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1 Introduction

The investigation of a topological structure of sets of solutions to asymptotic boundary value
problems is a delicate problem. The majority of the Hukuhara–Kneser–Aronszajn type results
about (possibly special) continua of solutions is related to Cauchy initial value problems on
compact intervals (see e.g. [5, Chapter III.2], [18–20], [22, Chapters 3 and 4], [26] and the
references therein). Less results for Cauchy problems on non-compact and, in particular,
infinite intervals were obtained by various techniques, e.g., in [1–4], [5, Chapter III.2], [12,
17, 20, 21, 24, 26, 33, 37, 40]. Rather rare results for boundary vale problems concern again
almost exclusively those on compact intervals (see e.g. [11, 15, 38] and [5, Chapter III.3], [22,
Chapter 6], where the whole chapters are devoted to this problem). The quite unique related
results on non-compact intervals can be found, as far as we know, in [7,28], [29, Chapter III.13].
The knowledge of a topological structure of solutions for further boundary value problems
on non-compact intervals would be therefore highly appreciated.

The reason why such results are so rare consists in counter-examples presented in [3], [5,
Example II.2.12], [23], demonstrating the impossibility of asymptotic analogies to the situation
on compact intervals. These troubles are due to an “unpleasant” related topology of non-
normable Fréchet spaces. For instance, a contractivity of a given operator with respect to a
metric need not follow from a contractivity with respect to all seminorms. That is why the
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main theorem in [28] might be empty. On the other hand, although this difficulty can be
overcame by means of the inverse limit method, sometimes also called the projective limit
technique (see e.g. [3, 4, 23, 27, 34]), the class of appropriate boundary value problems seems
to be rather narrow. In fact, besides for the Cauchy initial value problems, simple nontrivial
examples for asymptotic boundary value problems via the inverse limit method, were given
only by ourselves in [7].

Let us note that, unlike in [29], where (the Hukuhara–Kneser type) continua of solutions
were received in a purely analytic way, (the Aronszajn type) Rδ-structure was detected in [7].
The main advantage of these special continua consists in its further possible application to the
existence results for nonlinear asymptotic problems (see Section 5 below). The same is true
for all special continua (except compact, connected sets themselves) from the proper inclusion
scheme (2.1) below.

Hence, our paper is organized as follows. After the auxiliary definitions, lemmas and
propositions in Section 2, the topological structure is firstly studied on compact intervals
in Section 3. The first obtained result can be regarded in a certain sense as a final theorem.
Nevertheless, it will only take there the form of proposition, because it is further employed, via
an inverse limit method in Section 4, as a preliminary step for the investigation of structure
on non-compact intervals. This knowledge is finally applied, on the basis of our principle
developed recently in [6], to the solvability of nontrivial existence asymptotic problems. All
the main theorems are supplied by illustrative examples.

2 Preliminaries

At first, we recall some geometric notions of subsets of metric spaces; in particular, of compact
absolute retracts, compact contractible sets and Rδ-sets. For more details, see, e.g., [5, 14, 25].

For a subset A ⊂ X of a metric space X = (X, d) and ε > 0, we define the set Nε(A) :=
{x ∈ X | ∃a ∈ A : d(x, a) < ε}, i.e. Nε(A) is an open neighborhood of the set A in X. A subset
A ⊂ X is called a retract of X if there exists a retraction r : X → A, i.e. a continuous function
satisfying r(x) = x, for every x ∈ A.

We say that a metric space X is an absolute retract (AR-space) if, for each metric space Y
and every closed A ⊂ Y, each continuous mapping f : A → X is extendable over Y. Let us
note that X is an AR-space if and only if it is a retract of some normed space. Moreover, if X
is a retract of a convex set in a Fréchet space, then it is an AR-space, too. So, in particular, for
an arbitrary interval J ⊂ R and k, n ∈ N, the spaces C(J, Rk), Cn(J, Rk), ACn

loc(J, Rk) are AR-
spaces as well as their convex subsets. The foregoing symbols denote, as usually, the spaces
of functions f : J → Rk which are continuous, have continuous n-th derivatives and locally
absolutely continuous n-th derivatives, respectively, endowed with the respective topologies.

We say that a nonempty subset A of a metric space X is contractible if there exist a point
x0 ∈ A and a homotopy h : A× [0, 1] → A such that h(x, 0) = x and h(x, 1) = x0, for every
x ∈ A. A nonempty set A ⊂ X is called an Rδ-set if there exists a decreasing sequence {An}∞

n=1
of compact AR-spaces (or, despite of the hierarchy (2.1) below, compact, contractible sets) such
that

A =
∞⋂

n=1

An.

Note that any Rδ-set is nonempty, compact and connected. The following hierarchy holds for



Topological structure of solution sets to asymptotic problems 3

nonempty compact subsets of a metric space:

compact + convex ⊂ compact AR-space ⊂ compact + contractible ⊂ Rδ-set

⊂ compact + acyclic ⊂ compact + connected, (2.1)

and all the above inclusions are proper.
We also employ the following definitions and statements from the multivalued analysis in

the sequel. Let X and Y be arbitrary metric spaces. We say that F is a multivalued mapping from
X to Y (written F : X ( Y) if, for every x ∈ X, a nonempty subset F(x) of Y is prescribed.
We associate with F its graph ΓF, the subset of X×Y, defined by

ΓF := {(x, y) ∈ X×Y | y ∈ F(x)}.

A multivalued mapping F : X ( Y is called upper semicontinuous (shortly, u.s.c.) if, for
each open U ⊂ Y, the set {x ∈ X | F(x) ⊂ U} is open in X. Every upper semicontinuous map
with closed values has a closed graph.

A multivalued mapping F : X ( X with bounded values is called Lipschitzian if there
exists a constant L > 0 such that

dH(F(x), F(y)) ≤ Ld(x, y),

for every x, y ∈ X, where

dH(A, B) := inf{r > 0 | A ⊂ Nr(B) and B ⊂ Nr(A)}

stands for the Hausdorff distance; for its properties, see, e.g., [5, 25].
We say that a multivalued mapping F : X ( X with bounded values is a contraction if it is

Lipschitzian with a Lipschitz constant L ∈ [0, 1).
Let Y be a separable metric space and (Ω,U , ν) be a measurable space, i.e. a nonempty set

Ω equipped with a suitable σ-algebra U of its subsets and a countably additive measure ν on
U . A multivalued mapping F : Ω ( Y is called measurable if {ω ∈ Ω | F(ω) ⊂ V} ∈ U , for
each open set V ⊂ Y.

We say that the mapping F : J ×Rm ( Rn, where J ⊂ R, is upper-Carathéodory if the map
F(·, x) : J ( Rn is measurable on every compact subinterval of J, for all x ∈ Rm, the map
F(t, ·) : Rm ( Rn is u.s.c., for almost all (a.a.) t ∈ J, and the set F(t, x) is compact and convex,
for all (t, x) ∈ J ×Rm.

We will employ the following selection statement.

Lemma 2.1 (cf., e.g., [9]). Let F : [a, b]×Rm ( Rn be an upper-Carathéodory mapping satisfying
|y| ≤ r(t)(1 + |x|), for every (t, x) ∈ [a, b]×Rm, and every y ∈ F(t, x), where r : [a, b] → [0, ∞)

is an integrable function. Then the composition F(t, q(t)) admits, for every q ∈ C([a, b], Rm), a
single-valued measurable selection.

If X ∩Y 6= ∅ and F : X ( Y, then a point x ∈ X ∩Y is called a fixed point of F if x ∈ F(x).
The set of all fixed points of F will be denoted by Fix(F), i.e.

Fix(F) := {x ∈ X | x ∈ F(x)}.

It will be also convenient to recall the following results.

Proposition 2.2 (cf. [35]). Let X be a closed, convex subset of a Banach space E and let φ : X ( X
be a contraction with compact, convex values. Then Fix(φ) is a nonempty, compact AR-space.
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Lemma 2.3 (cf. [10, Theorem 0.3.4]). Let [a, b] ⊂ R be a compact interval. Assume that the sequence
of absolutely continuous functions xk : [a, b]→ Rn satisfies the following conditions:

(i) the set {xk(t) | k ∈N} is bounded, for every t ∈ [a, b],

(ii) there exists a function α : [a, b]→ R, integrable in the sense of Lebesgue, such that

|ẋk(t)| ≤ α(t), for a.a. t ∈ [a, b] and for all k ∈N.

Then there exists a subsequence of {xk} (for the sake of simplicity, denoted in the same way as the
sequence) converging to an absolutely continuous function x : [a, b]→ Rn in the following way:

1. {xk} converges uniformly to x,

2. {ẋk} converges weakly in L1([a, b], Rn) to ẋ.

The following lemma is a slight modification of the well known result.

Lemma 2.4 (cf. [39, p. 88]). Let [a, b] ⊂ R be a compact interval, E1, E2 be Euclidean spaces and
F : [a, b]× E1 ( E2 be an upper-Carathéodory mapping.

Assume in addition that, for every nonempty, bounded set B ⊂ E1, there exists ν = ν(B) ∈
L1([a, b], [0, ∞)) such that

|F(t, x)| ≤ ν(t),

for a.a. t ∈ [a, b] and every x ∈ B.
Let us define the Nemytskiı̌ operator NF : C([a, b], E1) ( L1([a, b], E2) in the following way:

NF(x) := { f ∈ L1([a, b], E2) | f (t) ∈ F(t, x(t)), a.e. on [a, b]},

for every x ∈ C([a, b], E1). Then, if sequences {xi} ⊂ C([a, b], E1) and { fi} ⊂ L1([a, b], E2), fi ∈
NF(xi), i ∈ N, are such that xi → x in C([a, b], E1) and fi → f weakly in L1([a, b], E2), then
f ∈ NF(x).

