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Abstract. We study a class of singular elliptic equations involving critical Sobolev expo-
nent and Kirchhoff-type nonlocal term −

(
a + b

∫
Ω |∇u|2dx

)
∆u = u5 + g(x, u) + λu−γ,

x ∈ Ω, u > 0, x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ R3 is a bounded domain,
a, b, λ > 0, 0 < γ < 1 and g ∈ C(Ω×R) satisfies some conditions. By the perturbation
method, variational method and some analysis techniques, we establish a multiplicity
theorem.

Keywords: singular elliptic equation, Kirchhoff-type nonlocal term, critical Sobolev
exponent, positive solutions, perturbation method.

2010 Mathematics Subject Classification: 35A15, 35B09, 35B33, 35J75.

1 Introduction

In this paper, we consider the following singular elliptic equation with critical Sobolev expo-
nent and Kirchhoff-type nonlocal term

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = u5 + g(x, u) + λu−γ, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R3 is a bounded domain, a, b, λ > 0, 0 < γ < 1 and 2∗ = 6 is the well-known
critical Sobolev exponent. The nonlinear term g(x, s) : Ω ×R → R satisfies the following
conditions.
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(g1) g ∈ C(Ω×R), g(x, s) ≥ 0 if s ≥ 0 and g(x, s) = 0 if s ≤ 0 for all x ∈ Ω.

(g2) lims→0+
g(x,s)

s = 0 and lims→+∞
g(x,s)

s5 = 0 uniformly for all x ∈ Ω.

(g3) There exists 0 < κ � a such that g(x, s)s− 4G(x, s) ≥ −(a− κ)λ1s2 for all x ∈ Ω and
s ≥ 0, where G(x, s) =

∫ s
0 g(x, t)dt and λ1 > 0 is the first eigenvalue of the operator −∆.

(g4) There exists a nonempty open set ω ⊂ Ω with 0 ∈ ω such that lims→+∞
g(x,s)

s3 = +∞
uniformly for x ∈ ω.

Because of the presence of the term b
∫

Ω |∇u|2dx, which implies that the equation is no longer
a pointwise identity, problem (1.1) is called the nonlocal problem. This phenomenon provokes
some mathematical difficulties, which makes the study of such a class of problem particularly
interesting. Its physical motivation about the operator

(∫
Ω |∇u|2dx

)
∆u, which appears in

the Kirchhoff equation. Thus, problem (1.1) is always called Kirchhoff-type problem. The
Kirchhoff equation is related to the following stationary analogue of the equationutt −

(
a + b

∫
Ω
|∇u|2dx

)
∆u = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

proposed by Kirchhoff [14] in 1883 as an extension of the classical D’Alembert’s wave equation
for free vibration of elastic strings. Kirchhoff’s model takes into account the changes in length
of the string produced by transverse vibrations. In problem (1.2), u denotes the displacement,
f (x, u) the external force and b the initial tension while a is related to the intrinsic properties
of the string (such as Young’s modulus). It is worth pointing out that problem (1.2) received
much attention only after the work of Lions [23] where a function analysis framework was
proposed to the problem. After that, the Kirchhoff-type problem has been extensively investi-
gated, for examples [1, 4, 9–13, 15, 17–22, 24, 25, 27–37].

To our best knowledge, the pioneer work on the Kirchhoff-type problem with critical
Sobolev exponent is Alves, Corrêa and Figueiredo [1], they considered the following criti-
cal Sobolev exponent problem−

[
M
(∫

Ω
|∇u|2dx

)]
∆u = u5 + λ f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where Ω ⊂ R3, M : R+ → R+, f : Ω×R→ R are continuous functions, F(x, u) =
∫ u

0 f (x, s)ds
is superquadratic at the origin and subcritical at infinity. By using the variational method,
under appropriate conditions, they obtained that problem (1.3) has a positive solution for
all λ > 0 large enough. After that, the Kirchhoff-type problem with critical exponent has
been extensively studied, and some important and interesting results have been obtained, see
[4, 8–13, 15–21, 24, 27–29, 33–37].

Particularly, Lei, Liao and Tang [16] studied the following singular Kirchhoff-type problem
with critical exponent

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = u5 + λu−γ, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.4)
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using the variational method and perturbation method, they obtained two positive solutions
for problem (1.4) when λ > 0 small. After that, Liu et al. generalized [16] to R4 with the
following equation 

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = µu3 + λ

|x|βuγ , x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.5)

where Ω ⊂ R4 a bounded smooth domain and λ, µ > 0, 0 ≤ β < 3, see [24]. When 0 < γ < 1
2

and 2(1 + γ) < β < 3, by the same methods in [16], they also got two positive solutions for
problem (1.4) when µ > bS2 and λ > 0 small, where S is the best Sobolev constant in R4.

Based on [16] and [24], the mountain-pass level value is the most obstacle in proving the
existence of the second solution of problem (1.4). This obstacle stems from the local term
b
∫

Ω |∇u|2dx, which shows that the difference between the classic elliptic problem(that is,
b = 0) and the Kirchhoff-type problem. In this paper, we give another way to overcome
this obstacle. We add a supperlinear term g(x, u) in problem (1.4), that is problem (1.1).
Combining with the perturbation method and variational method, we obtain two positive
solutions for problem (1.1).

