int_{\mathbb{R}^{n}}\left(\left\{\phi^{*}, u^{*}\right\}^{\star}\right)^{2}\left\{\psi^{*}, v^{*}\right\}^{\star} d x \geq \int_{\mathbb{R}^{n}}\left(\left(\phi^{*}\right)^{2} \psi^{*}+\left(u^{*}\right)^{2} v^{*}\right) d x \geq \int_{\mathbb{R}^{n}}\left(\phi^{2} \psi+u^{2} v\right) d x
$$

Thus,

$$
\begin{equation*}
I(\phi, \psi)+I(u, v)>I\left(\left\{\phi^{*}, u^{*}\right\}^{\star},\left\{\psi^{*}, v^{*}\right\}^{\star}\right), \tag{4.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}\left|\left\{\phi^{*}, u^{*}\right\}^{\star}\right|^{2} d x=\int_{\mathbb{R}^{n}}\left(\left|\phi^{*}\right|^{2}+\left|u^{*}\right|^{2}\right) d x=\int_{\mathbb{R}^{n}}\left(|\phi|^{2}+|u|^{2}\right) d x=\alpha-\alpha^{\prime}, \tag{4.6}\\
& \int_{\mathbb{R}^{n}}\left|\left\{\psi^{*}, v^{*}\right\}^{\star}\right|^{2} d x=\int_{\mathbb{R}^{n}}\left(\left|\psi^{*}\right|^{2}+\left|v^{*}\right|^{2}\right) d x=\int_{\mathbb{R}^{n}}\left(|\psi|^{2}+|v|^{2}\right) d x=\beta-\beta^{\prime} .
\end{align*}
$$

Taking (4.4)-(4.6) and Lemma 4.1 (iii) into consideration, one obtains the contradiction

$$
I_{\alpha, \beta}>I_{\alpha^{\prime}, \beta^{\prime}}+I_{\alpha-\alpha^{\prime}, \beta-\beta^{\prime}} \geq I_{\alpha, \beta} .
$$

The contradiction indicates that $u_{n}(x):=\phi_{n}(x)-\phi\left(x+y_{n}\right) \rightarrow 0$ and $v_{n}(x):=\psi_{n}(x)-$ $\psi\left(x+y_{n}\right) \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{n}\right)$ for $2<p<2^{*}$.

Proof of Theorem 2.2. (1) Let $\left\{\left(\phi_{n}, \psi_{n}\right)\right\}$ be a minimizing sequence for the functional I on $M_{\alpha, \beta}$. In light of Lemma 4.3, we know that there exists $\left\{y_{n}\right\} \subset \mathbb{R}^{n}$ such that $\phi_{n}\left(x-y_{n}\right) \rightarrow \phi$, $\psi_{n}\left(x-y_{n}\right) \rightarrow \psi$ in $L^{p}\left(\mathbb{R}^{n}\right)$ for $2<p<2^{*}$. Hence, by weak convergence, we get

$$
\begin{equation*}
I(\phi, \psi) \leq I_{\alpha, \beta} \tag{4.7}
\end{equation*}
$$

Now, we let $|\phi|_{2}^{2}=\alpha^{\prime},|\psi|_{2}^{2}=\beta^{\prime}$. To show that $|\phi|_{2}^{2}=\alpha$ and $|\psi|_{2}^{2}=\beta$, we assume by contradiction that $\alpha^{\prime}<\alpha$ or $\beta^{\prime}<\beta$. We consider the following three cases: (1) $0 \leq \alpha^{\prime}<\alpha$, $0 \leq \beta^{\prime}<\beta$ and $\alpha^{\prime}+\beta^{\prime} \neq 0$; (2) $0 \leq \alpha^{\prime}<\alpha, \beta^{\prime}=\beta$; and (3) $0 \leq \beta^{\prime}<\beta, \alpha^{\prime}=\alpha$.

Case 1. $0 \leq \alpha^{\prime}<\alpha, 0 \leq \beta^{\prime}<\beta$ and $\alpha^{\prime}+\beta^{\prime} \neq 0$. By definition $I(\phi, \psi) \geq I_{\alpha^{\prime}, \beta^{\prime}}$ and thus it results from (4.7) that $I_{\alpha^{\prime}, \beta^{\prime}} \leq I_{\alpha, \beta}$. From Lemma 4.1 (iii), $I_{\alpha, \beta} \leq I_{\alpha^{\prime}, \beta^{\prime}}+I_{\alpha-\alpha^{\prime}, \beta-\beta^{\prime}}$ and by Lemma 4.1 (i), $I_{\alpha-\alpha^{\prime}, \beta-\beta^{\prime}}<0$, we obtain $I_{\alpha, \beta}<I_{\alpha^{\prime}, \beta^{\prime}}$ and it is a contradiction.