3 Topological structure on compact intervals

At first, let us consider the constraint problems for linear systems

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t), for a.a. t ∈ [0, m],
x ∈ Sm,

}
(3.1)

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t), for a.a. t ∈ [0, m],
(x, ẋ, . . . , x(n−1)) ∈ S′m,

}
(3.2)

where

(i) Ai : [0, m] → Rk×k are integrable matrix functions such that |Ai(t)| ≤ ai(t), for a.a.
t ∈ [0, m] and suitable nonnegative functions ai ∈ L1([0, m], R), for all i = 1, . . . , n,

(ii) Sm is a closed, convex subset of ACn−1([0, m], Rk) (S′m is a closed, convex subset of
ACn−1([0, m], Rk)× ACn−2([0, m], Rk)× · · · × AC([0, m], Rk)),

(iii) C : [0, m] ( Rk is an integrable mapping with convex closed values such that |C(t)| ≤
c(t), for a.a. t ∈ [0, m] and a suitable nonnegative function c ∈ L1([0, m], R),
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(iv) there exist t0 ∈ [0, m] and a constant M such that |x(t0)| ≤M, |ẋ(t0)| ≤M, . . . , |x(n−1)(t0)|
≤ M, for all solutions of problem (3.1) (all solutions of problem (3.2)).

Proposition 3.1. Under the above assumptions (i)–(iv), the solution set of problem (3.1) (the set of
solutions and their derivatives up to the (n− 1)-st order of problem (3.2)) is convex and compact).

Proof. Let us prove that the set of solutions and their derivatives of the b.v.p. (3.2) is convex
and compact. By the similar reasoning, it is possible to obtain that the solution set of problem
(3.1) is convex and compact as well.

Let us denote by P(t, x(t), ẋ(t), . . . , x(n−1)(t)) := C(t) − A1(t)x(n−1)(t) − · · · − An(t)x(t).
If x1, x2 are solutions of problem (3.2), then it follows from the integral representation of a
solution that, for a.a. t ∈ [0, m], we have

x1(t) ∈ x1(t0) + ẋ1(t0)(t− t0) +
1
2

ẍ1(t0)(t− t0)
2 + · · ·+ 1

(n− 1)!
x(n−1)

1 (t0)(t− t0)
n−1

+
1

(n− 1)!

∫ t

t0

(t− s)n−1P(s, x1(s), ẋ1(s), . . . , x(n−1)
1 (s)) ds,

and

x2(t) ∈ x2(t0) + ẋ2(t0)(t− t0) +
1
2

ẍ2(t0)(t− t0)
2 + · · ·+ 1

(n− 1)!
x(n−1)

2 (t0)(t− t0)
n−1

+
1

(n− 1)!

∫ t

t0

(t− s)n−1P(s, x2(s), ẋ2(s), . . . , x(n−1)
2 (s)) ds.

Let θ ∈ [0, 1] be arbitrary. Then

θx1(t) + (1− θ)x2(t) ∈ θx1(t0) + (1− θ) · x2(t0) + [θẋ1(t0) + (1− θ)ẋ2(t0)](t− t0) + . . .

+
1

(n− 1)!

∫ t

t0

(t− s)n−1θ · P(s, x1(s), ẋ1(s), . . . , x(n−1)
1 (s)) ds

+
1

(n− 1)!

∫ t

t0

(t− s)n−1(1− θ)P(s, x2(s), ẋ2(s), . . . , x(n−1)
2 (s)) ds

= θx1(t0) + (1− θ)x2(t0) + [θẋ1(t0) + (1− θ)ẋ2(t0)](t− t0) + . . .

+
1

(n− 1)!

∫ t

t0

(t− s)n−1P(s, θx1(s) + (1− θ)x2(s), . . . , θx(n−1)
1 (s) + (1− θ)x(n−1)

2 (s))ds.

Moreover, for all k = 1, . . . , n− 1,

x(k)1 (t) ∈ x(k)1 (t0) + x(k+1)
1 (t0)(t− t0) + · · ·+

1
(n− 1− k)!

x(n−1−k)
1 (t0)(t− t0)

n−1−k

+
1

(n− 1− k)!

∫ t

t0

(t− s)n−1−kP(s, x1(s), ẋ1(s), . . . , x(n−1)
1 (s)) ds,

and

x(k)2 (t) ∈ x(k)2 (t0) + x(k+1)
2 (t0)(t− t0) + · · ·+

1
(n− 1− k)!

x(n−1−k)
2 (t0)(t− t0)

n−1−k

+
1

(n− 1− k)!

∫ t

t0

(t− s)n−1−kP(s, x2(s), ẋ2(s), . . . , x(n−1)
2 (s)) ds.

By similar arguments as before, we can obtain, for an arbitrary θ ∈ [0, 1] and all k =

1, . . . , n− 1, that

θx(k)1 (t) + (1− θ)x(k)2 (t) ∈ θx(k)1 (t0)+(1−θ)x(k)2 (t0)+[θx(k+1)
1 (t0)+(1−θ)x(k)2 (t0)](t− t0)+ . . .

+
1

(n−1−k)!

∫ t

t0

(t− s)n−1−kP(s, θx1(s)+(1− θ)x2(s), . . . , θx(n−1)
1 (s)+(1−θ)x(n−1)

2 (s))ds.
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Finally, because of convexity of S′m, we obtain that(
θx1 + (1− θ)x2, θẋ1 + (1− θ)ẋ2, . . . , θx(n−1)

1 + (1− θ)x(n−1)
2

)
∈ S′m

and, therefore, the set of solutions of (3.2) and their derivatives is convex.
Let us also prove that the set of solutions of (3.2) and their derivatives is relatively compact.

It follows from the well known Arzelà–Ascoli lemma that the set of solutions is relatively
compact in Cn−1([0, m], Rk) if and only if it is bounded and all solutions and their derivatives
(up to the (n− 1)-st order) are equi-continuous.

At first, let us show that the set of solutions of (3.2) is bounded in Cn−1([0, m], Rk). Let x
be a solution of (3.2) and let t ∈ [0, m] be arbitrary.

Since

x(n−1)(t) = x(n−1)(t0) +
∫ t

t0

x(n)(s) ds, for a.a. t ∈ [0, m],

...

ẋ(t) = ẋ(t0) +
∫ t

t0

ẍ(s) ds, for a.a. t ∈ [0, m],

x(t) = x(t0) +
∫ t

t0

ẋ(s) ds, for a.a. t ∈ [0, m],

it holds, according to conditions (i), (iii) and (iv), that

|x(t)|+ |ẋ(t)|+ · · ·+ |x(n−1)(t)|

≤ |x(t0)|+ |ẋ(t0)|+ · · ·+ |x(n−1)(t0)|+
∫ t

t0

|ẋ(s)|+ |ẍ(s)|+ · · ·+ |x(n)(s)| ds

≤ nM +
∫ m

0
|ẋ(s)|+ |ẍ(s)|+ · · ·+ |x(n−1)(s)|+ c(s) + a1(s)|x(n−1)(s)|+ · · ·+ an(s)|x(s)| ds

≤ nM +
∫ m

0
c(s) ds +

∫ m

0
an(s)|x(s)|+ (1 + an−1(s))|ẋ(s)|+ · · ·+ (1 + a1(s))|x(n−1)(s)| ds

≤ nM +
∫ m

0
c(s) ds +

∫ m

0
k(s)(|x(s)|+ |ẋ(s)|+ · · ·+ |x(n−1)(s)|) ds

where, for all s ∈ [0, m], k(s) := max{1 + a1(s), . . . , 1 + an−1(s), an(s)}. Therefore, by Gron-
wall’s lemma (cf. [30]),

|x(t)|+ |ẋ(t)|+ · · ·+ |x(n−1)(t)| ≤
(

nM +
∫ m

0
c(s) ds

)
e
∫ m

0 k(s) ds, for a.a. t ∈ [0, m]. (3.3)

Therefore, the set of solutions of (3.2) and their derivatives (up to the (n − 1)-st order) is
bounded in Cn−1([0, m], Rk).

Let us now show that all solutions x of (3.2) and their derivatives ẋ, . . . , x(n−1) are also
equi-continuous. So, let x be a solution of (3.2) and t1, t2 ∈ [0, m] be arbitrary. Then, we have

|x(t1)− x(t2)| ≤
∣∣∣∣∫ t2

t1

|ẋ(τ)| dτ

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

(
nM +

∫ m

0
c(s) ds

)
e
∫ m

0 k(s) ds dτ

∣∣∣∣ . (3.4)

Analogously, we can get, for each k ∈ {1, . . . , n− 2}, that

|x(k)(t1)− x(k)(t2)| ≤
∣∣∣∣∫ t2

t1

|x(k+1)(τ)| dτ

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

(
nM +

∫ m

0
c(s) ds

)
e
∫ m

0 k(s) ds dτ

∣∣∣∣ . (3.5)
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Moreover,

|x(n−1)(t1)− x(n−1)(t2)| ≤
∣∣∣∣∫ t2

t1

c(τ) + a1(τ)|x(n−1)(τ)|+ · · ·+ an(τ)|x(τ)| dτ

∣∣∣∣
≤
∣∣∣∣∫ t2

t1

c(τ) + l(τ)
(

nM +
∫ m

0
c(s) ds

)
e
∫ m

0 k(s) ds dτ

∣∣∣∣ , (3.6)

where, for all τ ∈ [0, m], l(τ) := max{a1(τ), . . . , an(τ)}.
Taking into account estimates (3.4)–(3.6), x, ẋ, . . . , x(n−1) are equi-continuous, because c(·),

k(·), l(·) ∈ L1([0, m], R). Thus, the set of solutions of (3.2) and their derivatives is relatively
compact.

We will still show that the set of solutions of (3.2) and their derivatives (up to the (n− 1)-st
order) is closed. Let {xi} be a sequence of solutions of (3.2) such that {(xi, ẋi, . . . , x(n−1)

i )} →
(x, ẋ, . . . , x(n−1)). By conditions (i), (iii) and estimate (3.3), the sequences {xi}, {ẋi} , . . . ,
{x(n−1)

i } satisfy the assumptions of Lemma 2.3. Thus, there exists a subsequence of {xi} ,
for the sake of simplicity denoted as the sequence, uniformly convergent to x on [0, m], such
that {ẋi}, . . . , {x(n−1)

i } converges uniformly to ẋ, . . . , x(n−1) on [0, m] and that {x(n)i } converges
weakly to x(n) in L1 ([0, m], Rk) .

If we set zi :=
(
xi, ẋi, . . . , x(n−1)

i

)
, then żi →

(
ẋ, ẍ, . . . , x(n)

)
weakly in L1 ([0, m], Rk) . Let

us now consider the following system

żi(t) ∈ G (t, zi(t)) , for a.a. t ∈ [0, m], (3.7)

where
G (t, zi(t)) =

(
ẋi, . . . , x(n)i , P(t, zi(t))

)
.