For all u ∈ H1
0(Ω), we define

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − 1

6

∫
Ω
(u+)6dx−

∫
Ω

G(x, u+)dx− λ

1− γ

∫
Ω
(u+)1−γdx,

where G(x, u) =
∫ u

0 g(x, s)ds and H1
0(Ω) is a Sobolev space equipped with the norm ‖u‖ =(∫

Ω |∇u|2dx
) 1

2 . Obviously, the energy functional I does not belong to C1(H1
0(Ω), R). Note

that a function u is called a weak solution of problem (1.1) if u ∈ H1
0(Ω) such that(

a + b‖u‖2) ∫
Ω
(∇u,∇ϕ)dx−

∫
Ω
(u+)5ϕdx−

∫
Ω

g(x, u+)ϕdx− λ
∫

Ω
(u+)−γ ϕdx = 0, (1.6)

for all ϕ ∈ H1
0(Ω).

Let S be the best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx(∫
Ω |u|6dx

) 1
3

. (1.7)

Our main results can be described as follows.

Theorem 1.1. Assume that a, b, λ > 0, 0 < γ < 1 and g satisfies (g1)–(g4), then there exists Λ > 0
such that problem (1.1) possesses two positive solutions for all 0 < λ < Λ.

Remark 1.2. To the best of our knowledge, our result is up to date. As we known, [16] is the
first paper which considered the singular Kirchhoff-type problem with critical exponent, that
is, problem (1.4). However, there exists a small gap in the proof of the second positive solution,
that is, the estimation of B(tεvε) in Page 533 of [16]. Indeed, when using the inequality of (3.14)
in Page 532 of [16] to estimate B(tεvε), they need check α

tεvε
is small enough for |x| ≤ ε

1−γ
16 and

ε small. However, it maybe is not true. Obviously, if |x| ≤ ε
1−γ
16 and ε → 0, for some C > 0,

one has α
tεvε
≥ Cα (ε+|x|2)

1
2

ε
1
4

, which does not implies that α
tεvε

is small. So far there is no way to
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correct it. In [24], the authors avoided the similar question by multiplying |x|−β in front of
the singular term λ

uγ , see problem (1.5). In here, in order to arrive at the same effect, we add a
continuous subcritical function g in the right hand side of equation (1.4).

Comparing with Theorem 1.1 in [28], our problem (1.1) is a singular perturbing problem
of that paper. Thanks to this perturbation, we get another solution. Moreover, our condition
(g3) is more general than the following condition (g′3) in [28],

(g′3) There exists a constant θ ∈ (4, 6) such that g(x, s)s − θG(x, s) ≥ 0 for all x ∈ Ω and
s ≥ 0, where G(x, s) =

∫ s
0 g(x, t)dt.

We should point out that [28] generalized a part of Brézis–Nirenberg’s result in [7] to the
Kirchhoff-type problem.

Our condition (g4) is first given by [7], which is used to estimate the level of the mountain-
pass value. Thanks to (g4), we obtain the second positive solution of problem (1.1).

In view of the typical power nonlinearities, Theorem 1.1 allows us to ensure the following
corollary.

Corollary 1.3. Assume that a, b, λ > 0, 0 < γ < 1, 4 < p < 6 and g(x, u) = up−1, then there
exists Λ̃ > 0 such that problem (1.1) possesses two positive solutions for all 0 < λ < Λ̃.

Remark 1.4. When g(x, u) = up−1(4 < p < 6), then clearly g satisfies (g1)–(g4). For the proof,
we can consider instead with g(x, u) = (u+)p−1.

This paper is organized as following: in Section 2, we consider an auxiliary problem, and
in Section 3, we give the proof of Theorem 1.1. For the convenience of writing, we denote
C, C1, C2, . . . as various positive constants in the following.

2 The auxiliary problem

In order to overcome the difficulty of the singular term, for every ε > 0, we study the following
perturbation problem−

(
a + b

∫
Ω
|∇u|2dx

)
∆u = (u+)5 + g(x, u) + λ(u+ + ε)−γ, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.1)

where u+ = max{u, 0}. The energy functional corresponding to problem (2.1) is

Iε(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − 1

6

∫
Ω
(u+)6dx−

∫
Ω

G(x, u+)dx− λ

1− γ

∫
Ω

[
(u+ + ε)1−γ − ε1−γ

]
dx,

Obviously, the energy functional Iε is of class C1 on H1
0(Ω). As well known that there exists a

one-to-one correspondence between all solutions of problem (2.1) and the critical points of Iε

on H1
0(Ω). We mean a function u is called a weak solution of problem (2.1) if u ∈ H1

0(Ω) such
that(

a + b‖u‖2) ∫
Ω
(∇u,∇ϕ)dx−

∫
Ω
(u+)5ϕdx−

∫
Ω

g(x, u+)ϕdx− λ
∫

Ω

ϕ

(u+ + ε)γ
dx = 0, (2.2)

for all ϕ ∈ H1
0(Ω).

First, we prove that Iε satisfies the local (PS)c condition.
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Lemma 2.1. Suppose that a, b, λ > 0, 0 < γ < 1 and g satisfies (g1)− (g3), then Iε satisfies the
(PS)c condition, where c < Θ− Dλ

2
1+γ with D = D(γ, S, κ, Ω) is a positive constant and

Θ =
abS3

4
+

b3S6

24
+

aS
√

b2S4 + 4aS
6

+
b2S4
√

b2S4 + 4aS
24

.