Case 2. $0 \leq \alpha^{\prime}<\alpha, \beta^{\prime}=\beta$. By definition $I(\phi, \psi) \geq I_{\alpha^{\prime}, \beta, \beta}$, we get $I_{\alpha^{\prime}, \beta} \leq I_{\alpha, \beta}$. From Lemma 4.1 (iii) $I_{\alpha, \beta} \leq I_{\alpha^{\prime}, \beta}+I_{\alpha-\alpha^{\prime}, 0}$, we have $I_{\alpha^{\prime}, \beta} \leq I_{\alpha, \beta} \leq I_{\alpha^{\prime}, \beta}$. Thus $I_{\alpha^{\prime}, \beta}=I_{\alpha, \beta}$. Let $|\psi|_{2}^{2}=\beta$, and β is fixed. From the above, we know that $N=\frac{\omega}{2}\left(|\phi|_{2}^{2}+2 \beta\right)$, then N is only related to $|\phi|_{2}^{2}$. By Lemma 3.3, $\frac{I_{N\left(\mid \phi 2_{2}\right)}^{N}}{N\left(|\phi|_{2}^{2}\right)}$ is decreasing in $(0,+\infty)$, when $|\phi|_{2}^{2}$ gradually increases. If $|\phi|_{2}^{2}=\alpha^{\prime}$, we have $I_{N\left(\alpha^{\prime}\right)}=I_{\alpha^{\prime}, \beta}^{\prime}$. Similarly, $I_{N(\alpha)}=I_{\alpha, \beta}$. Since $\frac{I_{N\left(\alpha^{\prime}\right)}}{N\left(\alpha^{\prime}\right)}>\frac{I_{N(\alpha)}}{N(\alpha)}$, we have $I_{N\left(\alpha^{\prime}\right)}>\frac{N(\alpha)}{N\left(\alpha^{\prime}\right)} I_{N\left(\alpha^{\prime}\right)}>$ $I_{N(\alpha)}$. So, we obtain that $I_{\alpha^{\prime}, \beta}>I_{\alpha, \beta}$, and it is a contradiction. As for the case (3), we can prove by the same argument.

Now we have $u_{n}(x)=\phi_{n}(x)-\phi\left(x+y_{n}\right) \rightarrow 0, v_{n}(x)=\psi_{n}(x)-\psi\left(x+y_{n}\right) \rightarrow 0$ in $L^{2}\left(\mathbb{R}^{n}\right)$. By using the P.-L. Lions Lemma, $u_{n}(x), v_{n}(x) \rightarrow 0$ in $L^{3}\left(\mathbb{R}^{n}\right)$. According to Hölder inequality, we have $\left|\int_{\mathbb{R}^{n}} u_{n}^{2} v_{n} d x\right| \leq\left|u_{n}\right|_{3}^{2}\left|v_{n}\right|_{3}$. Hence $\int_{\mathbb{R}^{n}} u_{n}^{2} v_{n} d x \rightarrow 0$. By the Brézis-Lieb Lemma,

$$
\begin{aligned}
I\left(\phi_{n}, \psi_{n}\right) & =I(\phi, \psi)+I\left(u_{n}, v_{n}\right)+o(1) \\
& =I_{\alpha, \beta}+\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{2}+\kappa\left|\nabla v_{n}\right|^{2} d x+o(1) \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Taking $n \rightarrow \infty$, we obtain $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{2}+\kappa\left|\nabla v_{n}\right|^{2} d x=0$. Thus we get $\lim _{n \rightarrow \infty} u_{n}=$ $\lim _{n \rightarrow \infty} v_{n}=0$ in $H^{1}\left(\mathbb{R}^{n}\right)$.
(2) Let $(\phi, \psi) \in G_{\alpha, \beta}$ for any $\alpha, \beta>0$. By the Lagrange multiplier method, there exists a pair $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ such that $\left(\lambda_{1}, \lambda_{2}, \phi, \psi\right)$ satisfies System (1.5). By multiply the first equation of (1.5) by ϕ, we get

$$
\int_{\mathbb{R}^{n}}|\nabla \phi|^{2} d x-2 \int_{\mathbb{R}^{n}} \phi^{2} \psi d x=-\lambda_{1}|\phi|_{2}^{2} .
$$

Since $I(\phi, \psi)<0$ (see Lemma 4.1 (i)), we get

$$
\int_{\mathbb{R}^{n}}|\nabla \phi|^{2} d x-2 \int_{\mathbb{R}^{n}} \phi^{2} \psi d x<2 I(\phi, \psi)<0
$$