Using Lemma 2.4, for fi := żi, f := (ẋ, ẍ, . . . x(n)), xi := (zi), it follows that

(ẋ(t), ẍ(t), . . . , x(n)(t)) ∈ G
(

t, x(t), ẋ(t), . . . , x(n−1)(t)
)

,

for a.a. t ∈ [0, m], i.e.

x(n)(t) ∈ P
(

t, x(t), ẋ(t), . . . , x(n−1)(t)
)

, for a.a. t ∈ [0, m].

Moreover, since the set S′m is closed, (xi, . . . x(n−1)
i ) ∈ S′m, for all i ∈ N, and (xi, . . . , x(n−1)

i ) →
(x, . . . x(n−1)), it also holds that (x, ẋ, . . . , x(n−1)) ∈ S′m. After all, the set of solutions of (3.2)
and their derivatives is convex and compact, as claimed.

Remark 3.2. The statement of Proposition 3.1 also holds if we consider multivalued matrix
mappings Ai, i.e. if we replace problems (3.1), (3.2) by

x(n)(t) ∈ C(t)− A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [0, m],
x ∈ Sm,

}
(3.8)

x(n)(t) ∈ C(t)− A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [0, m],
(x, ẋ, . . . , x(n−1)) ∈ S′m,

}
(3.9)

where Ai : [0, m] ( Rk×k are integrable multivalued matrix mappings such that |Ai(t)| ≤
ai(t), for a.a. t ∈ [0, m] and suitable nonnegative functions ai ∈ L1([0, m], R), for all i = 1, . . . , n.
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Furthermore, let us study the structure of a solution set, on a compact interval, to a semi-
linear problem.

Hence, let m ∈N and consider the b.v.p.

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t, x(t), . . . , x(n−1)(t)),
for a.a. t ∈ [0, m],

l(x, ẋ, . . . , x(n−1)) = 0,

 (Pm)

where

(i) Ai ∈ L1([0, m], Rk×k) are such that |Ai(t)| ≤ ai(t), for all t ∈ [0, m] and suitable integrable
functions ai : [0, m]→ [0, ∞), for all i = 1, . . . , n,

(ii) l : Cn−1([0, m], Rk)× · · · × C([0, m], Rk)→ Rkn is a linear bounded operator,

(iii) the associated homogeneous problem

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) = 0, for a.a. t ∈ [0, m],
l(x, ẋ, . . . , x(n−1)) = 0

}
(Hm)

has only the trivial solution,

(iv) C : [0, m]×Rkn ( Rk is an upper-Carathéodory mapping,

(v) there exists an integrable function α : [0, m] → [0, ∞), with
∫ m

0 α(t) dt sufficiently small,
such that

dH(C(t, x1, x2, . . . , xn), C(t, y1, y2, . . . , yn) ≤ α(t) · (|x1 − y1|+ · · ·+ |xn − yn|) ,

for a.a. t ∈ [0, m] and all x1, . . . , xn, y1, . . . , yn ∈ Rk,

(vi) there exist a point (x1, . . . , xn) ∈ Rkn and a constant C0 ≥ 0 such that

|C(t, x1, . . . , xn)| ≤ C0 · α(t)

holds, for a.a. t ∈ [0, m]( (vi)
=⇒ |C(t, x1, . . . , xn)| := sup{|z| | z ∈ C(t, x1, . . . , xn)} ≤ α(t)

(
C0 + |x1|+ · · ·+ |xn|+

|x1|+ · · ·+ |xn|
)

holds, for a.a. t ∈ [0, m] and all xi ∈ Rk, i = 1, . . . , n
)
.

Theorem 3.3. Under the above assumptions (i)–(vi), the set of solutions of the b.v.p. (Pm) is a
nonempty, compact AR-space.

Proof. Problem (Pm) is equivalent to the first-order problem

ξ̇(t) + D(t)ξ(t) ∈ K(t, ξ(t)), for a.a. t ∈ [0, m],
l(ξ) = 0,

}
(P̃m)

where
ξ(t)kn×1 = (x(t), ẋ(t), . . . , x(n−1)(t))T,

D(t)kn×kn =

(
0(kn−k)×k −I(kn−k)×(kn−k)

An(t) An−1(t) . . . A1(t)

)
and

K(t, ξ)kn×1 = (0(kn−k)×1, C(t, x, ẋ, . . . , x(n−1)(t)))T.



Topological structure of solution sets to asymptotic problems 9

Similarly, the associated homogeneous problem (Hm) is equivalent to the first-order problem

ξ̇(t) + D(t)ξ(t) = 0, for a.a. t ∈ [0, m],
l(ξ) = 0.

}
(H̃m)

The Fredholm alternative implies (see, e.g., [30]) that there exists the Green function G̃ for
the homogeneous problem (H̃m) such that each solution ξ(·) of (P̃m) can be expressed by the
formula ξ(t) =

∫ m
0 G̃(t, s)k(s) ds, where k(·) is a suitable measurable selection of K(·, ξ(·))

(cf. Lemma 2.1). If we denote by G̃ the block matrix

G̃kn×kn =

 G̃11
k×k G̃12

k×k . . . G̃1n
k×k

...
...

. . .
...

G̃n1
k×k G̃n2

k×k . . . G̃nn
k×k

 , (3.10)

then each solution x(·) of (Pm) and its derivatives can be expressed as

x(t) =
∫ m

0
G̃1n(t, s)c(s) ds,

ẋ(t) =
∫ m

0
G̃2n(t, s)c(s) ds,

...

x(n−1)(t) =
∫ m

0
G̃nn(t, s)c(s) ds,

where c(·) is a suitable measurable selection of C(·, x(·), ẋ(·), . . . , x(n−1)(·)). Moreover, in view
of (v) and (vi),

|x(t)|+ · · ·+ |x(n−1)(t))| ≤
∫ m

0
Gα(s)

[
C0 + |x1|+ · · ·+ |xn|+ |x(s)|+ · · ·+ |x(n−1)(s)|

]
ds,

for a.a. t ∈ [0, m], where G := sup(t,s)∈[0,m]×[0,m]

{∣∣G̃1n(t, s)
∣∣+ ∣∣G̃2n(t, s)

∣∣+ · · ·+ ∣∣G̃nn(t, s)
∣∣} .

Therefore,

max
t∈[0,m]

{|x(t)|+ |ẋ(t)|+ · · ·+ |x(n−1)(t))|} ≤
G · (C0 + |x1|+ . . . + |xn|) ·

∫ m
0 α(s) ds

1− G
∫ m

0 α(s) ds
=: M,

provided ∫ m

0
α(s) ds <

1
G

. (3.11)

Therefore, if
∫ m

0 α(s) ds is small enough, namely if the inequality (3.11) holds, then the set
of solutions of (Pm) is equal to the set of solutions of the problem

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C∗(t, x(t), . . . x(n−1)(t)),
for a.a. t ∈ [0, m],

l(x, ẋ, . . . x(n−1)) = 0,

 (Rm)

where C∗ satisfies conditions (iv)–(v) in Theorem 3.3 with C replaced by C∗, but this time

C∗(t, x1, . . . , xn) :=

{
C(t, x1, . . . , xn), for|xi| ≤ M, i = 1, . . . , n,

C(t, M1, . . . , Mn), otherwise,
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where M1, . . . , Mn are suitable vectors such that |M1| = · · · = |Mn| = M. It follows immedi-
ately from its definition that C∗ satisfies

|C∗(t, x1, . . . xn)| := sup{|z| | z ∈ C∗(t, x1, . . . , xn)}
= sup{|z| | z ∈ C(t, x1, . . . , xn), where |xi| ≤ M, i = 1, . . . , n}
≤ α(t)(C∗0 + |x∗1 |+ · · ·+ |x∗n|+ nM) =: β(t), (3.12)

where (x∗1 , . . . , x∗n) ∈ Rkn is such that |C∗(t, x∗1 , . . . , x∗n)| ≤ C∗0 α(t), for a.a. t ∈ [0, m].
Let us denote by G(·, ··) := G̃12(·, ··) the Green function associated to the homogeneous

problem (Hm) and define the Nemytskiǐ operator

N : Cn−1([0, m], Rk) ( Cn−1([0, m], Rk)

by the formula

Nx :=
{

h ∈ C1([0, m], Rk) | h(·) =
∫ m

0
G(·, s) f (s) ds, where f ∈ L1([0, m], Rk),

f (t) ∈ C∗(t, x(t), ẋ(t), . . . , x(n−1)(t)), for a.a. t ∈ [0, m]
}

.

Let us note that Nx 6= ∅, for all x ∈ Cn−1([0, m], Rk), because, for all x ∈ Cn−1([0, m], Rk),
C∗(t, x(t), ẋ(t), . . . , x(n−1)(t)) possesses a measurable selection (again, according to Lemma
2.1).

It is evident that the set of solutions of problem (Rm) is equal to the set of fixed points
of the operator N. In order to show that Fix(N) is, by means of Proposition 2.2, a nonempty,
compact AR-space, we will proceed in three steps.

(a) At first, let us show that the operator N has convex values. If h1, h2 ∈ Nx, then there
exist integrable selections f1(·), f2(·) of C∗(·, x(·), ẋ(·), . . . , x(n−1)(·)) such that, for a.a.
t ∈ [0, m],

h1(t) =
∫ m

0
G(t, s) f1(s) ds

and
h2(t) =

∫ m

0
G(t, s) f2(s) ds.

Let λ ∈ [0, 1] be arbitrary. Then, for a.a. t ∈ [0, m],

λh1(t) + (1− λ)h2(t) =
∫ m

0
G(t, s) [λ f1(s) + (1− λ) f2(s)] ds.

Since the mapping C∗ has convex values,

λ f1(s) + (1− λ) f2(s) ∈ C∗(s, x(s), ẋ(s), . . . , x(n−1)(s)),

for a.a. s ∈ [0, m]. Therefore, λh1 + (1− λ)h2 ∈ Nx, i.e. the operator N has convex values,
as claimed.

(b) Secondly, let us show that the operator N has compact values. Let x ∈ Cn−1([0, m], Rk)

be arbitrary and let v be an arbitrary integrable function such that

v(t) ∈ C∗(t, x(t), ẋ(t), . . . , x(n−1)(t)),
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for a.a. t ∈ [0, m].