Proof. Suppose that {un} is a (PS)c sequence for c ∈ (0, Θ− Dλ
2

1+γ ), that is,

Iε(un)→ c, I′ε(un)→ 0, (2.3)

as n→ +∞. We claim that {un} is bounded in H1
0(Ω). In fact, from (g1) and (g2), there exists

C0 > 0 such that ∣∣∣∣15 g(x, s)s− G(x, s)
∣∣∣∣ ≤ 1

30
|s|6 + C0. (2.4)

Note that the subadditivity of t1−γ, one has

(u+
n + ε)1−γ − ε1−γ ≤ (u+

n )
1−γ. (2.5)

Consequently, combining with the Sobolev inequality, it follows from (2.3) and (2.5) that

1 + c + o(1)‖un‖

≥ Iε(un)−
1
5
〈I′ε(un), un〉

=
3a
10
‖un‖2 +

b
20
‖un‖4 +

∫
Ω

[
1
5

g(x, u+
n )u

+
n − G(x, u+

n )

]
dx

+
1
30

∫
Ω
(u+

n )
6dx− λ

1− γ

∫
Ω

[
(u+

n + ε)1−γ − ε1−γ
]

dx− λ

5εγ

∫
Ω

u−n dx

≥ 3a
10
‖un‖2 +

b
20
‖un‖4 − λ

1− γ

∫
Ω
(u+

n )
1−γdx− λ

5εγ

∫
Ω

u−n dx− C0|Ω|,

≥ 3a
10
‖un‖2 +

b
20
‖un‖4 − C‖un‖1−γ − C1‖un‖ − C0|Ω|,

(2.6)

since 0 < γ < 1, which implies that {un} is bounded in H1
0(Ω). Going if necessary to a

subsequence, still denoted by {un}, there exists u ∈ H1
0(Ω) such that

un ⇀ u, weakly in H1
0(Ω),

un → u, strongly in Ls(Ω), 1 ≤ s < 6,

un(x)→ u(x), a.e. in Ω,

there exists k ∈ L1(Ω) such that for all n, |un(x)| ≤ k(x) a.e. in Ω.

(2.7)

For every ε > 0, since
|u|

(u+
n + ε)γ

≤ |u|
εγ

,

by the dominated convergence theorem and (2.7), one has

lim
n→∞

∫
Ω
(u+

n + ε)−γudx =
∫

Ω
(u+ + ε)−γudx. (2.8)
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Moreover, for every ε > 0, by (2.7), one gets∣∣∣∣ un

(u+
n + ε)γ

∣∣∣∣ ≤ ∣∣∣∣ un

(u+
n + ε)γ

∣∣∣∣
≤ |un|

εγ

≤ 1
εγ

k(x).

Therefore, it follows from the dominated convergence theorem that

lim
n→∞

∫
Ω
(u+

n + ε)−γundx =
∫

Ω
(u+ + ε)−γudx. (2.9)

From (2.7), one also has∫
Ω
|∇un|2dx =

∫
Ω
|∇wn|2dx +

∫
Ω
|∇u|2dx + o(1), (2.10)(∫

Ω
|∇un|2dx

)2

= ‖wn‖4 + ‖u‖4 + 2‖wn‖2‖u‖2 + o(1). (2.11)

By (g2) and (2.7), one has ∫
Ω

g(x, u+
n )udx =

∫
Ω

g(x, u+)udx + o(1), (2.12)∫
Ω

g(x, u+
n )undx =

∫
Ω

g(x, u+)udx + o(1), (2.13)∫
Ω

G(x, u+
n )dx =

∫
Ω

G(x, u+)dx + o(1). (2.14)

As usually, letting wn = un − u, we need prove that ‖wn‖ → 0 as n→ ∞. Let limn→∞ ‖wn‖ =
l ≥ 0. If l = 0, our conclusion is true. Suppose that l > 0. By the Brézis–Lieb Lemma (see [6]),
one has ∫

Ω
(u+

n )
6dx =

∫
Ω
(w+

n )
6dx +

∫
Ω
(u+)6dx + o(1). (2.15)

From (2.3), (2.7), (2.9) and (2.13), one obtains

a‖un‖2 + b‖un‖4 −
∫

Ω
(u+

n )
6dx−

∫
Ω

g(x, u+)udx− λ
∫

Ω
(u+ + ε)−γudx = o(1),

consequently, it follows from (2.10), (2.11) and (2.15) that

a‖u‖2 + a‖wn‖2 + b‖u‖4 + b‖wn‖4 + 2b‖wn‖2‖u‖2

−
∫

Ω
(w+

n )
6dx−

∫
Ω
(u+)6dx−

∫
Ω

g(x, u+)udx− λ
∫

Ω
(u+ + ε)−γudx = o(1). (2.16)

It follows from (2.3), (2.8) and (2.13) that

0 = lim
n→∞
〈I′ε(un), u〉

= a‖u‖2 + b‖u‖4 + bl2‖u‖2 −
∫

Ω
(u+)6dx−

∫
Ω

g(x, u+)udx− λ
∫

Ω
(u+ + ε)−γudx.

(2.17)

Moreover, by (2.3), for any ϕ ∈ H1
0(Ω), one has limn→∞〈I′ε(un), ϕ〉 = 0, that is,

(a + bd)
∫

Ω
(∇u,∇ϕ)dx−

∫
Ω
(u+)5ϕdx−

∫
Ω

g(x, u+)ϕdx− λ
∫

Ω
(u+ + ε)−γ ϕdx = 0, (2.18)
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where d = ‖un‖2 + o(1) is a positive constant. Particularly, choosing ϕ = u− in (2.18), one has
u− = 0. Thus, we have u ≥ 0 in Ω. On the one hand, from (2.5), (2.17) and (g3), by the Hölder
inequality, Sobolev inequality and Poincaré inequality, we have

