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Abstract. Using variational methods, we study the existence and multiplicity of solu-
tions for a class of fourth order elliptic equations of the form{

∆2
p(x)u−M

(∫
Ω

1
p(x) |∇u|p(x) dx

)
∆p(x)u = f (x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a smooth bounded domain, ∆2
p(x)u = ∆(|∆u|p(x)−2∆u)

is the operator of fourth order called the p(x)-biharmonic operator, ∆p(x)u =

div
(
|∇u|p(x)−2∇u

)
is the p(x)-Laplacian, p : Ω → R is a log-Hölder continuous func-

tion, M : [0,+∞) → R and f : Ω ×R → R are two continuous functions satisfying
some certain conditions.

Keywords: fourth order elliptic equations, Kirchhoff type problems, variable exponents,
variational methods.
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1 Introduction

In this paper, we are interested in the existence of weak solutions for the following fourth
order elliptic equations∆2

p(x)u−M
(∫

Ω
1

p(x) |∇u|p(x) dx
)

∆p(x)u = f (x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN , N ≥ 3, is a smooth bounded domain, ∆2
p(x)u = ∆

(
|∆u|p(x)−2∆u

)
is the

operator of fourth order called the p(x)-biharmonic operator, ∆p(x)u = div
(
|∇u|p(x)−2∇u

)
is

the p(x)-Laplacian, the exponent p : Ω → R is log-Hölder continuous, that is, there exists
c > 0 such that |p(x)− p(y)| ≤ − c

log |x−y| for all x, y ∈ Ω with 0 < |x− y| ≤ 1
2 and 1 < p− :=
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infx∈Ω p(x) ≤ p+ := supx∈Ω p(x) < N
2 , the function M ∈ C([0,+∞), R) may be degenerate at

zero and f : Ω×R → R is a continuous function satisfying the following subcritical growth
condition:

(F0) There exists C > 0 such that

| f (x, t)| ≤ C(1 + |t|q(x)−1), ∀x ∈ Ω, t ∈ R,

where q ∈ C+(Ω) and q(x) < p∗2(x) = Np(x)
N−2p(x) for all x ∈ Ω.

We point out that if p(.) is a constant then problem (1.1) has been studied by many authors
in recent years, we refer to some interesting papers [4, 11, 21, 26, 27, 31, 32, 36–38, 40]. In [38],
Wang and An considered the following fourth-order elliptic equation{

∆2u−M
(∫

Ω |∇u|2 dx
)

∆u = f (x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.2)

where Ω ⊂ RN , N ≥ 1, is a smooth bounded domain, M : [0,+∞) → R and f : Ω×R → R

are two continuous functions. This problem is related to the stationary analog of the evolution
equation of Kirchhoff type

utt + ∆2u−M
(∫

Ω
|∇u|2 dx

)
∆u = f (x, t), (1.3)

where ∆2 is the biharmonic operator, ∇u denotes the spatial gradient of u, see [8] for the
meaning of the problem from the point of view of physics and engineering. By assuming
that M is bounded on [0,+∞) and the nonlinear term f satisfies the Ambrosetti–Rabinowitz
type condition, Wang et al. obtained in [38] at least one nontrivial solution for problem (1.2)
using the mountain pass theorem. Moreover, the authors also showed the existence at least
two solutions in the case when f is asymptotically linear at infinity. After that, Wang et al.
[37] studied problem (1.2) in the case when M is unbounded function, i.e. M(t) = a + bt,
where a > 0, b ≥ 0 by using the mountain pass techniques and the truncation method. Some
extensions regarding these results can be found in [4, 11, 21, 31, 36, 40] in which the authors
considered problem (1.2) in RN or the nonlinearities involved critical exponents. In [26,27,32],
problem (1.1) was studied in the general case when p(.) = p ∈ (1,+∞) is a constant.

In recent years, the study of differential equations and variational problems with nonstan-
dard p(x)-growth conditions has received more and more interest. The reason of such interest
starts from the study of the role played by their applications in mathematical modelling of
non-Newtonian fluids, in particular, the electrorheological fluids and of other phenomena re-
lated to image processing, elasticity and the flow in porous media, we refer the readers to
[5,35,43] for more details. Some results on problems involving p(x)-Laplace operator or p(x)-
biharmonic operator can be found in [6, 7, 9, 10, 12, 16, 17, 28, 30, 33]. These types of operators
where p(.) is a continuous function possess more complicated properties than the constant
cases, mainly due to the fact that they are not homogeneous. We also find that Kirchhoff
type problems with variable exponents has received a lot of attention in recent years, see for
example [1, 2, 13–15, 18–20, 41].

Motivated by the contributions cited above, in this paper we study the existence and mul-
tiplicity of solutions for perturbed fourth order elliptic equations with variable exponents of
the form (1.1). More precisely, we consider problem (1.1) in two case when f is sublinear or
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superlinear at infinity. In the sublinear case, we obtain an existence result using the minimum
principle while in the superlinear case we prove some existence and multiplicity results with
the help of the Mountain Pass Theorem, Fountain Theorem and Dual Fountain Theorem. To
the best of our knowlegde, the present paper is the first contribution to the study of this type
of problems in Sobolev spaces with variable exponents.