Let us consider the element h of Nx defined, for a.a. t ∈ [0, m], by

h(t) :=
∫ m

0
G(t, s)v(s) ds.

If t, τ ∈ [0, m] are arbitrary, then

|h(t)− h(τ)| =
∣∣∣∣∫ m

0
G(t, s)v(s) ds−

∫ m

0
G(τ, s)v(s) ds

∣∣∣∣
≤
∫ m

0
|G(t, s)− G(τ, s)| · |v(s)| ds ≤

∫ m

0
|G(t, s)− G(τ, s)| · β(s) ds. (3.13)

Since β(·) is, by the definition, an integrable function, estimate (3.13) implies the equi-
continuity of h. Moreover, it immediately follows from condition (3.12) and the proper-
ties of the Green function that h is also bounded. Therefore, the well known Arzelà–
Ascoli lemma implies that the set Nx is relatively compact.

The relative compactness of values follows also alternatively from the contractivity of
N which will be proved in the next step (3). It is namely well known that contractivity
implies condensity.

The closedness of values follows from the fact that, according to [31], N can be expressed
as the closed graph composition of operators φ ◦ SC∗ , where SC∗ : Cn−1([0, m], Rk) (
L1([0, m], Rk) and φ : L1([0, m], Rk)→ Cn−1([0, m], Rk) are defined by

SC∗(x) :=
{

f ∈ L1([0, m], Rk) | f (t) ∈ C∗(t, x(t), . . . , x(n−1)(t)), for a.a. t ∈ [0, m]
}

and

φ( f ) :=
{

h ∈ Cn−1([0, m], Rk) | h(t) =
∫ m

0
G(t, s) f (s) ds, for a.a. t ∈ [0, m]

}
.

(c) In order to show that the operator N is a contraction, let us consider the Banach space
Cn−1([0, m], Rk) endowed with the norm

|x|Cn−1 := sup
t∈[0,m]

{
|x(t)|+ |ẋ(t)|+ . . . + |x(n−1)(t)|

}
,

where | · | stands for the Euclidean norm in Rk. If x, y ∈ Cn−1([0, m], Rk) are arbitrary,
then there exist hx ∈ Nx, hy ∈ Ny and integrable selections (cf. Lemma 2.1) fx(·) of
C∗(·, x(·), ẋ(·), . . . , x(n−1)(·)) and fy(·) of C∗(·, y(·), ẏ(·), . . . , y(n−1)(·)) such that

dH(Nx, Ny) = |hx − hy|Cn−1 =

∣∣∣∣∫ m

0
G(t, s) fx(s) ds−

∫ m

0
G(t, s) fy(s) ds

∣∣∣∣
Cn−1

= sup
t∈[0,m]

{∣∣∣∣∫ m

0
G(t, s)[ fx(s)− fy(s)] ds

∣∣∣∣+ · · ·+ ∣∣∣∣∫ m

0

∂n−1

∂tn−1 G(t, s)[ fx(s)− fy(s)] ds
∣∣∣∣}

≤ sup
t∈[0,m]

∫ m

0

{
|G(t, s)|+

∣∣∣∣ ∂

∂t
G(t, s)

∣∣∣∣+ · · ·+ ∣∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣∣} · ∣∣ fx(s)− fy(s)

∣∣ ds

≤ sup
t∈[0,m]

{|x(t)− y(t)|+ · · ·+ |xn−1(t)− yn−1(t)|}
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× sup
(t,s)∈[0,m]×[0,m]

{
|G(t, s)|+ · · ·+

∣∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣∣} · ∫ m

0
α(t) dt

= sup
(t,s)∈[0,m]×[0,m]

{
|G(t, s)|+

∣∣∣∣ ∂

∂t
G(t, s)

∣∣∣∣+ · · ·+ ∣∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣∣}

×
∫ m

0
α(t) dt · |x− y|Cn−1 .

If the integral
∫ m

0 α(t) dt is small enough, namely if

L := sup
(t,s)∈[0,m]×[0,m]

{
|G(t, s)|+ · · ·+

∣∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣∣} · ∫ m

0
α(t) dt < 1, (3.14)

then the operator N is a desired contraction with a Lipschitz constant L ∈ [0, 1).

Finally, since N is a contraction with compact and convex values, the set Fix(N) is, accord-
ing to Proposition 2.2, a nonempty, compact AR-space which completes the proof.

Remark 3.4. It follows from the proof of Theorem 3.3 that the smallness of the integral∫ m
0 α(t) dt in conditions (v) and (vi) is given by the identical inequalities (3.11) and (3.14),

namely ∫ m

0
α(t) dt <

1

sup
(t,s)∈[0,m]×[0,m]

{
|G(t, s)|+

∣∣∣ ∂
∂t G(t, s)

∣∣∣+ · · ·+ ∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣} . (3.15)

Remark 3.5. If the mapping C(t, ·) is Lipschitzian with a sufficiently small constant L, i.e. if
condition (v) takes the form

(v′) there exists a sufficiently small constant L ≥ 0 such that

dH(C(t, x1, . . . , xn−1), C(t, y1, . . . , yn−1)) ≤ L · (|x1 − y1|+ · · ·+ |xn−1 − yn−1|) ,

for a.a. t ∈ [0, m] and all xi, yi ∈ Rk, i = 1, . . . , n− 1, then the same conclusion holds,
provided

L <
1

sup
t∈[0,m]

∫ m
0 |G(t, s)|+

∣∣∣ ∂
∂t G(t, s)

∣∣∣+ · · ·+ ∣∣∣ ∂n−1

∂tn−1 G(t, s)
∣∣∣ ds

. (3.16)

Remark 3.6. Theorem 3.3 reduces, for n = 1, to [11, Theorem 4] and, for n = 2, to [6, Lemma
3.2]. Moreover, unlike in [11], the smallness of

∫ m
0 α(t) dt, resp. L, is expressed here explicitly

in (3.15), (3.16) (see also (3.20), (3.21), (3.23) and (3.25) below).

Remark 3.7. For scalar (k = 1) problem (Pm), the topological structure of the set of solutions
was studied in [38]. Our related conditions (i)–(vi) are, in this particular case, more explicit
and our conclusion is more precise, because in [38] an Rδ-set was obtained.

Example 3.8. Consider the n-point vector interpolation b.v.p. in Rk:

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t, x(t), . . . , x(n−1)(t)),
for a.a. t ∈ [0, m],

x(t1) = · · · = x(tn) = 0,

 (3.17)
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where 0 = t1 < · · · < tn = n, Aj ∈ C([0, m], Rk×k), and the associated homogenous problem
for C ≡ 0, i.e.

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) = 0,
for a.a. t ∈ [0, m],

x(t1) = · · · = x(tn) = 0.

 (3.18)

Setting αjrs := ‖ajrs‖ = maxt∈[0,m] |ajrs|, where Aj(·) = [ajrs(·)], i.e. ajrs are the entries of Aj,
for j = 1, . . . , n, let us assume that

1 > max
r∈{1,...,k}

{
mn

n!

[
(n− 1)n−1

nn αnrr + ∑
s 6=r

αnrs

]
+

n−1

∑
j=1

mj

j!

k

∑
l=1

αjrl

}
. (3.19)

Setting still brs := ∑n
j=1 αjrsmj, the inequality (3.19) means that the spectral radius ρ(B) < 1,

where B = [brs].
Thus, under (3.19), homogenous problem (3.18) has according to [8, Theorem 1] only the

trivial solution, i.e. condition (iii) is satisfied. Observe that for Aj(t) ≡ 0, j = 1, . . . , n, the
inequality (3.19) holds trivially.

If C : [0, m] ×Rkn ( Rk is an upper-Carathéodory as in (iv), then, after all, the set of
solutions of (3.17) is, in view of Theorem 3.3, a nonempty, compact AR-space, provided (v)
and (vi) hold with (3.15) or (3.16), provided C(t, ·) is Lipschitzian.

For Aj(t) ≡ 0, j = 1, . . . , n, the associated Green function G(t, s) in inequalities (3.15) and
(3.16) takes the following scalar form:

G(t, s) =
1

(n− 1)!

(
χ[0,t](s)(t− s)n−1 −

n

∑
j=1

χ[0,tj](s)
∏n

i=1,i 6=j(t− ti)

∏n
i=1,i 6=j(tj− ti)

(tj − s)n−1

)
,

where (t, s) ∈ [0, m]2 and χ[0,t] stands for the characteristic function, i.e.

χ[0,t](s) =

{
1, for s ∈ [0, t]

0, for s /∈ [0, t].

Thus,
∂j

∂tjG(t, s)
≤ mn−j−1

(n− j− 1)!

(
1 +

mn−1n
4n−1

)
,

for j = 0, 1, . . . , n− 1, where (t, s) ∈ [0, m]2 and 4 = mini∈{1,...,n−1} |ti+1 − ti|.
Therefore, condition (3.15) can be still specified as follows:∫ m

0
α(t) dt <

1(
1 + mn−1n

4n−1

)
∑n−1

j=0
mn−j−1

(n−j−1)!

. (3.20)

In particular, for the equidistant points tj = j = 1, . . . , n, we obtain that∫ m

0
α(t) dt <

1 + nn

∑
n−j
j=0

nn−j−1

(n−j−1)!

. (3.21)

For the properties of Green’s functions of some further scalar boundary value problems,
see e.g. [13, 36] and the references therein. For vector problems like (3.17), where Aj 6= 0, j =
1, . . . , n, the calculations would be technically rather cumbersome, but still possible.
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Remark 3.9. The topological structure of the set of solutions to another n-point (n > 3) b.v.p.
was considered for the second-order differential inclusion in a separable Banach space in [15].
Let us note that such results in abstract spaces are quite rare.