Iε(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − 1

6

∫
Ω
(u+)6dx−

∫
Ω

G(x, u)dx

− λ

1− γ

∫
Ω

[
(u+ + ε)1−γ − ε1−γ

]
dx

=
a
4
‖u‖2 +

1
12

∫
Ω
(u+)6dx +

∫
Ω

[
1
4

g(x, u+)u− G(x, u+)

]
dx

− λ

1− γ

∫
Ω

[
(u+ + ε)1−γ − (u+)1−γ

]
dx +

λ

4

∫
Ω
(u+ + ε)−γudx− bl2

4
‖u‖2

≥ a
4
‖u‖2 − λ1(a− κ)

4

∫
Ω

u2dx− λ

1− γ

∫
Ω

u1−γdx− bl2

4
‖u‖2

≥ κ

4
‖u‖2 − λ

1− γ
|Ω|

5+γ
6 S−

1−γ
2 ‖u‖1−γ − bl2

4
‖u‖2

≥ − Dλ
2

1+γ − bl2

4
‖u‖2,

(2.19)

where the last inequality is obtained by the Young inequality and

D =
1 + γ

1− γ
2
−2γ
1+γ (κS)−

1−γ
1+γ |Ω|

5+γ
3(1+γ) .

On the other hand, it follows from (2.14), (2.16) and (2.17) that

a‖wn‖2 + b‖wn‖4 + b‖wn‖2‖u‖2 −
∫

Ω
(w+

n )
6dx = o(1), (2.20)

and

Iε(un) = Iε(u) +
a
2
‖wn‖2 +

b
4
‖wn‖4 +

b
2
‖wn‖2‖u‖2 − 1

6

∫
Ω
(w+

n )
6dx + o(1). (2.21)

From (1.7), one has ∫
Ω
(w+

n )
6dx ≤

∫
Ω
|wn|6dx ≤ ‖wn‖6

S3 ,

consequently, it follows from (2.20) that

al2 + bl4 + bl2‖u‖2 ≤ l6

S3 ,

which implies that

l2 ≥ bS3 +
√

b2S6 + 4S3(a + b‖u‖2)

2
. (2.22)
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Thus, from (2.20)–(2.22), we obtain

Iε(u) = lim
n→∞

[
Iε(un)−

a
2
‖wn‖2 − b

4
‖wn‖4 − b

2
‖wn‖2‖u‖2 +

1
6

∫
Ω
(w+

n )
6dx
]

= c−
(

a
3

l2 +
b

12
l4 +

b
3

l2‖u‖2
)

≤ c−
[ a
(

bS3 +
√

b2S6 + 4S3(a + b‖u‖2)
)

6

+
b

48

(
bS3 +

√
b2S6 + 4S3(a + b‖u‖2)

)2

+
b‖u‖2

6

(
bS3 +

√
b2S6 + 4S3(a + b‖u‖2)

) ]
− bl2

4
‖u‖2

≤ c−
(

abS3

4
+

b3S6

24
+

aS
√

b2S4 + 4aS
6

+
b2S4
√

b2S4 + 4aS
24

)
− bl2

4
‖u‖2

< − Dλ
2

1+γ − bl2

4
‖u‖2,

which contradicts (2.19). Hence, l ≡ 0, that is, un → u in H1
0(Ω) as n → ∞. Therefore, Iε

satisfies the (PS)c condition for all c < Θ−Dλ
2

1+γ . This completes the proof of Lemma 2.1.

As well known, the function

U(x) =
(3ε2)

1
4

(ε2 + |x|2)
1
2

, x ∈ R3, (2.23)

is an extremal function for the minimum problem (1.7), that is, it is a positive solution of the
following problem

−∆u = u5, ∀x ∈ R3.

Now, we estimate the level value of functional Iε and obtain the following lemma.

Lemma 2.2. Assume that a, b, λ > 0, 0 < γ < 1 and g satisfies (g1), (g2) and (g4), then there exists
u0 ∈ H1

0(Ω), such that supt≥0 Iε(tu0) < Θ− Dλ
2

1+γ for all 0 < λ < λ∗, where Θ and D are defined
by Lemma 2.1 and the positive constant λ∗ is independent of u0 and ε.

Proof. Define a cut-off function η ∈ C∞
0 (Ω) such that 0 ≤ η ≤ 1, |∇η| ≤ C1. For some δ > 0,

we define

η(x) =

{
1, |x| ≤ δ,

0, |x| ≥ 2δ,

and {x : |x| ≤ 2δ} ⊂ ω, where ω is defined by (g4). Set uε = η(x)U(x), where U(x) is defined
by (2.23). As well known (see [7, 26]), one has

‖uε‖2 = ‖U‖2 + O(ε) = S
3
2 + O(ε), (2.24)

|uε|66 = |U|66 + O(ε3) = S
3
2 + O(ε3), (2.25)

C2ε
s
2 ≤

∫
Ω

us
εdx ≤ C3ε

s
2 , 1 ≤ s < 3,

C4ε
s
2 | ln ε| ≤

∫
Ω

us
εdx ≤ C5ε

s
2 | ln ε|, s = 3,

C6ε
6−s

2 ≤
∫

Ω
us

εdx ≤ C7ε
6−s

2 , 3 < s < 6.

(2.26)
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Moreover, from [35], we also have


‖uε‖4 = S3 + O(ε);

‖uε‖6 = S
9
2 + O(ε);

‖uε‖8 = S6 + O(ε);

‖uε‖12 = S9 + O(ε).