2 Preliminaries

We recall in what follows some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces Lp(x) (Ω) and Wk,p(x) (Ω) where Ω is an open subset of RN . In that context,
we refer to the books of Diening et al. [22] and Musielak [34], the papers of Fan et al. [24, 25],
Zang et al. [42], Ayoujil et al. [6, 7] and Boureanu et al. [10]. Set

C+(Ω) := {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω
|u(x)|p(x)dx < ∞

}
.

We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they
are Banach spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤ p+ <

∞ and continuous functions are dense if p+ < ∞. The inclusion between Lebesgue spaces also
generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x)
a.e. x ∈ Ω then there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We denote by
Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) +
1

p′(x) = 1. For any u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω) the Hölder inequality∣∣∣∣∫Ω
uv dx

∣∣∣∣ ≤ ( 1
p−

+
1

(p′)−

)
|u|p(x)|v|p′(x)

holds true.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by

the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) =
∫

Ω
|u|p(x) dx.

If u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|
p+

p(x) (2.1)
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provided |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|
p−

p(x) (2.2)

provided |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0. (2.3)

As in the constant case, for any positive integer k, the Sobolev space with variable exponent
Wk,p(x)(Ω) is defined by

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where Dαu = ∂|α|

∂xα1
1 ∂xα2

2 ...∂xαN
N

u, with α = (α1, . . . , αN) is a multi-index and |α| = ∑N
i=1 αi. The

space Wk,p(x)(Ω) equipped with the norm

‖u‖k,p(x) = ∑
|α|≤k
|Dαu|p(x),

also becomes a separable and reflexive Banach space. Due to the log-Hölder continuity of
the exponent p, the space C∞(Ω) is dense in Wk,p(x)(Ω). Moreover, we have the following
embedding results.

Proposition 2.1 (see [24, 25]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k (x) for all x ∈ Ω, there is a
continuous embedding

Wk,p(x)(Ω) ↪→ Lr(x)(Ω),

where p∗k (x) = Np(x)
N−kp(x) if kp(x) < N and p∗k (x) = +∞ if kp(x) > N. If we replace ≤ with <, the

embedding is compact.

We denote by Wk,p(x)
0 (Ω) the closure of C∞

0 (Ω) in Wk,p(x)(Ω). Note that the weak solutions
of problem (1.1) are considered in the generalized Sobolev space

X = W1,p(x)
0 (Ω) ∩W2,p(x)(Ω)

equipped with the norm ‖u‖X = ‖u‖1,p(x) + ‖u‖2,p(x) or ‖u‖X = |u|p(x) + |∇u|p(x)
+ ∑α=2 |Dαu|p(x).

According to [42], the norm ‖.‖X is equivalent to the norm |∆.|p(x) in the space X. Conse-
quently, the norms ‖.‖2,p(x), ‖.‖X and |∆.|p(x) are equivalent. For this reason, we can consider
in the space X the following equivalent norms

‖u‖ = |∆u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∆u(x)
µ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)
µ

∣∣∣∣p(x)
)

dx ≤ 1

}
.

Let us define the functional Λ : X → R by

Λ(u) =
∫

Ω

(
|∆u|p(x) + |∇u|p(x)

)
dx, u ∈ X, (2.4)

then using similar arguments as in [10, Proposition 1] we obtain the following modular-type
inequalities.
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Proposition 2.2. For u, un ∈ X and the functional Λ : X → R define as in (2.4), we have the
following assertions:

(1) ‖u‖ < 1 (respectively = 1;> 1)⇐⇒ Λ(u) < 1 (respectively = 1;> 1);

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ Λ(u) ≤ ‖u‖p− ;

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ Λ(u) ≤ ‖u‖p+ ;

(4) ‖un‖ → 0 (respectively→ ∞)⇐⇒ Λ(un)→ 0 (respectively→ ∞) as n→ ∞.

3 Main results

In this section, we will discuss the existence and multiplicity of weak solutions of problem
(1.1). Let us denote by ci, i = 1, 2, . . . general positive constants whose value may change from
line to line. We will look for weak solutions of problem (1.1) in the space X := W1,p(x)

0 (Ω) ∩
W2,p(x)(Ω) with the norm mentioned as in Section 2. First, let us make the definition of a
weak solution of problem (1.1) as follows.

Definition 3.1. We say that u ∈ X is a weak solution of problem (1.1) if∫
Ω
|∆u|p(x)−2∆u∆v dx + M

(∫
Ω

1
p(x)
|∇u|p(x) dx

) ∫
Ω
|∇u|p(x)−2∇u∇v dx−

∫
Ω

f (x, u)v dx = 0

for all v ∈ X.

Let us define the functional J : X → R by

J(u) =
∫

Ω

1
p(x)
|∆u|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇u|p(x) dx

)
−
∫

Ω
F(x, u) dx

= Φ(u)−Ψ(u),
(3.1)

where

Φ(u) =
∫

Ω

1
p(x)
|∆u|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇u|p(x) dx

)
,

Ψ(u) =
∫

Ω
F(x, u) dx, u ∈ X

(3.2)

and M̂(t) =
∫ t

0 M(s) ds.
Using some simple computations, we can show that J ∈ C1(X, R) and its derivative is

given by the formula

J′(u)(v) =
∫

Ω
|∆u|p(x)−2∆u∆v dx + M

(∫
Ω

1
p(x)
|∇u|p(x) dx

) ∫
Ω
|∇u|p(x)−2∇u∇v dx

−
∫

Ω
f (x, u)v dx

for all u, v ∈ X. Thus, we will seek weak solutions of problem (1.1) as the critical points of
the functional J. We first obtain an existence result for problem (1.1) in the case when f is
sublinear at infinity. We also consider case when the Kirchhoff function M are allowed to be
degenerate at zero.