Then $\lambda_{1}>0$.
(3) Using the fact

$$
|\nabla| \phi \|_{2} \leq|\nabla \phi|_{2}, \quad|\nabla| \psi| |_{2} \leq|\nabla \psi|_{2} \quad \text { and } \quad \int_{\mathbb{R}^{n}}|\phi|^{2}|\psi| d x \geq \int_{\mathbb{R}^{n}} \phi^{2} \psi d x
$$

it follows that $(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right) \Rightarrow(|\phi|,|\psi|) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ and $I(|\phi|,|\psi|) \leq$ $I(\phi, \psi)$. Thus, $G_{\alpha, \beta}$ contains $(|\phi|,|\psi|)$ and hence, the minimizer (ϕ, ψ) can be chosen to be \mathbb{R}-valued.

To prove $\left(\phi^{*}, \psi^{*}\right) \in G_{\alpha, \beta}$, we need the following fact

$$
\begin{equation*}
\left|\nabla \phi^{*}\right|_{2} \leq|\nabla \phi|_{2}, \quad\left|\nabla \psi^{*}\right|_{2} \leq|\nabla \psi|_{2} \tag{4.8}
\end{equation*}
$$

see [10, Theorem 7.17]. Moreover, it is well-know that the symmetric decreasing rearrangement preserves the L^{p} norm, that is,

$$
\begin{equation*}
\left|\phi^{*}\right|_{p}=|\phi|_{p}, \quad\left|\psi^{*}\right|_{p}=|\psi|_{p,}, \quad 1 \leq p \leq \infty . \tag{4.9}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\phi^{*}\right)^{2} \psi^{*} d x \geq \int_{\mathbb{R}^{n}} \phi^{2} \psi d x \tag{4.10}
\end{equation*}
$$

(see for example, Theorem 3.4 of [10]). Taking into account of (4.8), (4.9) and (4.10), it follows that

$$
\left|\phi^{*}\right|_{2}^{2}=|\phi|_{2}^{2}, \quad\left|\psi^{*}\right|_{2}^{2}=|\psi|_{2}^{2} \quad \text { and } \quad I\left(\phi^{*}, \psi^{*}\right) \leq I(\phi, \psi), \quad \forall(\phi, \psi) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right),
$$

which shows that $G_{\alpha, \beta}$ contains $\left(\phi^{*}, \psi^{*}\right)$ whenever it does (ϕ, ψ).
To show that $\phi^{*}>0$ on \mathbb{R}^{n}, observe that $(|\phi|,|\psi|) \in G_{\alpha, \beta}$ satisfies the Euler-Lagrange differential equations

$$
\begin{cases}-\Delta|\phi|+\lambda_{1}|\phi|=2|\phi||\psi|, & x \in \mathbb{R}^{n}, \\ -\kappa \Delta|\psi|+\lambda_{2}|\psi|=|\phi|^{2}, & x \in \mathbb{R}^{n},\end{cases}
$$

where $\left(\lambda_{1}, \lambda_{2}\right)$ is the same pair of numbers as in System (1.5). Letting $f_{1}(|\phi|,|\psi|)=2|\phi||\psi|$. Since $\lambda_{1}>0$, we have

$$
|\phi|=G^{\sqrt{\lambda_{1}}}(x) * f_{1}(|\phi|,|\psi|)=\int_{\mathbb{R}^{n}} G^{\sqrt{\lambda_{1}}}(x-y) f_{1}(|\phi|,|\psi|)(y) d y,
$$

where $G^{\mu}(x)$ is defined by

$$
G^{\mu}(x)=\int_{0}^{\infty}(4 \pi \tau)^{-\frac{n}{2}} \exp \left\{-\frac{|x|^{2}}{4 \tau}-\mu^{2} \tau\right\} d \tau,
$$

for $x \in \mathbb{R}^{n}, \mu>0$. Since the function f_{1} is everywhere nonnegative and not identically zero, it follows that $|\phi|>0$. So, we obtain $\phi^{*}>0$. Besides, by the maximum principle, we get $\psi^{*}>0$. This concludes the proof of statement (3).

5 Orbital stability

In this section, we proceed as in [3] to prove the orbital stability of bound state and ground state solitary waves.