(2.27)

For all t ≥ 0, we define Iε(tuε) by

Iε(tuε) =
at2

2
‖uε‖2 +

bt4

4
‖uε‖4 − t6

6

∫
Ω

u6
ε dx−

∫
Ω

G(x, tuε)dx

− λ

1− γ

∫
Ω

[
(tuε + ε)1−γ − ε1−γ

]
dx,

from (g2), we have

lim
t→+0

Iε(tuε) = 0, uniformly for all 0 < ε < ε0,

and

lim
t→+∞

Iε(tuε) = −∞, uniformly for all 0 < ε < ε0,

where ε0 > 0 is a small constant. Thus supt≥0 Iε(tuε) attains for some tε > 0. Using the
following conclusion of Step 1 in the proof of Theorem 2.3, one has Iε(tεuε) > ρ > 0. So, by
the continuity of Iε, there exist two constants t0, T0 > 0, which independent of ε, such that
t0 < tε < T0. Set Iε(tuε) = Iε,1(t)− Iε,2(t)− Iε,3(t), where

Iε,1(t) =
a
2

t2‖uε‖2 +
b
4

t4‖uε‖4 − t6

6

∫
Ω

u6
ε dx,

and

Iε,2(t) =
∫

Ω
G(x, tuε)dx,

Iε,3(t) =
λ

1− γ

∫
Ω

[
(tuε + ε)1−γ − ε1−γ

]
dx.

First, we estimate the value of Iε,1. Since I′ε,1(t) = at‖uε‖2 + bt3‖uε‖4− t5
∫

Ω
u6

ε dx, let I′ε,1(t) = 0,

that is,

a‖uε‖2 + bt2‖uε‖4 − t4
∫

Ω
u6

ε dx = 0, (2.28)

one obtains

T2
ε =

b‖uε‖4 +
√

b2‖uε‖8 + 4a‖uε‖2
∫

Ω u6
ε dx

2
∫

Ω u6
ε dx

.

Then I′ε,1(t) > 0 for all 0 < t < Tε and I′ε,1(t) < 0 for all t > Tε, so Iε,1(t) attains its maximum
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at Tε. Thus, it follows from (2.24), (2.25), (2.27) and (2.28) that

Iε,1(t) ≤ Iε,1(Tε)

= T2
ε

(
a
2
‖uε‖2 +

b
4

T2
ε ‖uε‖4 − T4

ε

6

∫
Ω

u6
ε dx
)

= T2
ε

(
a
3
‖uε‖2 +

b
12

T2
ε ‖uε‖4

)

=
ab‖uε‖6 + a‖uε‖2

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω u6

ε dx

6
∫

Ω u6
ε dx

+
b3‖uε‖12 + 2ab‖uε‖6

∫
Ω u6

ε dx

24
(∫

Ω u6
ε dx
)2

+
b2‖uε‖4

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω u6

ε dx

24
(∫

Ω u6
ε dx
)2

=
ab‖uε‖6

4
∫

Ω u6
ε dx

+
b3‖uε‖12

24(
∫

Ω u6
ε dx)2

+
a‖uε‖2

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω u6

ε dx

6
∫

Ω u6
ε dx

+
b2‖uε‖4

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω u6

ε dx

24
(∫

Ω u6
ε dx
)2

=
ab(S

9
2 + O(ε))

4(S
3
2 + o(ε))

+
b3(S9 + O(ε))

24(S
3
2 + o(ε))2

+
a(S

3
2 + O(ε))

√
b2S6 + 4aS3 + O(ε)

6(S
3
2 + o(ε))

+
b2(S6 + O(ε))

√
b2S6 + 4aS3 + O(ε)

24(S
3
2 + o(ε))2

≤ abS3

4
+

b3S6

24
+

aS
√

b2S4 + 4aS
6

+
b2S4
√

b2S4 + 4aS
24

+ C8ε

= Θ + C8ε.

(2.29)

Second, we estimate the value of Iε,2. We claim that

lim
ε→0+

∫
Ω G(x, tεuε)dx

ε
= +∞. (2.30)

Let m(t) = infx∈w g(x, t), from (g1) and (g4), we have

g(x, t) ≥ m(t) ≥ 0, lim
t→+∞

m(t)
t3 = +∞,

for almost x ∈ ω and t > 0. Consequently, for any µ > 0, there exists A > 0 such that



Singular elliptic equations with critical exponent and Kirchhoff term 11

M(t) ≥ µt4 for all t ≥ A, where M(t) =
∫ t

0 m(s)ds. Thus, one has∫
Ω G(x, tεuε)dx

ε
≥ ε−1

∫
|x|<δ

G(x, tεuε)dx

≥ ε−1
∫
|x|<δ

M(tεuε)dx

= ε−1
∫ δ

0
M

[
tε3

1
4 ε

1
2

(ε2 + r2)
1
2

]
r2dr

= ε2
∫ δε−1

0
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr

= ε2
∫ ε−1

0
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr− ε2

∫ ε−1

δε−1
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr.

(2.31)

Since m(t) > 0 for all t > 0, we obtain M(t) is increasing for all t > 0. From (g2), one has
M(t) ≤ Ct2 for all t > 0 small enough. Consequently, one gets∣∣∣∣∣ε2

∫ ε−1

δε−1
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr

∣∣∣∣∣ ≤ Cε−1M(tε3
1
4 ε

1
2 ) ≤ Cε−1M(T03

1
4 ε

1
2 ) ≤ C, (2.32)

for all ε > 0 small enough. Fixing A, there exists B > 0 such that tε3
1
4 ε−

1
2

(1+r2)
1
2
≥ A for all

1 < r < Bε−
1
2 . Therefore, one obtains

lim inf
ε→0+

ε2
∫ ε−1

0
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr ≥ lim inf

ε→0+
ε2
∫ Bε−

1
2

1
M

[
tε3

1
4 ε−

1
2

(1 + r2)
1
2

]
r2dr

≥ lim inf
ε→0+

Cµε2
∫ Bε−

1
2

1

ε−2r2

(1 + r2)2 dr

=
∫ +∞

1

ε−2r2

(1 + r2)2 dr

= +∞.