6 N. T. Chung

Theorem 3.2. Assume that the condition (F0) hold with 1 < q− ≤ q+ < p−. Moreover, we assume
that the following conditions hold:

(M′1) There exist m′0, t0 > 0 such that

M(t) ≥ m′0, ∀t ≥ t0;

(M′2) There exists α > 1 such that

lim
t→0

M(t)
tα−1 = 0;

(F′0) There exist positive constants C0, δ > 0 and a subset Ω0 ⊂ Ω, a function r ∈ C+(Ω),
r(x) < p(x) for all x ∈ Ω, such that

|F(x, t)| ≥ C0|t|r(x)

for all x ∈ Ω0 and |t| < δ.

Then problem (1.1) has a nontrivial weak solution.

Proof. From (F0), there exists c1 > 0 such that

|F(x, t)| ≤ c1

(
|t|+ |t|q(x)

)
, ∀x ∈ Ω, t ∈ R. (3.3)

We also obtain from (M′1) and (M′2) that

M̂(t) ≥ m′0t, ∀t ≥ t0, M̂(t) ≤ εtα, ∀t ∈ (0, tε), (3.4)

where M̂(t) =
∫ t

0 M(s) ds and tε is a positive constant depending on ε > 0.
For t0 given as above, let us define the set

X̂ :=
{

u ∈ X : min{|∇u|p
+

p(x), |∇u|p
−

p(x)} ≥ p+t0

}
.

Then it follows that X̂ is a closed subspace of the reflexive Banach space X, so X̂ is a
reflexive Banach space too. Moreover, for any u ∈ X̂, we have∫

Ω

1
p(x)
|∇u|p(x) dx ≥ 1

p+
min

{
|∇u|p

+

p(x), |∇u|p
−

p(x)

}
≥ t0.

By relations (3.3) and (3.4), by the Sobolev embedding, we deduce that for any u ∈ X̂ with
‖u‖ > 1 large enough,

J(u) =
∫

Ω

1
p(x)
|∆u|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇u|p(x) dx

)
−
∫

Ω
F(x, u) dx

≥ 1
p+

∫
Ω
|∆u|p(x) dx +

m′0
p+

∫
Ω
|∇u|p(x) dx− c1

∫
Ω
|u|q(x) dx− c1

∫
Ω
|u| dx

≥ min {1, m′0}
p+

‖u‖p− − c2‖u‖q+ − c2‖u‖.

Since 1 < q+ < p− it follows that the functional J is coercive in X̂. Moreover, we find that
J is weakly lower semicontinuous in X̂ and thus, J attains its infimum in X̂ and there exists
u0 ∈ X̂ such that

J(u0) = inf
u∈X̂

J(u).
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Next, we show that u0 6= 0 i.e. u0 is a nontrivial weak solution of problem (1.1). Let
x0 ∈ Ω0. Since p, r ∈ C+(Ω), we can choose ρ > 0 small enough such that Bρ(x0) ⊂ Ω0 and
p−0 := minx∈Bρ(x0) p(x) > r+0 := maxx∈Bρ(x0) r(x). Now, let us choose φ ∈ C∞

0 (Ω) with |φ| ≤ 1,
‖φ‖

W2,p(x)(Bρ(x0))∩W1,p(x)
0 (Bρ(x0))

≤ c(ρ) and |φ|Lr(x)(Bρ(x0))
> 0. Then, for any 0 < t < δ we deduce

from (F′0) and (3.4) that

J(tφ) =
∫

Ω

1
p(x)
|∆(tφ)|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇(tφ)|p(x) dx

)
−
∫

Ω
F(x, tφ) dx

≤ tp−0

p−

∫
Ω
|∆φ|p(x) dx +

εtαp−0

(p−)α

(∫
Ω
|∇φ|p(x) dx

)α

− C0tr+0
∫

Bρ(x0)
|φ|r(x) dx

≤ tp−0

p−
max{c(ρ)p−0 , c(ρ)p+0 }+ εtαp−0

(p−)α
max{c(ρ)αp−0 , c(ρ)αp+0 } − C0tr+0

∫
Bρ(x0)

|φ|r(x) dx.

Since r+0 < p−0 < αp−0 , we get J(t1φ) < 0 by taking 0 < t1 < δ small enough. Hence,
J(u0) ≤ J(t1φ) < 0. Therefore, u0 ∈ X̂ ⊂ X is a nontrivial critical point of J and problem (1.1)
has a nontrivial weak solution.