Example 3.10. Let us consider the third-order three point b.v.p.

x(3)(t) ∈ C(t, x(t), ẋ(t), ẍ(t)), for a.a. t ∈ [0, 1],
ẋ(0) = x(1) = 0, ẍ(η) + βx(0) = 0,

}
(3.22)

where β ∈ [0, 2), η ∈
[√

121+24β−5
3(4+β)

, 1
)

, C : [0, 1] × R3n ( Rn is an upper-Carathéodory

mapping such that, for a.a. t ∈ [0, 1], and all x1, x2, x3, y1, y2, y3 ∈ Rn,

dH(C(t, x1, x2, x3), C(t, y1, y2, y3)) ≤ α(t) · (|x1 − y1|+ |x2 − y2|+ |x3 − y3|) ,

with α ∈ L1([0, 1], [0, ∞)) satisfying ∫ 1

0
α(t) dt <

4− 2β

22− β
. (3.23)

Moreover, let there exist C0 > 0 such that

|C(t, 0, 0, 0)| ≤ C0 · α(t), for a.a. t ∈ [0, 1]. (3.24)

We will show that, under the above assumptions, the set of solutions of (3.22) is a non-
empty, compact AR-space. The homogeneous problem associated to (3.22), i.e.

x(3)(t) = 0, for a.a. t ∈ [0, 1],
ẋ(0) = x(1) = 0, ẍ(η) + βx(0) = 0,

}
has only the trivial solution and the related Green function G takes the form (cf. [32])

G(t, s, η) :=



− (2−βt2)(1−s)2

2(2−β)
, 0 ≤ t ≤ s ≤ 1, s ≥ η

− (2−βt2)(1−s)2

2(2−β)
+ 1−t2

2−β , 0 ≤ t ≤ s ≤ 1, s < η

− (2−βt2)(1−s)2

2(2−β)
+ (t−s)2

2 , 0 ≤ s ≤ t ≤ 1, s ≥ η

− (2−βt2)(1−s)2

2(2−β)
+ (t−s)2

2 + 1−t2

2−β , 0 ≤ s ≤ t ≤ 1, s < η.

By direct computation, we obtain that

∂G(t, s, η)

∂t
=



βt(1−s)2

2−β , 0 ≤ t ≤ s ≤ 1, s ≥ η
βt(1−s)2

2−β + −2t
2−β , 0 ≤ t ≤ s ≤ 1, s < η

βt(1−s)2

2−β + (t− s), 0 ≤ s ≤ t ≤ 1, s ≥ η
βt(1−s)2

2−β + (t− s) + −2t
2−β , 0 ≤ s ≤ t ≤ 1, s < η,

and

∂2G(t, s, η)

∂t2 =



β(1−s)2

2−β , 0 ≤ t ≤ s ≤ 1, s ≥ η
β(1−s)2

2−β + −2
2−β , 0 ≤ t ≤ s ≤ 1, s < η

β(1−s)2

2−β + 1, 0 ≤ s ≤ t ≤ 1, s ≥ η
β(1−s)2

2−β + 1 + −2
2−β , 0 ≤ s ≤ t ≤ 1, s < η.
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Since, for all η ∈
[√

121+24β−5
3(4+β)

, 1
)

,

sup
(t,s)∈[0,1]×[0,1]

{
|G(t, s, η)|+

∣∣∣∣ ∂

∂t
G(t, s, η)

∣∣∣∣+ ∣∣∣∣ ∂2

∂t2 G(t, s, η)

∣∣∣∣} ≤ 22− β

4− 2β
, (3.25)

condition (3.23) ensures that, the problem (3.22) is, according to Theorem 3.3 (cf. condition
(3.15)), solvable with a compact AR-space of solutions.

4 Topological structure on non-compact intervals

One of the efficient methods which can be used for studying b.v.p.s on non-compact intervals
is an inverse limit method. Let us recall that by the inverse system, we mean a family S =

{Xα, π
β
α , Σ}, where Σ is a set directed by the relation ≤, Xα is, for all α ∈ Σ, a metric space and

π
β
α : Xβ → Xα is a continuous function, for all α, β ∈ Σ such that α ≤ β. Moreover, πα

α = idXα

and π
β
α π

γ
β = π

γ
α , for all α ≤ β ≤ γ. The limit of inverse system S is denoted by lim

←
S and it is

defined by

lim
←
S :=

{
(xα) ∈ Πα∈ΣXα | π

β
α(xβ) = xα, for all α ≤ β

}
.

If we denote by πα : lim
←
S → Xα the restriction of the projection pα : Πα∈ΣXα → Xα onto α-th

axis, then it holds πα = π
β
α πβ, for all α ≤ β.

Let us now consider two inverse systems S = {Xα, π
β
α , Σ} and S ′ = {Yα′ , π

β′

α′ , Σ′}. By a
multivalued mapping of the system S into the system S ′, we mean a family {σ, ϕσ(α′)} consisting
of a monotone function σ : Σ′ → Σ and multivalued mappings ϕσ(α′) : Xσ(α′) ( Yα′ such that,
for all α′ ≤ β′,

π
β′

α′ ϕσ(β′) = ϕσ(α′)π
σ(β′)
σ(α′) .

Mapping {σ, ϕσ(α′)} induces a limit mapping ϕ : lim
←
S ( lim

←
S ′ satisfying, for all α′ ∈ Σ′,

πα′ϕ = ϕσ(α′)πσ(α′).

We will make use of the following result. For more details about the inverse limit method,
see, e.g., [3–5, 23, 27, 34].

Proposition 4.1 (cf. [3,4,23]). Let S = {Xm, π
p
m, N} and S ′ = {Ym, π

p
m, N} be two inverse systems

such that Xm ⊂ Ym. If ϕ : lim
←
S ( lim

←
S ′ is a limit map induced by a mapping {id, ϕm}, where

ϕm : Xm ( Ym, and if Fix(ϕm) are, for all m ∈N, Rδ-sets, then the fixed point set Fix(ϕ) of ϕ is an
Rδ-set, too.

The following corollary is a direct consequence of Proposition 4.1.

Corollary 4.2. Let us consider the sequence of b.v.p.s {(Km)}∞
m=1, where

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t, x(t), . . . , x(n−1)(t)),
for a.a. t ∈ [t0, t0 + m],

x ∈ Sm (resp. (x, ẋ, . . . , x(n−1)) ∈ S′m),

 (Km)

and let us assume that each problem (Km), m ∈ N, has an Rδ-set of solutions which correspond to
fixed points of the associated integral operator. Moreover, let the boundary condition be such that, for
all m ∈N, the following holds:
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If x : [t0, t0 + m] → Rk is a solution of problem (Km) then x|[t0,t0+m−1] : [t0, t0 + m− 1] → Rk is
a solution of problem (Km−1).

Then the set of solutions of the problem

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t, x(t), . . . , x(n−1)(t)),
for a.a. t ∈ [t0, ∞),

x ∈ S (resp. (x, ẋ, . . . , x(n−1)) ∈ S′),

 (K∞)

where S is such that if x ∈ S, then x ∈ Sm, for all m ∈ N, (resp. if (x, ẋ, . . . , x(n−1)) ∈ S′, then
(x, ẋ, . . . , x(n−1)) ∈ S′m, for all m ∈N), is an Rδ-set.

Remark 4.3. The class of b.v.p. (K∞) for which Corollary 4.2 applies seems to be rather narrow.
On the other hand, one can easily interface problems (Km) on compact intervals with suitable
Cauchy initial value problems on infinite intervals [m, ∞).

For each solution x(·) of (Km) with (ẋ(m), . . . , x(n−1)(m)) = (x1, . . . , xn−1), the initial value
problems

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t, x(t), . . . , x(n−1)(t)),
for a.a. t ∈ [m, m +4], 0 < 4 < ∞,

x(m) = 0, ẋ(m) = x1, . . . , x(n−1)(m) = xn−1


have, according to [19], Rδ-sets of solutions. According to Corollary 4.2, the same problem has
therefore an Rδ-set of solutions on [m, ∞). Together, on [0, ∞), we can have in this way a union
of Rδ-sets of solutions of the matched problems (Km) and the Cauchy problem on [m, ∞).

As an illustration, we can give the following simple example.

Example 4.4. Consider the problem

x(3)(t) ∈ C(t, x(t), ẋ(t), ẍ(t)), for a.a. t ∈ [0, ∞),
ẋ(0) = x(1) = 0, ẍ(η) + βx(0) = 0,

}
(4.1)

where β ∈ [0, 2), η ∈
[√

121+24β−5
3(4+β)

, 1
)

, C : [0, ∞) × R3n ( Rn is an upper-Carathéodory

mapping such that, for a.a. t ∈ [0, 1], and all x1, x2, x3, y1, y2, y3 ∈ Rn,

dH(C(t, x1, x2, x3), C(t, y1, y2, y3)) ≤ α(t) · (|x1 − y1|+ |x2 − y2|+ |x3 − y3|) ,

with α ∈ L1([0, 1], [0, ∞)) satisfying ∫ 1

0
α(t) dt <

4− 2β

22− β
.

Moreover, let there exist C0 > 0 such that

|C(t, 0, 0, 0)| ≤ C0 · α(t), for a.a. t ∈ [0, 1].

We will show that, under the above assumptions, the set of solutions of (4.1) can be ex-
pressed as a special union of Rδ-sets.

In order to solve (4.1), we will consider separately the b.v.p.

x(3)(t) ∈ C(t, x(t), ẋ(t), ẍ(t)), for a.a. t ∈ [0, 1],
ẋ(0) = x(1) = 0, ẍ(η) + βx(0) = 0,

}
(4.2)
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and the Cauchy (initial value) problem

x(3)(t) ∈ C(t, x(t), ẋ(t), ẍ(t)), for a.a. t ∈ [1, ∞),
x(1) = 0, ẋ(1) = x1, ẍ(1) = x2.

}
(4.3)

By means of Theorem 3.3, the b.v.p. (4.2) is solvable with an Rδ-set of solutions (cf. Ex-
ample 3.10). In fact, the set of solutions of (4.2) is, according to Theorem 3.3, a nonempty,
compact AR-space.

Let x(·) be a solution of the b.v.p. (4.2) and let us put x1 := ẋ(1) and x2 := ẋ(2). Now,
let us consider, for these interface values of the derivatives, the problem (4.3). The Cauchy
problem, considered on an arbitrary compact interval [1, m], m ∈N, has an Rδ-set of solutions
(cf. [19]). Using the inverse limit method, we can conclude that, for the fixed x1 = ẋ(1) and
x2 := ẋ(2), the Cauchy problem (4.3) has, according to Corollary 4.2, an Rδ-set of solutions
on [1, ∞) which, in particular, implies that the related solution set is nonempty. If we denote
by xD : [0, 1] → Rn the solution of the b.v.p. (4.2) satisfying ẋD(1) = x1, ẍD(1) = x2 and by
xH : [1, ∞]→ Rn the solution of the Cauchy problem (4.3), then

x(t) :=

{
xD(t), for all t ∈ [0, 1],

xH(t), for all t ∈ [1, ∞),

is the solution of the original problem (4.1).
Although the solution set of each separate problem was proved to be an Rδ-set, the solution

set of the whole problem can be more complex. Nevertheless, if, for instance, the problem (4.2)
is uniquely solvable, then the solution set of the whole problem is an Rδ-set, too.