(2.33)

According to (2.31)–(2.33), (2.30) is obtained. Finally, we estimate the value of Iε,3. From (2.26),
since 0 < t0 < tε < T0, one has

Iε,3(tε) =
λ

1− γ

∫
Ω

[
(tεuε + ε)1−γ − ε1−γ

]
dx

≥ 0.
(2.34)

Thus, from (2.29), (2.30) and (2.34), there exists a large enough positive constant C9 > C8 such
that

Iε(tuε) = Iε,1(t)− Iε,2(t)− Iε,3(t)

≤ Iε,1(tε)− Iε,2(tε)− Iε,3(tε)

< Θ + C8ε− C9ε

< Θ− (C9 − C8)ε

≤ Θ− Dλ
2

1+γ ,
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provided that ε > 0 small enough and 0 < λ <
( (C9−C8)ε

D

) 1+γ
2 . Thus there exists λ∗ =( (C9−C8)ε

D

) 1+γ
2 > 0, choosing u0 = uε, such that Iε(tu0) < Θ − Dλ

2
1+γ for all 0 < λ < λ∗.

This completes the proof of Lemma 2.2.

Therefore, we can obtain the following conclusion for problem (2.1).

Theorem 2.3. Assume that a, b, λ > 0, 0 < γ < 1 and g satisfies (g1)–(g4), then there exists Λ > 0
such that problem (2.1) possesses two positive solutions for all 0 < λ < Λ and every ε > 0. Moreover,
one of the solutions is a positive ground state solution.

Proof. We divide three steps to prove Theorem 2.3.

Step 1. We prove that there exists a positive local minimizer solution of problem (2.1).
First, we claim that there exist λ∗ > 0 and R, ρ > 0 such that Iε(u)|u∈SR ≥ ρ and

infu∈BR Iε(u) < 0 for λ ∈ (0, λ∗), where SR = {u ∈ H1
0(Ω) : ‖u‖ = R}, BR = {u ∈ H1

0(Ω) :
‖u‖ ≤ R}. In fact, by (g1) and (g2), we infer that

|G(x, s)| ≤ aλ1

4
|s|2 + C10|s|6,

for all x ∈ Ω and s ∈ R. Consequently, by the Hölder inequality and (1.7) and (2.5), we have

Iε(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − 1

6

∫
Ω
(u+)6dx−

∫
Ω

G(x, u+)dx

− λ

1− γ

∫
Ω

[
(u+ + ε)1−γ − ε1−γ

]
dx

≥ a
4
‖u‖2 +

b
4
‖u‖4 − C11‖u‖6 − λ|Ω|

5+γ
6

(1− γ)S
1−γ

2

‖u‖1−γ

≥ a
4
‖u‖2 − C11‖u‖6 − λ|Ω|

5+γ
6

(1− γ)S
1−γ

2

‖u‖1−γ

=
‖u‖1−γ

4

(
a‖u‖1+γ − C12‖u‖5+γ − Bλ

)

(2.35)

where C12 = 4C11 and B = 4|Ω|
5+γ

6

(1−γ)S
1−γ

2
. Let

h(t) = at1+γ − C12t5+γ − Bλ, ∀t ∈ [0,+∞).

Then we have h′(t) = tγ[a(1 + γ)− C12(5 + γ)t4]. Let h′(t) = 0, one has

tmax =

[
a(1 + γ)

C12(5 + γ)

] 1
4

, max
t≥0

h(t) = h(tmax) =
4a

5 + γ

[
a(1 + γ)

C12(5 + γ)

] 1+γ
4

− Bλ.

Therefore, choosing λ∗ =
4a

B(5+γ)

[
a(1+γ)

C12(5+γ)

] 1+γ
4

and R = tmax, according to (2.35), there exists

ρ > 0 such that Iε(u)|u∈SR ≥ ρ for all 0 < λ < λ∗. By (g2), for u ∈ H1
0(Ω) with u+ > 0 it holds

lim
t→0+

Iε(tu)
t

= − λ

1− γ
lim

t→0+

1
t

∫
Ω
[(tu+ + ε)1−γ − ε1−γ]dx

= − λ

1− γ
lim

t→0+

∫
Ω

(1− γ)ξ−γtu+

t
dx (ε < ξ < tu+ + ε)

= −λ
∫

Ω

u+

εγ
dx (as t→ 0+, ξ → ε)

< 0.
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Thus there exists u ∈ H1
0(Ω) with ‖u‖ small enough such that Iε(u) < 0. Thus, we have

infu∈BR Iε(u) < 0. Therefore, our claim is true.
Denote mε = infu∈BR Iε(u), there exists a minimizing sequence {un} ⊂ H1

0(Ω) such that
limn→∞ Iε(un) = mε. Applying Corollary 4.1 in [26], there exists a subsequence of {un},
still denoted by {un} such that I′ε(un) → 0 as n → ∞. Choosing λ∗∗ =

(Θ
D

) 1+γ
2 such that

Θ− Dλ
2

1+γ > 0 for any 0 < λ < λ∗∗. Then, taking λ∗∗ = min{λ∗, λ∗∗}, for any 0 < λ < λ∗∗,
by Lemma 2.1, one has there exists uε ∈ H1

0(Ω) such that Iε(uε) = limn→∞ Iε(un) = mε < 0.
Thus uε is nonzero solution of problem (2.1). Let u−ε = max{−uε, 0}, by 〈I′ε(uε), u−ε 〉 = 0, one
has u−ε = 0. Thus, uε ≥ 0. By the strong maximum principle, one has uε > 0 in Ω. Therefore,
uε is a positive local minimizer solution of problem (2.1) for all 0 < λ < λ∗∗.