In the next part of this paper, we will study the existence and multiplicity of weak solutions
for problem (1.1) in the case when f is superlinear at infinity. In the sequel, we always assume
that the following conditions hold:

(M1) There exists m0 > 0 such that

M(t) ≥ m0, ∀t ≥ 0;

(M2) There exists µ ∈ (0, 1) such that

M̂(t) ≥ (1− µ)M(t)t, ∀t ≥ 0,

where M̂(t) =
∫ t

0 M(s) ds.

Definition 3.3. A functional J is said to satisfy the Palais–Smale condition (or (PS) condition)
in a space X, if any sequence {un} ⊂ X such that {J(un)} is bounded and J′(un) → 0 as
n→ ∞, has a convergent subsequence.

Lemma 3.4. If M satisfies (M1)–(M2), f satisfies (F0) and the Ambrosetti–Rabinowitz type condition,
namely,

(F1) there exist T0 > 0 and θ > p+
1−µ such that

0 < θF(x, t) ≤ f (x, t)t, ∀x ∈ Ω, |t| ≥ T0,

then the functional J satisfies the (PS) condition.

Proof. Suppose that {un} ⊂ X, |J(un)| ≤ c and J′(un)→ 0 in X∗ as n→ ∞. We will show that
{un} is bounded in X. By contradiction, we assume that ‖un‖ → +∞. For n large enough, by
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the conditions (F1), (M1), (M2) and Proposition 2.2 we have

c + ‖un‖ ≥ J(un)−
1
θ

J′(un)(un)

=
∫

Ω

1
p(x)
|∆un|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇un|p(x) dx

)
−
∫

Ω
F(x, un) dx

− 1
θ

∫
Ω
|∆un|p(x) dx− 1

θ
M
(∫

Ω

1
p(x)
|∇un|p(x) dx

) ∫
Ω
|∇un|p(x) dx

+
1
θ

∫
Ω

f (x, un)un dx

≥
(

1
p+
− 1

θ

)∫
Ω
|∆un|p(x) dx + (1− µ)M

(∫
Ω

1
p(x)
|∇un|p(x) dx

)∫
Ω

1
p(x)
|∇un|p(x) dx

− 1
θ

M
(∫

Ω

1
p(x)
|∇un|p(x) dx

) ∫
Ω
|∇un|p(x) dx

+
∫

Ω

(
1
θ

f (x, un)un − F(x, un)

)
dx

≥
(

1
p+
− 1

θ

) ∫
Ω
|∆un|p(x) dx + m0

(
1− µ

p+
− 1

θ

) ∫
Ω
|∇un|p(x) dx

+
∫
{x∈Ω: |un|≥T0}

(
1
θ

f (x, un)un − F(x, un)

)
dx− c3

≥ c4‖un‖p− − c3,

where c4 = min
{ 1

p+ −
1
θ , m0

( 1−µ
p+ −

1
θ

)}
> 0 since θ > p+

1−µ > p+ > 1.

Dividing by ‖un‖p− in the last inequality and letting n → ∞ we obtain a contradiction.
It follows that the sequence {un} is bounded in X. Without loss of generality, we assume
that {un} converges weakly to u in X. Then {un} converges strongly to u in Lr(x)(Ω) for all
r(x) < p∗2(x). Since J′(un) → 0 in X∗ we deduce that J′(un)(un − u) → 0 as n → ∞. We also
have J′(u)(un − u)→ 0 as n→ ∞ because {un} converges weakly to u in X. Thus,

lim
n→∞

(J′(un)− J′(u))(un − u) = 0. (3.5)

Using (F0) and the Hölder inequality, we have∣∣∣∣∫Ω
( f (x, un)− f (x, u))(un − u) dx

∣∣∣∣
≤
∫

Ω
| f (x, un)− f (x, u)||un − u| dx

≤ C
∫

Ω

(
2 + |un|q(x)−1 + |u|q(x)−1

)
|un − u| dx

≤ 2C
(

2 +
∣∣∣|un|q(x)−1

∣∣∣
q′(x)

+
∣∣∣|u|q(x)−1

∣∣∣
q′(x)

)
|un − u|q(x)

→ 0, q′(x) =
q(x)

q(x)− 1

when n→ +∞. This implies that

lim
n→∞

∫
Ω
( f (x, un)− f (x, u))(un − u) dx = 0. (3.6)
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Since the sequence {un} converges weakly to u ∈ X = W1,p(x)
0 (Ω) ∩W2,p(x)(Ω), it is

bounded in X and converges weakly to u in W1,p(x)
0 (Ω), so we deduce that

lim
n→∞

[
M
(∫

Ω
|∇u|p(x) dx

)
−M

(∫
Ω
|∇un|p(x) dx

)] ∫
Ω
|∇u|p(x)−2∇u(∇un −∇u) dx = 0.

(3.7)
Let us recall the following elementary inequalities (see [6])

(
|ξ|s−2ξ − |ζ|s−2ζ

)
(ξ − ζ) ≥ 1

2s |ξ − ζ|s, s ≥ 2, (3.8)

(
|ξ|s−2ξ − |ζ|s−2ζ

)
(ξ − ζ) (|ξ|+ |ζ|)2−s ≥ (s− 1)|ξ − ζ|2, 1 < s < 2 (3.9)

for all ξ, ζ ∈ RN . Put

Up(x) := {x ∈ Ω : p(x) ≥ 2} , Vp(x) := {x ∈ Ω : 1 < p(x) < 2} , (3.10)

then, it follows from (3.8) and (3.9) that∫
Up(x)

|∆un − ∆u|p(x) dx ≤ c5

∫
Ω

A(1)(∆un, ∆u) dx, (3.11)