Remark 4.5. Quite analogously, we can match problem (3.17) in Example 3.8 with an appro-
priate Cauchy initial value problem on [m, ∞), to get a union of Rδ-sets of solutions of the
interface problem on [0, ∞).

Combining Corollary 4.2 with Proposition 3.1, we obtain immediately the following result
which we state here already in the form of theorem.

Theorem 4.6. Let us consider the linear problems on compact intervals (3.1) and (3.2) together with
the asymptotic problems

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t), for a.a. t ∈ [0, ∞),
x ∈ S,

}
(4.4)

x(n)(t) + A1(t)x(n−1)(t) + · · ·+ An(t)x(t) ∈ C(t), for a.a. t ∈ [0, ∞),
(x, ẋ, . . . , x(n−1)) ∈ S′,

}
(4.5)

where

(i) Ai : [0, ∞) → Rk×k, i = 1, . . . , n, are locally integrable matrix functions such that |Ai(t)| ≤
ai(t), for all i = 1, . . . , n, a.a. t ∈ [0, ∞) and suitable nonnegative functions ai ∈ L1

loc([0, ∞), R),

(ii) S is a closed, convex subset of ACn−1
loc ([0, ∞), Rk), Sm are, for all m ∈N, closed, convex subsets

of ACn−1([0, m], Rk)

(S′ is a closed, convex subset of ACn−1
loc ([0, ∞), Rk)× · · · × ACloc([0, ∞), Rk) and S′m are, for

all m ∈N, closed, convex subset of ACn−1([0, m], Rk)× · · · × AC([0, m], Rk)) ,
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(iii) C : [0, ∞) ( Rk is a locally integrable mapping with convex, closed values such that |C(t)| ≤
c(t), for a.a. t ∈ [0, ∞) and a suitable nonnegative function c ∈ L1

loc([0, ∞), R),

(iv) there exists t0 ∈ [0, ∞) such that, for all m ∈ N, we are able to find a constant Mm such that
|x(t0)| ≤ Mm, |ẋ(t0)| ≤ Mm, . . . , |x(n−1)(t0)| ≤ Mm, for all solutions x(·) of problem (3.1)
(all solutions x(·) of problem (3.2)),

(v) S is such that if x ∈ S, then x ∈ Sm, for all m ∈ N, (resp. if (x, ẋ, . . . , x(n−1)) ∈ S′, then
(x, ẋ, . . . , x(n−1)) ∈ S′m, for all m ∈N).

Moreover, let, for all m ∈ N, the set of solutions of (3.1) (the set of solutions of (3.2) and their
derivatives up to the (n− 1)-st order) is nonempty and corresponds to fixed points of the associated
integral operator. Furthermore, let the boundary condition be such that, for all m ∈ N, the following
holds:

If x : [0, m]→ Rk belongs to Sm, then x|[0,m−1] : [0, m− 1]→ Rk belongs to Sm−1.
(If

(x, ẋ, . . . , x(n−1)) : [0, m]× [0, m]× · · · × [0, m]→ Rkn

belongs to S′m, then

(x|[0,m−1], ẋ|[0,m−1], . . . , x(n−1)|[0,m−1]) : [0, m− 1]× [0, m− 1]× · · · × [0, m− 1]→ Rkn

belongs to S′m−1.)
Then the set of solutions of the problem (4.4) (the set of solutions of the problem (4.5) and their

derivatives up to the (n− 1)-st order) is an Rδ-set.

Remark 4.7. The statement of Theorem 4.6 holds if we consider multivalued matrix mappings
Ai. More concretely, let us consider the linear problems on compact intervals (3.8) and (3.9),
together with the asymptotic problems

x(n)(t) ∈ C(t)− A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [0, ∞),
x ∈ Sm,

}
(4.6)

x(n)(t) ∈ C(t)− A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [0, ∞),
(x, ẋ, . . . , x(n−1)) ∈ S′m,

}
(4.7)

where Ai : [0, ∞) ( Rk×k are locally integrable multivalued matrix mappings such that
|Ai(t)| ≤ ai(t), for a.a. t ∈ [0, ∞) and suitable nonnegative functions ai ∈ L1

loc([0, ∞), R), for
all i = 1, . . . , n.

Moreover, let all the conditions from Theorem 4.6, but with (i) replaced by the above
assumption, hold. Then the set of solutions of problem (4.6) (the set of solutions of problem
(4.7) and their derivatives up to the (n− 1)-st order) is an Rδ-set.

As an application of Theorem 4.6 and Remark 4.7, let us study the n-th order asymptotic
(Kneser-type) b.v.p.

Example 4.8. Let us consider the asymptotic (Kneser-type) b.v.p.

x(n)(t) ∈ −A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [a, ∞),
(−1)ix(i)(t) ≥ 0, for all t ∈ [a, ∞), i = 0, . . . n− 1,

}
(4.8)

where
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(i) a ∈ (0, ∞),

(ii) Ai : [a, ∞) ( R are locally integrable multivalued mappings such that |Ai(t)| ≤ αi(t),
for a.a. t ∈ [a, ∞) and suitable nonnegative functions αi ∈ L1

loc([a, ∞), R), for all i =

1, . . . , n,

(iii) there exists r ∈ (0, ∞) such that

(−1)n(−a1(t)xn − · · · − an(t)x1) ≥ 0,

for all t ≥ a, all measurable selections ai of Ai, i = 1, . . . , n, and all xi satisfying

0 ≤ (−1)i−1xi ≤ rt1−i, i = 1, . . . , n,

(iv) 0 /∈ An(t), for all t in a right neighbourhood of a.

Moreover, let us define

f ∗(t) := max{| − A1(t)xn − · · · − An(t)x1| : 0 ≤ (−1)i−1xi ≤ rt1−i, i = 1, . . . , n} (4.9)

and choose δ ∈
(
0, 1

a+1

)
so small that

2(a + 1)n−1
∫ a+δ

a
f ∗(τ) dτ ≤ r.

Together with (4.8), let us consider the initial condition

x(a) = c0, (4.10)

where

c0 ∈
(

0,
(

δ

a + δ

)n−1 r
2n!

)
. (4.11)

Let us show that, under the above assumptions, the set of solutions of (4.8), (4.10) and their
derivatives up to the (n− 1)-st order) is an Rδ-set.

For this goal, together with the b.v.p. (4.8), (4.10), let us consider the family of associated
problems on compact intervals

x(n)(t) ∈ −A1(t)x(n−1)(t)− · · · − An(t)x(t), for a.a. t ∈ [a, m],
x(a) = c0

(−1)ix(i)(t) ≥ 0, for all t ∈ [a, m], i = 0, . . . n− 1,

 (Pm)

where m ∈N, m > a.

Let vi be a measurable selection of Ai, i = 1, . . . , n. It was shown in [16] (see Lemma 2.1 in
[16] and the remarks below) that, under the above assumptions imposed on Ai, the following
two norms in ACn−1([a, m], R), where m > a is arbitrary, are equivalent:

‖x‖ := sup
t∈[a,m]

|x(t)|+ sup
t∈[a,m]

|ẋ(t)|+ · · ·+ sup
t∈[a,m]

|x(n−1)(t)|+
∫ m

a
|x(n)(t)| dt,

‖x‖∗ := sup
t∈[a,m]

|x(t)|+
∫ m

a

∣∣∣x(n)(t) + vn(t)x(t) + vn−1(t)ẋ(t) + · · ·+ v1(t)x(n−1)(t)
∣∣∣ dt.
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If x(·) is a solution of the b.v.p. (Pm), for some m ∈N, m > a, then

‖x‖∗ = c0.

Condition (iv) from Theorem 4.6 is therefore satisfied, because supt∈[a,m] |x(i)(t)| ≤ ‖x‖,
i = 1, . . . , n− 1, and since the norms ‖x‖∗ and ‖x‖ are equivalent.

Moreover, since the sets

S′m := {(x, ẋ, ẍ, . . . x(n−1)) ∈ ACn−1([a, m], R)× · · · × AC([a, m], R), x(0) = c0,

(−1)ix(i)(t) ≥ 0, for all t ∈ [a, m], i = 0, . . . , n− 1},

S′ := {(x, ẋ, ẍ, . . . , x(n−1)) ∈ AC(n−1)
loc ([a, ∞), R)× · · · × ACloc([a, ∞), R),

x(0) = c0, (−1)ix(i)(t) ≥ 0, for all t ∈ [a, ∞), i = 0, . . . , n− 1}

are closed and convex, the b.v.p.s (4.8), (4.10), (Pm) satisfy the assumptions (i)–(v) of Theo-
rem 4.6.

The non-emptiness of the set of solutions of (Pm) follows from Theorem 13.1 in [29] and the
fact that Ai, i = 1, . . . , n, admit (according to Lemma 2.1) single-valued measurable selections
vi, i = 1, . . . , n.

If we denote by P(t, x(t), ẋ(t), . . . , x(n−1)(t)) := −A1(t)x(n−1)(t) − · · · − An(t)x(t), then
x(·) is a solution of (Pm) if and only if, for a.a. t ∈ [a, m],

x(t) ∈ x(u)− |x(u)|+ c0

+ ẋ(a) · t + · · ·+ 1
(n− 1)!

∫ t

a
(t− s)n−1P(s, x(s), . . . , x(n−1)(s)) ds, (4.12)

ẋ(t) ∈ ẋ(u) + |ẋ(u)|

+ ẋ(a) + · · ·+ 1
(n− 2)!

∫ t

a
(t− s)n−2P(s, x(s), . . . , x(n−1)(s)) ds, (4.13)

...

x(n−1)(t) ∈ x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a) +
∫ t

a
P(s, x(s), . . . , x(n−1)(s)) ds, (4.14)

for each u ∈ [a, m], provided
0 /∈ An(t), (4.15)

on a subset of [a, m] with a nonzero measure.
More concretely, since the constraint in (Pm) can be equivalently expressed as

x(0) = c0,
x(u)− |x(u)| = 0, ẋ(u) + |ẋ(u)| = 0, . . . , x(n−1)(u)± |x(n−1)(u)| = 0,

for all u ∈ [a, m],

 (4.16)

every solution x(·) of (Pm) and its derivatives ẋ(·), . . . , x(n−1)(·) obviously satisfy (4.12)–(4.14).
Reversely, derivating (4.14), we obtain

x(n)(t) ∈ P(t, x(t), ẋ(t), . . . , x(n−1)(t)).