Step 2. We prove that there exists a positive mountain-pass type solution of problem (2.1).
By (g1) and (g2), there exists Cε > 0 such that

|G(x, s)| ≤ ε|s|6 + Cε.

Consequently, for u ∈ H1
0(Ω)\{0}, one has

lim
t→+∞

∣∣∫
Ω G(x, tu)dx

∣∣
t6 ≤ lim

t→+∞

εt6
∫

Ω u6dx + Cε|Ω|
t6 = ε

∫
Ω

u6dx.

By the arbitrary of ε, one gets

lim
t→+∞

∣∣∫
Ω G(x, tu)dx

∣∣
t6 = 0.

Thus, we have

lim
t→+∞

Iε(tu)
t6 = −

∫
Ω

u6dx.

Consequently, there exists ũ ∈ H1
0(Ω) such that ‖ũ‖ > R and Iε(ũ) < 0. Let 0 < λ < λ∗.

According to Step 1, the functional Iε satisfies the geometry of the mountain-pass lemma. Let
c be defined by

c = inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t)),

where Γ =
{

γ ∈ C([0, 1], H1
0(Ω)) : γ(0) = 0, γ(1) = ũ

}
. Obviously, one has 0 < Θ− Dλ

2
1+γ .

According to Lemma 2.1 and Lemma 2.2, there exists {un} ⊂ H1
0(Ω) such that

Iε(un)→ c > ρ and I′ε(un)→ 0,

then {un} has a convergent subsequence (still denoted by {un}) in H1
0(Ω). We assume un → vε

in H1
0(Ω) as n→ ∞. Then applying the mountain-pass lemma (see [3] Theorem 2.1), one gets

lim
n→∞

Iε(un) = Iε(vε) = c > ρ > 0 and I′ε(vε) = 0. Thus, vε is a nonzero solution of problem
(2.1). Similar to uε in Step 1, by the strong maximum principle, one has vε > 0 in Ω. Therefore,
vε is a positive solution of problem (2.1) with Iε(vε) > ρ > 0 for all 0 < λ < λ∗. Therefore,
choosing Λ = min{λ∗, λ∗∗}, uε and vε are two positive solutions of problem (2.1).
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Step 3. We prove that there exists a positive ground state solution of problem (2.1).
Let N = {u ∈ H1

0(Ω) : I′ε(u) = 0} and m0 = inf
u∈N

Iε(u). For all u ∈ N , by the Sobolev

inequality, it follows from (2.4) and (2.5) that

Iε(u) = Iε(u)−
1
5
〈I′ε(u), u〉

=
3a
10
‖u‖2 +

b
20
‖u‖4 +

∫
Ω

[
1
5

g(x, u+)u+ − G(x, u+)

]
dx

+
1
30

∫
Ω
(u+)6dx− λ

1− γ

∫
Ω

[
(u+ + ε)1−γ − ε1−γ

]
dx− λ

5εγ

∫
Ω

u−dx

≥ 3a
10
‖u‖2 +

b
20
‖u‖4 − λ

1− γ

∫
Ω
|u|1−γdx− λ

5εγ

∫
Ω
|u|dx− C0|Ω|

≥ 3a
10
‖u‖2 +

b
20
‖u‖4 − C13‖u‖1−γ − C14‖u‖ − C0|Ω|,

(2.36)

since 0 < γ < 1, which implies that m0 is well defined. According to Step 1 and Step 2, one
has uε, vε ∈ N . Thus m0 = infu∈N Iε(u) ≤ Iε(uε) < 0. From (2.36), we can easy obtain that
m0 > −∞. Therefore, for the minimization problem m0, we can get a (PS)m0 sequence. By
Lemma 2.1 and Lemma 2.2, there exists u ∈ H1

0(Ω) such that Iε(u) = m0 and I′ε(u) = 0.
Similar to uε in Step 1, by the strong maximum principle, one obtains that u is a positive
ground state solution of problem (2.1). This completes the proof of Theorem 2.3.

3 The proof of Theorem 1.1

According to Section 2, we know that Θ, Λ, D are independent of ε. Therefore, there exist two
sequences of positive solutions {uεn} and {vεn} of the auxiliary problem (2.1) with Iεn(uεn) < 0
and Iεn(vεn) > 0, where εn → 0+ as n → +∞. Now, we will prove the limits of the two
sequences of positive solutions are two different positive solutions of problem (1.1). Now, we
give the proof of Theorem 1.1.

Proof of Theorem 1.1. First, we prove that {uεn} and {vεn} have a convergent subsequence in
H1

0(Ω), respectively. Without loss of generality, we only need prove that {uεn} has a conver-
gent subsequence in H1

0(Ω). Similarly, we can also obtain {vεn} has a convergent subsequence.
Since uεn is the positive solution of problem (2.1), one has

−(a + b‖uεn‖2)∆uεn = u5
εn
+ g(x, uεn) + λ(uεn + εn)

1−γ ≥ min
{

1,
λ

2γ

}
,

which implies that

−∆uεn ≥
1

a + b‖uεn‖2 min
{

1,
λ

2γ

}
.