∫
Up(x)

|∇un −∇u|p(x) dx ≤ c5

∫
Ω

A(N)(∇un,∇u) dx, (3.12)

∫
Vp(x)

|∆un − ∆u|p(x) dx ≤ c6

∫
Ω

(
A(1)(∆un, ∆u)

) p(x)
2
(

C(1)(∆un, ∆u)
)(2−p(x)) p(x)

2 dx, (3.13)

∫
Vp(x)

|∇un −∇u|p(x) dx ≤ c6

∫
Ω

(
A(N)(∇un,∇u)

) p(x)
2
(

C(N)(∇un,∇u)
)(2−p(x)) p(x)

2 dx, (3.14)

where A(i), C(i) : Ri ×Ri → R, i = 1, N are defined by the following formulas

A(i)(ξ, ζ) :=
(
|ξ|p(x)−2ξ − |ζ|p(x)−2ζ

)
(ξ − ζ), C(i)(ξ, ζ) := |ξ|+ |ζ|

for all ξ, ζ ∈ Ri, i = 1, N. Now, from the definition of the functional J and relations (3.5)–(3.7),
we have

0 ≤
∫

Ω
(|∆un|p(x)−2∆un − |∆u|p(x)−2∆u)(∆un − ∆u) dx

+ M
(∫

Ω
|∇un|p(x) dx

) ∫
Ω
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx

= (J′(un)− J′(u))(un − u) +
∫

Ω
( f (x, un)− f (x, u))(un − u) dx

+

[
M
(∫

Ω
|∇u|p(x) dx

)
−M

(∫
Ω
|∇un|p(x) dx

)] ∫
Ω
|∇u|p(x)−2∇u(∇un −∇u) dx

→ 0

when n→ ∞. By (M1), it follows that

lim
n→∞

∫
Ω

A(1)(∆un, ∆u) dx = lim
n→∞

∫
Ω

A(N)(∇un,∇u) dx = 0. (3.15)
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For this reason, we can assume that 0 ≤
∫

Ω A(1)(∆un, ∆u) dx < 1. If
∫

Ω A(1)(∆un, ∆u) dx = 0
then A(1)(∆un, ∆u) = 0 since A(1)(∆un, ∆u) ≥ 0 in Ω. If 0 <

∫
Ω A(1)(∆un, ∆u) dx < 1, then

thanks to the Young inequality

ab ≤ ar

r
+

br′

r′
, ∀a, b > 0,

1
r
+

1
r′

= 1, r, r′ ∈ (1,+∞),

with

a =
(

A(1)(∆un, ∆u)
) p(x)

2

(∫
Vp(x)

A(1)(∆un, ∆u) dx

)−p(x)
2

, b =
(

C(1)(∆un, ∆u)
)(2−p(x)) p(x)

2
,

r =
2

p(x)
, r′ =

2
2− p(x)

,

we conclude that(∫
Vp(x)

A(1)(∆un, ∆u) dx

)− 1
2 ∫

Vp(x)

(
A(1)(∆un, ∆u)

) p(x)
2
(

C(1)(∆un, ∆u)
)(2−p(x)) p(x)

2 dx

≤
∫

Vp(x)

(
A(1)(∆un, ∆u)

) p(x)
2

(∫
Vp(x)

A(1)(∆un, ∆u) dx

)− p(x)
2 (

C(1)(∆un, ∆u)
)(2−p(x)) p(x)

2 dx

≤
∫

Vp(x)

A(1)(∆un, ∆u)

(∫
Vp(x)

A(1)(∆un, ∆u) dx

)− 1
2

+
(

C(1)(∆un, ∆u)
)p(x)

 dx

≤ 1 +
∫

Ω

(
C(1)(∆un, ∆u)

)p(x)
dx.

Hence, by relation (3.13),

1
c6

∫
Vp(x)

|∆un − ∆u|p(x) dx ≤
(∫

Vp(x)

A(1)(∆un, ∆u) dx

) 1
2 (

1 +
∫

Ω

(
C(1)(∆un, ∆u)

)p(x)
dx
)

.

(3.16)
We also have

1
c6

∫
Vp(x)

|∇un −∇u|p(x) dx ≤
(∫

Vp(x)

A(N)(∇un,∇u) dx

) 1
2 (

1 +
∫

Ω

(
C(N)(∇un,∇u)

)p(x)
dx
)

.

(3.17)
By (3.11), (3.13), (3.15) and (3.16), we have∫

Ω
|∆un − ∆u|p(x) dx =

∫
Up(x)

|∆un − ∆u|p(x) dx +
∫

Vp(x)

|∆un − ∆u|p(x) dx → 0 (3.18)

when n→ ∞. Similarly, from (3.12), (3.14), (3.15) and (3.17) we have∫
Ω
|∇un −∇u|p(x) dx =

∫
Up(x)

|∇un −∇u|p(x) dx +
∫

Vp(x)

|∇un −∇u|p(x) dx → 0. (3.19)

Therefore,
‖un − u‖p+ ≤

∫
Ω

(
|∆un − ∆u|p(x) + |∇un −∇u|p(x)

)
dx → 0

when n→ ∞. So, the sequence {un} converges strongly to u ∈ X and the functional J satisfies
the (PS) condition in X.
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Lemma 3.5. If M satisfies (M1), (M2) and f satisfies (F0), (F1) and the following condition

(F2) f (x, t) = o(|t|p+−1) for x ∈ Ω uniformly,

where q− > p+, then problem (1.1) has a nontrivial weak solution.