Moreover, x(a) ∈ x(u)− |x(u)|+ c0, ẋ(a) ∈ ẋ(u) + |ẋ(u)|+ ẋ(a), ẍ(a) ∈ ẍ(u)− |ẍ(u)|+
ẍ(a), . . . , x(n−1)(a) ∈ x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a), for each u ∈ [a, m], i.e. ẋ(u)+ |ẋ(u)| =
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0, ẍ(u)− |ẍ(u)| = 0, . . . , x(n−1)(u)± |x(n−1)(u)| = 0 and, in particular, for u = a, |x(a)| = c0.
Thus, for x(a) = c0, we also have x(u) − |x(u)| = 0, by which (4.16) (i.e. the constraint in
(Pm)) is satisfied. On the other hand, if x(a) = −c0, we arrive at x(u)− |x(u)| = −2c0, i.e.
x(u) = −c0, for all u ∈ [a, m], and subsequently 0 ∈ An(t), for a.a. t ∈ [a, m], which is a
contradiction with (4.15).

The set of solutions of (Pm) and their derivatives is a fixed point set of the map ϕm :
Cn−1([a, m], R) × · · · × C1([a, m], R) × C([a, m], R) ( Cn−1([a, m], R) × · · · × C1([a, m], R) ×
C([a, m], R), where, for all t ∈ [a, m],

ϕm(x, . . . , x(n−1))(t)

:=
{( ⋃

u∈[a,m]

x(u)− |x(u)|+ c0 + . . . +
1

(n− 1)!

∫ t

a
(t− s)n−1 f (s) ds,

⋃
u∈[a,m]

ẋ(u) + |ẋ(u)|+ ẋ(a) + ẍ(a) · t + . . . +
1

(n− 2)!

∫ t

a
(t− s)n−2 f (s) ds, . . . ,

⋃
u∈[a,m]

x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a) +
∫ t

a
f (s) ds

)
| f ∈ L1([a, m], R) and

f (s) ∈ P(t, x(s), ẋ(s), . . . , x(n−1)(s)), for a.a. s ∈ [a, m]

}
.

It can be easily seen that {ϕm}∞
m=1 is a map of the inverse system

{Cn−1([a, m], R)× . . . C1([a, m], R)× C([a, m], R), π
p
m, N}

into itself, where, for all p ≥ m, x ∈ Cn−1([a, p], R)× · · · × C1([a, p], R)× C([a, p], R),
π

p
m(x, ẋ, . . . , x(n−1)) = (x|[a,m], ẋ|[a,m], . . . , x(n−1)|[a,m]).

Mappings {ϕm}∞
m=1 induce the limit mapping ϕ : Cn−1([a, ∞), R)× · · · × C1([a, ∞), R)×

C([a, ∞), R) ( Cn−1([a, ∞), R)× · · · × C1([a, ∞), R)× C([a, ∞), R), where, for all t ≥ a,

ϕ(x, . . . , x(n−1))(t)

:=
{( ⋃

u∈[a,∞)

x(u)− |x(u)|+ c0 + · · ·+
1

(n− 1)!

∫ t

a
(t− s)n−1 f (s) ds,

⋃
u∈[a,∞)

ẋ(u) + |ẋ(u)|+ ẋ(a) + ẍ(a) · t + · · ·+ 1
(n− 2)!

∫ t

a
(t− s)n−2 f (s) ds, . . . ,

⋃
u∈[a,∞)

x(n−1)(u)± |x(n−1)(u)|+ x(n−1)(a) +
∫ t

a
f (s) ds

)
| f ∈ L1

loc([a, ∞), R) and

f (s) ∈ P(t, x(s), ẋ(s), . . . , x(n−1)(s)), for a.a. s ∈ [0, ∞)

}
.

The fixed point set of the mapping ϕ is the set of solutions and their derivatives of the
problem (4.8), (4.10). Applying Theorem 4.6 (cf. Remark 4.7), the set of solutions and their
derivatives of the original problem (4.8), (4.10) is therefore an Rδ-set, as claimed.

The second illustrative example of the application of Theorem 4.6 is as follows.
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Example 4.9. Consider the asymptotic problem

x(n)(t) ∈ C(t), for a.a. t ∈ [0, ∞),
x(i)(0) = Ai, i = 0, 1, . . . , n− 3,

|x(n−2)
j (0)| = ax(n−1)

j (0), j = 1, . . . , k,

x(n−1)
j (t) ≤ bj, j = 1, . . . , k, for all t ∈ [0, ∞),

 (4.17)

where x = (x1, . . . xk), a > 0, Ai ∈ Rk, i = 1, . . . , n − 3, B = (b1, . . . , bk) ∈ [0, ∞)k, and
C = (c1, . . . , ck) : [0, ∞) ( [0, ∞)k is an (Aumann-like) integrable mapping with convex,
closed values such that cj(t) ≤ γj(t), for a.a. t ∈ [0, ∞) and suitable (non-negative) functions
γj ∈ L1([0, ∞), R), j = 1, . . . , k, such that∫ ∞

0
γj(t) dt ≤ bj, j = 1, . . . , k. (4.18)

Observe that every solution x(·) of (4.17) as well as (4.17)m, where (4.17)m denotes the
restriction of (4.17) to the interval [0, m], m ∈N, must satisfy

x(n−1)
j (t) = x(n−1)

j (0) +
∫ t

0
csel

j (s) ds, j = 1, . . . , k, (4.19)

where Csel = (csel
1 , . . . , csel

k ) ⊂ C : [0, ∞) → [0, ∞)k is a measurable selection of C which
exists, according to the well known Kuratowski–Ryll–Nardzewski selection theorem (see e.g.
[5, Theorem I.3.49]).

Thus, in view of (4.18) and (4.19), both problems (4.17) as well as (4.17)m are solvable, at
least with x(n−1)(0) = 0 (⇒ x(n−2)(0) = 0). In particular, for C(t) ≡ 0, we get x(n−1)(t) ≡
x(n−1)(0) = 0.

Moreover, every solution x(·) of (4.17), resp. (4.17)m, takes the form

xj(t) = xhom
j (t) +

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
csel

j (tn−1) dtn−1 . . . dt1 dt, j = 1, . . . , k, (4.20)

where xhom
j (t) = ∑n−1

j=0
Aj
j! tj ± aP

(n−2)! t
n−2 + P

(n−1)! t
n−1, P = (p1, . . . pk) ∈ Rk is a parameter

such that x(n−1)(0) = P (⇒ 0 ≤ pj ≤ bj, j = 1, . . . , k), and subsequently, in view of (4.19),

x(n−1)
j (t) ≥ 0, j = 1, . . . , k, for all t ∈ [0, ∞).

By the last two conditions in (4.17) (cf. (4.20)), x(·) also satisfies x(n−2)(0) = aP, and so
x(n−2)

j (0) ∈
[
− bj

a , bj
a

]
, j = 1, . . . , k.

Hence, in order to apply Theorem 4.6, problems (4.17), and (4.17)m can be, under our
assumptions, rewritten into the equivalent forms:

x(n)(t) ∈ C(t), for a.a. t ∈ [0, ∞),
x ∈ S :=

{
x ∈ ACn−1

loc ([0, ∞), Rk) | x(i)(0) = Ai, i = 0, 1, . . . , n− 3,
x(n−2)(0) = ±ax(n−1)(0), x(n−1)(0) = P, where

0 ≤ pj ≤ bj −
∫ ∞

0 csel
j (s) ds, j = 1, . . . , k

}
,

 (4.21)

x(n)(t) ∈ C(t), for a.a. t ∈ [0, m],
x ∈ Sm :=

{
x ∈ ACn−1([0, m], Rk) | x(i)(0) = Ai, i = 0, 1, . . . , n− 3,

x(n−2)(0) = ±ax(n−1)(0), x(n−1)(0) = P, where
0 ≤ pj ≤ bj −

∫ m
0 csel

j (s) ds, j = 1, . . . , k
}

.

 (4.21)m
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In this way, one can easily check that S is a closed, convex subset of ACn−1
loc ([0, ∞), Rk)

and Sm are, for all m ∈ N, closed, convex subsets of ACn−1([0, m], Rk), i.e. condition (ii) in
Theorem 4.6 is satisfied.

Because of x(i)(0) = Ai, i = 0, 1, . . . , n− 3, and |x(n−2)(0)| = ax(n−1)(0) ≤ bj, j = 1, . . . , k,
condition (iv) also trivially holds.

As we have already pointed out, the set of solutions of (4.17), and subsequently under our
assumptions of (4.21), is nonempty and corresponds to selections of the associated (Aumann-
like) integral operator in (4.20).

Finally, one can readily check that if x : [0, m] → Rk belongs to Sm, then x|[0,m−1] :
[0, m− 1]→ Rk belongs to Sm−1, for all m ∈N.

Since the remaining conditions (i), (iii), (v) are trivially satisfied, Theorem 4.6 applies, and
the set of solutions of the original problem (4.17) is an Rδ-set.

5 Application to existence results

Finally, we will show how the topological structure of (Schauder-like) parametrized systems
can be used to the solvability of nontrivial asymptotic problems involving “unpleasant” non-
linearities, or so. For this goal, we will employ the following special case of our principle,
developed recently in [6, Theorem 3.1 and Corollary 4.2].