Proof of Theorem 2.4. We assume that the set P_{N} is not stable, then there is a $\varepsilon_{0}>0$, $\left\{\left(\phi_{n}(0), \psi_{n}(0)\right)\right\} \subset H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ and $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$such that

$$
\begin{equation*}
\inf _{\left(\phi_{N}, \psi_{N}\right) \in P_{N}}\left\|\left(\phi_{n}(0), \psi_{n}(0)\right)-\left(\phi_{N}, \psi_{N}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{\left(\phi_{N}, \psi_{N}\right) \in P_{N}}\left\|\left(\phi_{n}\left(t_{n}\right), \psi_{n}\left(t_{n}\right)\right)-\left(\phi_{N}, \psi_{N}\right)\right\|_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} \geq \varepsilon_{0}, \tag{5.2}
\end{equation*}
$$

Since by the conservation laws, we have

$$
\left|\phi_{n}\left(t_{n}\right)\right|_{2}^{2}=\left|\phi_{n}(0)\right|_{2}^{2}, \quad\left|\psi_{n}\left(t_{n}\right)\right|_{2}^{2}=\left|\psi_{n}(0)\right|_{2}^{2},
$$

and

$$
I\left(\phi_{n}\left(t_{n}\right), \psi_{n}\left(t_{n}\right)\right)=I\left(\phi_{n}(0), \psi_{n}(0)\right) .
$$

If we define

$$
\left(\hat{\phi}_{n}, \hat{\psi}_{n}\right)=\left(\frac{\phi_{n}\left(t_{n}\right)}{\left|\phi_{n}\left(t_{n}\right)\right|_{2}} \sqrt{\eta}, \frac{\psi_{n}\left(t_{n}\right)}{\left|\psi_{n}\left(t_{n}\right)\right|_{2}} \sqrt{\frac{2 N-\omega \eta}{2 \omega}}\right),
$$

where $0<\eta<\frac{2 N}{\omega}$, we get that

$$
Q\left(\hat{\phi}_{n}, \hat{\psi}_{n}\right)=N \quad \text { and } \quad I\left(\hat{\phi}_{n}, \hat{\psi}_{n}\right)=I_{N}+o(1) .
$$

Namely $\left\{\left(\hat{\phi}_{n}, \hat{\psi}_{n}\right)\right\}$ is a minimizing sequence for the minimizing problem (2.1). From Theorem 2.1 (1), it follows that it is precompact in $H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)$ thus (5.2) fails.

The proof of the orbital stability of $G_{\alpha, \beta}$ is similar to the above proof.

Acknowledgements

This research is supported by NSF of China (No. 11771291).

References

[1] A. L. Berkhoer, V. E. Zakharov, Self exitation of waves with different polarizations in nonlinear media, Sov. Phys. JETP 31(1970), 903-911. https://doi.org/10.1007/ BF00745002;
[2] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88(1983), No. 3, 486-490. https: //doi .org/10. 2307/2044999; MR0699419;
[3] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85(1982), No. 4, 549-561. https://doi.org/ 10.1007/BF01403504; MR0677997; Zbl 0513.35007
[4] Z. Chen, W. Zou, Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Amer. Math. Soc. 367(2015), 3599-3646. https://doi.org/10. 1090/S0002-9947-2014-06237-5; MR3314818
[5] T. Gou, L. Jeanjean, Existence and orbital stability of standing waves for nonlinear Schrödinger systems, Nonlinear Anal. 144(2016), 10-22. https://doi.org/10.1016/j .na. 2016.05.016; MR3534090
[6] N. Hayashi, C. Li, P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations 24(2011), 417-434. MR2809614; Zbl 1249.35305
[7] N. Hayashi, C. Li, T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl. 3(2011), No. 3, 415-426. https://doi.org/10. 7153/dea-03-26; MR2856418
[8] N. Hayashi, T. Ozawa, K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2013), No. 4, 661-690. https://doi.org/10.1016/j.anihpc.2012.10.007; MR3082479
[9] N. Ікома, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud. 14(2014), No. 1, 115-136. https: //doi.org/10.1515/ans-2014-0104; MR3158981
[10] E. H. Lieb, M. Loss, Analysis, second ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, 2001. https://doi.org/10.1090/gsm/014; MR1817225
[11] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(1984), No. 2, 109145. https://doi.org/10.1016/S0294-1449(16)30422-X; MR0778970; Zbl 0541.49009
[12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(1984), No. 4, 223283. https://doi.org/10.1016/S0294-1449(16) 30422-X; MR0778974; Zbl 0704.49004
[13] M. Shibata, A new rearrangement inequality and its application for L^{2}-constraint minimizing problems, Math. Z. 287(2017), No. 1-2, 341-359. https://doi.org/10.1007/ s00209-016-1828-1; MR3694679

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: zgqw2001@usst.edu.cn