Proof. Our idea is to apply the mountain pass theorem [3]. By Lemma 3.4, J satisfies the
Palais–Smale condition in X. Since p+ < q− ≤ q(x) < p∗2(x), the embedding X ↪→ Lp+(Ω) is
continuous and compact and then there exists c7 > 0 such that

|u|p+ ≤ c7‖u‖, ∀u ∈ X. (3.20)

Let ε > 0 be small enough such that εcp+
7 < 1

2p+ min {1, m0}. By the assumptions (F0) and
(F2), there exists cε > 0 depending on ε such that

|F(x, t)| ≤ ε|t|p+ + cε|t|q(x), ∀(x, t) ∈ Ω×R. (3.21)

Hence, for all u ∈ X with ‖u‖ < 1, we have

J(u) ≥
∫

Ω

1
p(x)
|∆u|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇u|p(x) dx

)
−
∫

Ω
F(x, u) dx

≥ 1
p+

∫
Ω
|∆u|p(x) dx +

m0

p+

∫
Ω
|∇u|p(x) dx− ε

∫
Ω
|u|p+ dx− cε

∫
Ω
|u|q(x) dx

≥ min {1, m0}
p+

‖u‖p+ − εcp+
7 ‖u‖

p+ − cε‖u‖q−

≥ min {1, m0}
2p+

‖u‖p+ − cε‖u‖q− ,

where cε is a positive constant. Since q− > p+, we conclude that there exist α > 0 and ρ > 0
such that J(u) ≥ α > 0 for all u ∈ X with ‖u‖ = ρ.

On the other hand, from (F1) it follows that

F(x, t) ≥ c8|t|θ − c9, ∀x ∈ Ω, t ∈ R. (3.22)

From (M2) we can easily obtain that

M̂(t) ≤ M̂(t0)

t
1

1−µ

0

t
1

1−µ = c10t
1

1−µ , ∀t > t0, (3.23)

where t0 is an arbitrary positive constant. Hence, for w ∈ X\{0} and t > 1, we have

J(tw) =
∫

Ω

1
p(x)
|t∆w|p(x) dx + M̂

(∫
Ω

1
p(x)
|t∇w|p(x) dx

)
−
∫

Ω
F(x, tw) dx

≤ tp+

p−

∫
Ω
|∆w|p(x) dx + c10t

p+
1−µ

(∫
Ω
|∇w|p(x) dx

) 1
1−µ

− c8tθ
∫

Ω
|w|θ dx− c9

→ −∞ as t→ +∞,

due to θ > p+
1−µ > p+. Since J(0) = 0, we conclude that J satisfies all assumptions of the

mountain pass theorem [3]. So, J admits at least one nontrivial critical point and problem
(1.1) has a nontrivial weak solution.
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In what follows, we will study the multiplicity of weak solutions for problem (1.1) by
using the Fountain Theorem and the Dual Fountain Theorem. For the reader’s convenience,
we recall these results as follows.

As we stated in Section 2, X = W1,p(x)
0 (Ω)∩W2,p(x)(Ω) is a reflexive and separable Banach

space, so there exist {ej} ⊂ X and {e∗j } ⊂ X∗ such that

X = span{ej : j = 1, 2, . . . , }, X∗ = span{e∗j : j = 1, 2, . . . , },

and 〈
ei, e∗j

〉
=

{
1, if i = j,

0, if i 6= j.

For each j, k = 1, 2, . . . , let us define Xj = span{ej}, Yk = ⊕k
j=1Xj and Zk = ⊕∞

j=kXj. We first
have the following lemma which will be used in the proof of our main results.

Lemma 3.6. If s ∈ C+(Ω), s(x) < p∗2(x) for all x ∈ Ω denote

βk = sup
{
|u|s(x) : ‖u‖ = 1, u ∈ Zk

}
,

then limk→∞ βk = 0.

Proof. It is clear that 0 < βk ≤ βk+1, so βk → β ≥ 0. Let uk ∈ Zk be such that ‖uk‖ = 1 and
0 ≤ βk − |uk|s(x) <

1
k . Then, there exists a subsequence of {uk}, still denoted by {uk} such that

{uk} converges weakly to u in X and

lim
k→∞

〈
e∗j , uk

〉
=
〈

e∗j , u
〉
= 0, j = 1, 2, . . . ,

which implies that u = 0 and thus, {uk} converges weakly to 0 in X. Since the embedding
X ↪→ Ls(x)(Ω) is compact, {uk} converges strongly to 0 in Ls(x)(Ω). Therefore, we have βk → 0
as k→ ∞.

Proposition 3.7 (see [39, Fountain Theorem]). Assume that (X, ‖ · ‖) is a separable Banach space,
J ∈ C1(X, R) is an even functional satisfying the (PS) condition. Moreover, for each k = 1, 2, . . . ,
there exist ρk > rk > 0 such that

(A1) inf{u∈Zk : ‖u‖=rk} J(u)→ +∞ as k→ ∞;

(A2) max{u∈Yk : ‖u‖=ρk} J(u) ≤ 0.