Proposition 5.1. Let us consider the b.v.p.

x(n)(t) ∈ C
(

t, x(t), . . . , x(n−1)(t)
)

, for a.a. t ∈ J,

x ∈ S,

}
(5.1)

where J is a given (possibly noncompact) interval, C : J × Rkn ( Rk is an upper-Carathéodory
mapping and S ⊂ ACn−1

loc (J, Rk).
Moreover, let H : J ×R2kn ( Rk be an upper-Carathéodory map such that

H(t, c1, . . . , cn, c1, . . . , cn) ⊂ C(t, c1, . . . , cn), for all (t, c1, . . . , cn) ∈ J ×Rkn. (5.2)

Assume that

(i) there exists a retract Q of Cn−1(J, Rk) such that the associated problem

x(n)(t) ∈ H
(

t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t)
)

, for a.a. t ∈ J,

x ∈ S ∩Q

}
(5.3)

is solvable with an Rδ-set of solutions, for each q ∈ Q,

(ii) there exists a non-negative, locally integrable function α : J → R such that

|H(t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t))| ≤ α(t)
(

1 + |x(t)|+ · · ·+ |x(n−1)(t)|
)

,

a.e. in J, for any (q, x) ∈ ΓT, where T denotes the multivalued map which assigns to any q ∈ Q
the set of solutions of (5.3),

(iii) T(Q) ⊂ Q,

(iv) T(Q) is bounded in C(J, Rk).
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Then problem (5.1) admits a solution in S ∩Q.

Finally, let us illustrate the application of Proposition 5.1, on the basis of the knowledge of
the structure of the solution sets from the foregoing Section 4, in two examples.

Example 5.2. Let us consider the n-th order nonlinear (Kneser-type) asymptotic b.v.p.

x(n)(t) ∈ −A1(t, x(t), . . . , x(n−1)(t))x(n−1)(t)− · · · − An(t, x(t), . . . , x(n−1)(t))x(t),
for a.a. t ∈ [a, ∞),

x(a) = c0,
(−1)ix(i)(t) ≥ 0, for all i = 0, . . . , n− 1, and t ∈ [a, ∞),

 (5.4)

where

• a ∈ (0, ∞),

• Ai : [a, ∞)×Rn → R, i = 1, . . . , n, are upper-Carathéodory mappings with

|Ai(t, x1, x2, . . . , xn)| ≤ β(t)(1 + |x1|),

for all (x1, x2, . . . , xn) ∈ Rn and t ∈ [a, ∞), where β ∈ L1
loc([a, ∞), R),

• c0 satisfies (4.11) with f ∗(·) from (4.9) defined by

f ∗(t) := max
{
| − A1(t, x1, . . . , xn)xn − · · · − An(t, x1, . . . , xn)x1 | :

0 ≤ (−1)i−1xi ≤ rt1−i, i = 1, . . . , n
}

• 0 /∈ An(t, x1, x2, . . . , xn), for all (x1, x2, . . . , xn) ∈ Rn and for t in a right neighbourhood
of a.

In order to apply Proposition 5.1, let us define the set of candidate solutions as follows

Q :=
{

x ∈ Cn−1([0, ∞), R) |x(a) = c0, (−1)ix(i)(t) ≥ 0, for all i = 0, . . . n− 1, and t ∈ [a, ∞)
}

.

Let us still consider the associated problems

x(n)(t) ∈ −A1(t, q(t), . . . , q(n−1)(t))x(n−1)(t)− · · · − An(t, q(t), . . . , q(n−1)(t))x(t),
for a.a. t ∈ [a, ∞),

x(a) = c0,
(−1)ix(i)(t) ≥ 0, for all i = 0, . . . n− 1, and t ∈ [a, ∞).

 (Pq)

Let us check that if there exists r ∈ (0, ∞) such that, for all q ∈ Q,

(−1)n(−a1(t, q(t), . . . , q(n−1)(t))xn − · · · − an(t, q(t), . . . , q(n−1)(t))x1) ≥ 0,

for all t ≥ a, all measurable selections ai of Ai, i = 1, . . . , n, and all xi satisfying

0 ≤ (−1)i−1xi ≤ rt1−i, i = 1, . . . , n,

then the b.v.p. (5.4) has a solution.
More concretely, let us verify, that the b.v.p. (Pq) satisfies, for all q ∈ Q, all assumptions of

Proposition 5.1.
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ad (i) It can be proved exactly in the same way as in Example 4.8 that the b.v.p. (Pq) has,
for each q ∈ Q, an Rδ-set of solutions.

ad (ii) Assumption (ii) follows immediately from the properties of mappings Ai, i=1, . . . , n,
and the definition of (Pq).

ad (iii) Since the set S := Q is closed and each solution of the b.v.p. (Pq) belongs to Q, it
holds that T(Q) ⊂ S, where the map T is the solution mapping that assigns to each
q ∈ Q the set of solutions of (Pq).

ad (iv) It follows directly from the boundary conditions that T(Q) is bounded in C([a, ∞), R).

Since all the assumptions of Proposition 5.1 are satisfied, the b.v.p. (5.4) admits a solution x(·)
such that 0 ≤ x(t) ≤ c0, for all t ∈ [a, ∞).

Remark 5.3. For single-valued maps Ai, i = 1, . . . , n, the set of solutions to problem (5.4) was
proved in [29, Theorem III.13.1] to be a continuum.

Now, the result in Example 4.9 will be applied, by means of Proposition 5.1, to the follow-
ing existence problem

x(n)(t) ∈ C(t, x(t), . . . , x(n−1)(t)), for a.a. t ∈ [0, ∞),
x(i)(0) = Ai, i = 0, 1, . . . , n− 3,

|x(n−2)
j (0)| = ax(n−1)

j (0), j = 1, . . . , k,

x(n−1)
j (t) ≤ bj, j = 1, . . . , k, for all t ∈ [0, ∞),

 (5.5)

where C : [0, ∞)×Rkn ( Rk is an upper-Carathéodory mapping and the other symbols in
(5.5) have the same meaning as those in Example 4.9.

Example 5.4. Consider (5.5) and assume, additionally, that C = (c1, . . . , ck) satisfies

cj(t, X0, X1 . . . , Xn − 1) ≤ γj(t), (5.6)

for a.a. t ∈ [0, ∞), all (X0, X1, . . . , Xn − 1) ∈ Rkn, and suitable (non-negative) functions γj ∈
L1([0, ∞), R), j = 1, . . . , k, such that∫ ∞

0
γj(t) dt ≤ bj, j = 1, . . . , k. (5.7)

Then problem (5.5) admits a solution.
Taking J = [0, ∞), Q = Cn−1([0, ∞), Rk) and S to be the same as in Example 4.9, we

have obviously S ∩ Q = S. Since C(t, q(t), . . . , q(n−1)(t)) is, under (5.6) and (5.7), (Aumann-
like) integrable (see e.g. [9]) with convex, closed values, for every q ∈ Q, problem (5.3) with
H
(
t, x(t), . . . , x(n−1)(t), q(t), . . . , q(n−1)(t)

)
= C(t, q(t), . . . , q(n−1)(t)) in Proposition 5.1 is, in

view of the conclusions in Example 4.9, solvable with an Rδ-set of solutions, for each q ∈ Q.
The inequalities (5.6), (5.7) immediately imply the existence of a suitable α ∈ L1

loc([0, ∞), R)

such that γj(t) ≤ α(t), j = 1, . . . , k, a.e. in [0, ∞) and, because of Q = Cn−1([0, ∞), Rk), (iii)
must be also fulfilled (cf. the solution form (4.20) in Example 4.9).

Since condition (iv) trivially holds for the initial values xj(0), j = 1, . . . , k, Proposition 5.1
applies, and subsequently (5.5) is solvable, as claimed.
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Remark 5.5. One can easily check that the sole existence of a solution x(·) of problem (5.5)
with initial conditions x(i)(0) = Ai, i = 0, 1, . . . , n− 3, and x(n−2)(0) = x(n−1)(0) = 0 follows
already from the analysis in Example 4.9.

On the other hand, problem (5.5) has in fact a one-parameter family of Rδ-sets of solutions
which is a subset of a larger Rδ-set described below, because by means of the parametric
transformation x = X0 ∈ Rk, Xl = Ẋl − Al−1, l = 1, . . . , n− 3, Xn−2 = Ẋn−3 ∓ aP, Xn−1 =

Ẋn−2 − P, where P ∈ ∏k
j=1[0, Dj], it can be equivalently rewritten into the zero initial-value

problem for the first-order system of inclusions

Ẋ0 = X1 + A1, Ẋ1 = X2 + A2, . . . , Ẋn−4 = Xn−3 + An−3,
Ẋn−3 = Xn−2 ± aP, Ẋn−2 = Xn−1 + P, Ẋn−1 ∈ CP(t, X0, . . . Xn−1),

with (X0(0), . . . , Xn−1(0)) = 0 ∈ Rkn,

 (5.8)

where CP(t, X0, . . . Xn−1) = C(t, X0+A0, . . . , Xn−3+An−3, Xn−2± aP, Xn−1+P), P ∈∏k
j=1[0, Dj],

and Dj ≥ 0, j = 1, . . . , k, are suitable constants.
It is well known that, according to [19], (5.8) has for each P ∈ ∏k

j=1[0, Dj] an Rδ-set of
solutions on every compact subinterval of [0, ∞) and, according to [5, Theorem III.2.12], even
on the whole [0, ∞). Moreover, the one-parameter family of right-hand sides of (5.8), i.e.
(X1 + A1, . . . , Xn−3 + An−3, Xn−2± aP, Xn−1 + P, CP), P ∈ ∏k

j=1[0, Dj] is obviously (as a whole)
a multivalued selection of the right-hand side of the multivalued problem

Ẋ0 = X1 + A1, Ẋ1 = X2 + A2, . . . , Ẋn−4 = Xn−3 + An−3,
Ẋn−3 ∈ Xn−2 + a ∏k

j=1[−Dj, Dj], Ẋn−2 ∈ Xn−1 + ∏k
j=1[0, Dj],

Ẋn−1 ∈ C(t, X0 + A0, . . . Xn−3 + An−3, Xn−2 + a ∏k
j=1[−Dj, Dj], Xn−1 + ∏k

j=1[0, Dj])

with (X0(0), . . . , Xn−1(0)) = 0 ∈ Rkn.

 (5.9)

Problem (5.9) has, by the same standard reference sources, an Rδ-set of solutions on [0, ∞), as
well as on each compact subset of [0, ∞).

It is therefore a question, whether the union of one-parameter family of Rδ-sets of solutions
to (5.5) forms an Rδ-set itself.

Remark 5.6. Although all illustrative examples in this paper could take the form of theorems,
we decided to reserve this form exclusively for those having the character of the general
methods (see Theorem 3.3 and Theorem 4.6). For asymptotic b.v.p.s, Theorem 4.6 still allows
us to fulfil the crucial condition (i) in Proposition 5.1, in order to solve problem (5.1).
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