Then J has a sequence of critical values tending to +∞.

Definition 3.8. We say that J satisfies the (PS)∗c condition (with respect to (Yn)) if any sequence
{unj} ⊂ X such that unj ∈ Ynj , J(unj) → c and (J|Ynj

)′(unj) → 0 as nj → +∞, contains a
subsequence converging to a critical point of J.

Proposition 3.9 (see [39, Dual Fountain Theorem]). Assume that (X, ‖ · ‖) is a separable Banach
space, J ∈ C1(X, R) is an even functional satisfying the (PS)∗c condition. Moreover, for each k =

1, 2, . . . , there exist ρk > rk > 0 such that

(B1) inf{u∈Zk : ‖u‖=ρk} J(u) ≥ 0;

(B2) bk := max{u∈Yk : ‖u‖=rk} J(u) < 0;
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(B3) dk := inf{u∈Zk : ‖u‖≤ρk} J(u)→ 0 as k→ ∞.

Then J has a sequence of negative critical values tending to 0.

Theorem 3.10. Assume that the conditions (M1), (M2), (F0), (F1) hold, and f satisfies

(F3) f (x,−t) = − f (x, t) for all x ∈ Ω and t ∈ R.

Then problem (1.1) has a sequence of weak solutions {±uk}∞
k=1 such that J(±uk)→ +∞ as k→ +∞.

Proof of Theorem 3.10. According to (F3) and Lemma 3.4, J is an even functional and satisfies
the (PS) condition. We will prove Theorem 3.10 by using the Fountain Theorem, see Proposi-
tion 3.7. Indeed, we will show that if k is large enough, then there exist ρk > rk > 0 such that
(A1) and (A2) hold. Thus, the assertion of conclusion can be obtained.

(A1): Using (M1) and (3.3), for any u ∈ Zk,

J(u) =
∫

Ω

1
p(x)
|∆u|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇u|p(x) dx

)
−
∫

Ω
F(x, u) dx

≥ min {1, m0}
p+

‖u‖p− − c1

∫
Ω
(|t|+ |t|q(x)) dx

≥ min {1, m0}
p+

‖u‖p− − c11|u|
q(ξ)
q(x) − c11‖u‖, where ξ ∈ Ω

≥


min{1,m0}

p+ ‖u‖p− − c11 − c11‖u‖ if |u|q(x) ≤ 1,
min{1,m0}

p+ ‖u‖p− − c12β
q+

k ‖u‖q+ − c11‖u‖ if |u|q(x) > 1

≥ min {1, m0}
p+

‖u‖p− − c12β
q+

k ‖u‖
q+ − c11‖u‖ − c13,

where
βk = sup

{
|u|q(x) : ‖u‖ = 1, u ∈ Zk

}
→ 0 as k→ ∞. (3.24)

Now, we deduce from (3.24) that for any u ∈ Zk, ‖u‖ = rk =

(
c12q+β

q+

k
min{1,m0}

) 1
p−−q+

,

J(u) ≥ min {1, m0}
p+

‖u‖p− − c12βα+

k ‖u‖q+ − c11‖u‖ − c11

=
min {1, m0}

p+

(
c12q+β

q+

k
min {1, m0}

) p−
p−−q+

− c12β
q+

k

(
c12q+β

q+

k
min {1, m0}

) q+

p−−q+

− c11

(
c12q+β

q+

k
min {1, m0}

) 1
p−−q+

− c13

= min {1, m0}
(

1
p+
− 1

q+

)(
c12q+β

q+

k
min {1, m0}

) p−
p−−q+

− c11

(
c12q+β

q+

k
min {1, m0}

) 1
p−−q+

− c13,

converging to +∞ as k → +∞, because p+ < q− ≤ q(x) < p∗(x) and βk → 0 as k → ∞, see
Lemma 3.6.
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(A2): Using (3.22), (3.23), (M2), for any w ∈ Yk with ‖w‖ = 1 and 1 < t = ρk, we have

J(tw) =
∫

Ω

1
p(x)
|t∆w|p(x) dx + M̂

(∫
Ω

1
p(x)
|t∇w|p(x) dx

)
−
∫

Ω
F(x, tw) dx

≤ tp+

p−

∫
Ω
|∆w|p(x) dx + c10t

p+
1−µ

(∫
Ω
|∇w|p(x) dx

) 1
1−µ

− c8tθ
∫

Ω
|w|θ dx− c9

≤
ρ

p+

k
p−

∫
Ω
|∆w|p(x) dx + c10ρ

p+
1−µ

k

(∫
Ω
|∇w|p(x) dx

) 1
1−µ

− c8ρθ
k

∫
Ω
|w|θ dx− c9.

Since θ > p+
1−µ > p+ and dim(Yk) = k, it is easy to see that J(u) → −∞ as ‖u‖ → +∞ for

u ∈ Yk. Conclusion of Theorem 3.10 is reached by the Fountain Theorem.

Theorem 3.11. Assume that the conditions (M1), (M2), (F0) and (F1), (F2), (F3) are satisfied.
Moreover, we assume that

(F4) f (x, t) ≥ C|t|γ(x)−1, t→ 0, where p+ < γ− ≤ γ+ < p−
1−µ for all x ∈ Ω and t ∈ R.

Then problem (1.1) has a sequence of weak solutions {±vk}∞
k=1 such that J(±vk) < 0 and J(±vk)→ 0

as k→ +∞.

In order to prove Theorem 3.11, we need to verify the following lemma.

Lemma 3.12. Assume that the conditions (M1), (M2), (F0) and (F1) are satisfied. Then the functional
J satisfies the (PS)∗c condition.

Proof. Let {unj} ⊂ X be such that unj ∈ Ynj and J(unj) → 0 and (J|Ynj
)′(unj) → 0 as nj → ∞.

Similar to the process of verifying the (PS) condition in the proof of Lemma 3.4, we can get
the boundedness of {‖unj‖}. Going, if necessary, to a subsequence, we can assume that {unj}
converges weakly to u in X. As X = ∪njYnj , we can choose vnj ∈ Ynj such that vnj → u. Hence,

lim
nj→∞

J′(unj)(unj − u) = lim
nj→∞

J′(unj)(unj − vnj) + lim
nj→∞

J′(unj)(vnj − u)

= lim
nj→∞

(J|Ynj
)′(unj)(unj − vnj) = 0.

From the proof of Lemma 3.4, J′ is of (S+) type, so we can conclude that unj → u as nj → ∞,
furthermore we have J′(unj)→ J′(u).

Let us prove J′(u) = 0, i.e., u is a critical point of J. Indeed, taking arbitrarily wk ∈ Yk,
notice that when nj ≥ k we have

J′(u)(wk) = (J′(u)− J′(unj))(wk) + J′(unj)(wk)

= (J′(u)− J′(unj))(wk) + (J|Ynj
)′(unj)(wk).

Going to limit in the right hand-side of above equation reaches J′(u)(wk) = 0 for all wk ∈ Yk.
Thus, J′(u) = 0 and the functional J satisfies the (PS)∗c condition for every c ∈ R.

Proof of Theorem 3.11. From (F0), (F1), (F3) and Lemma 3.12, we know that J is an even func-
tional and satisfies the (PS)∗c condition, the assertion of conclusion can be obtained from Dual
Fountain Theorem, see Proposition 3.9.
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(B1): For any v ∈ Zk, ‖v‖ = 1 and 0 < t < 1, using (M1) and (3.21), we have

J(tv) =
∫

Ω

1
p(x)
|∆tv|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇tv|p(x) dx

)
−
∫

Ω
F(x, tv) dx

≥ min{1, m0}
p+

tp+‖v‖p+ − εtp+
∫

Ω
|v|p+ dx− cεtq−

∫
Ω
|v|q(x) dx

≥
(

min{1, m0}
p+

− εc12

)
‖v‖p+ tp+ −

{
c13β

q−

k tq−‖v‖q− if |v|q(x) ≤ 1,

c13β
q+

k tq−‖v‖q+ if |v|q(x) > 1.

Let 0 < ε < min{1,m0}
2c12 p+ we have

J(tv) ≥ min{1, m0}
2p+

tp+ −
{

c13β
q−

k tq− if |v|q(x) ≤ 1,

c13β
q+

k tq− if |v|q(x) > 1.

Since q− > p+, taking ρk = t small enough and sufficiently large k, for v ∈ Zk with ‖v‖ = 1,
we have J(tv) ≥ 0. So for sufficiently large k,

inf
{u∈Zk : ‖u‖=ρk}

J(u) ≥ 0,

i.e., (B1) is satisifed.
(B2): For v ∈ Yk, ‖v‖ = 1 and 0 < t < ρk < 1, we have

J(tv) =
∫

Ω

1
p(x)
|∆tv|p(x) dx + M̂

(∫
Ω

1
p(x)
|∇tv|p(x) dx

)
−
∫

Ω
F(x, tv) dx

≤ tp−

p−

∫
Ω
|∆v|p(x) dx + c10t

p−
1−µ

(∫
Ω
|∇v|p(x) dx

) 1
1−µ

− Ctγ+
∫

Ω
|v|γ(x) dx.

Condition γ+ < p−
1−µ implies that there exists a constant rk ∈ (0, ρk) such that J(tv) < 0 when

t = rk. Hence, we get
bk := max

{u∈Yk : ‖u‖=rk}
J(u) < 0,

so (B2) is satisfied.
(B3): Because Yk ∩ Zk 6= ∅ and rk < ρk we have

dk := inf
{u∈Zk : ‖u‖≤ρk}

J(u) ≤ bk := max
{u∈Yk : ‖u‖=rk}

J(u) < 0. (3.25)

From (3.25), for v ∈ Zk, ‖v‖ = 1, 0 ≤ t ≤ ρk and u = tv we have

J(u) = J(tv)

≥ min{1, m0}
2p+

tp+ −
{

c14β
q−

k tq− if |v|q(x) ≤ 1,

c14β
q+

k tq− if |v|q(x) > 1

≥ −
{

c14β
q−

k tq− if |v|q(x) ≤ 1,

c14β
q+

k tq− if |v|q(x) > 1.

Hence, dk → 0 as k → ∞, i.e., (B3) is satisfied. Conclusion of Theorem 3.11 is reached by the
Dual Fountain Theorem.
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