Let e be a positive weak solution of the following problem{
−∆u = 1, x ∈ Ω,

u = 0, x ∈ ∂Ω,

and for every Ω0 ⊂⊂ Ω, there exists e0 > 0 such that e|Ω0 ≥ e0. Therefore, by the comparison
principle, we get

uεn ≥
min{1, λ

2γ }
a + b‖uεn‖2 e.
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In particular, from e|Ω0 ≥ e0 > 0, one has

uεn |Ω0 ≥
min

{
1, λ

2γ

}
a + b‖uεn‖2 e0 > 0. (3.1)

Similar to (2.6), we can easy obtain that

Θ− Dλ
2

1+γ ≥ Iεn(uεn)−
1
5
〈I′εn

(uεn), uεn〉

≥ 3a
10
‖uεn‖2 +

b
20
‖uεn‖4 − λ

1− γ

∫
Ω

u1−γ
εn dx− C0|Ω|

≥ 3a
10
‖uεn‖2 +

b
20
‖uεn‖4 − C‖uεn‖1−γ − C0|Ω|,

which implies that {uεn} is bounded in H1
0(Ω). Up to a subsequence, combining with (3.1),

there exists u∗ ∈ H1
0(Ω) with u∗ > 0 such that

uεn ⇀ u∗ weakly in H1
0(Ω),

uεn → u∗ strongly in Lq(Ω)(1 ≤ q < 6),

uεn(x)→ u∗(x) a.e. in Ω.

(3.2)

Now, we shall prove that uεn → u∗ in H1
0(Ω) as εn → 0. By (g2) and (3.2), one has∫

Ω
g(x, uεn)u∗dx =

∫
Ω

g(x, u∗)u∗dx + o(1), (3.3)∫
Ω

g(x, uεn)uεn dx =
∫

Ω
g(x, u∗)u∗dx + o(1), (3.4)∫

Ω
G(x, uεn)dx =

∫
Ω

G(x, u∗)dx + o(1). (3.5)

As usually, letting wεn = uεn − u∗, we need prove that ‖wεn‖→0 as n→∞. Let limn→∞ ‖wεn‖ =
l ≥ 0. For every εn > 0, since

uεn

(uεn + εn)γ
≤ u1−γ

εn ,

and similar to (2.3) in [22], one has∫
Ω

u1−γ
εn dx =

∫
Ω

u1−γ
∗ dx + o(1),

consequently, by the dominated convergence theorem, one has

lim
n→∞

∫
Ω
(uεn + εn)

−γuεn dx =
∫

Ω
u1−γ
∗ dx. (3.6)

Since uεn is a positive solution of problem (2.1) with ε = εn, it follows from (2.2) that(
a + b‖uεn‖2)∫

Ω
(∇uεn ,∇ϕ)dx−

∫
Ω

u5
εn

ϕdx−
∫

Ω
g(x, uεn)ϕdx− λ

∫
Ω

ϕ

(uεn + εn)γ
dx = 0, (3.7)

for all ϕ ∈ H1
0(Ω). For any φ ∈ H1

0(Ω) ∩ C0(Ω), where C0(Ω) is the subset of C(Ω) consisting
of functions with compact support in Ω, by the dominate convergence theorem, it follows
from (3.1) with Ω0 = supp φ that

lim
n→∞

∫
Ω

φ

(uεn + εn)γ
dx =

∫
Ω

u−γ
∗ φdx.
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Consequently, taking the test function ϕ = φ ∈ H1
0(Ω) ∩ C0(Ω) in (3.7), and let n → ∞, we

can obtain

(a + bl2 + b‖u∗‖2)
∫

Ω
(∇u∗,∇φ)dx =

∫
Ω

u5
∗φdx +

∫
Ω

g(x, u∗)φdx + λ
∫

Ω
u−γ
∗ φdx. (3.8)

Similar to prove (4.3) in [16] holds for any φ ∈ H1
0(Ω), we can prove that (3.8) holds for any

φ ∈ H1
0(Ω) by the same way. Choosing φ = u∗ in (3.8), one has

a‖u∗‖2 + b‖u∗‖4 + bl2‖u∗‖2 −
∫

Ω
u6
∗dx−

∫
Ω

g(x, u∗)u∗dx− λ
∫

Ω
u1−γ
∗ dx = 0. (3.9)

Choosing ϕ = uεn in (3.7), let n → ∞, by the Brézis–Lieb Lemma, it follows from (3.2), (3.4)
and (3.6) that

a‖u∗‖2 + a‖wεn‖2 + b‖u∗‖4 + b‖wεn‖4 + 2b‖wεn‖2‖u‖2

−
∫

Ω
w6

εn
dx−

∫
Ω

u6
∗dx−

∫
Ω

g(x, u∗)u∗dx− λ
∫

Ω
u1−γ
∗ dx = o(1). (3.10)

On the one hand, from (2.5), (3.9) and (g3), by the Hölder inequality, Sobolev inequality and
Poincaré inequality, we have

I(u∗) =
a
2
‖u∗‖2 +

b
4
‖u∗‖4 − 1

6

∫
Ω

u6
∗dx−

∫
Ω

G(x, u∗)dx− λ

1− γ

∫
Ω

u1−γ
∗ dx

=
a
4
‖u∗‖2 +

1
12

∫
Ω

u6
∗dx +

∫
Ω

[
1
4

g(x, u∗)u− G(x, u∗)
]

dx

− λ

1− γ

∫
Ω

u1−γ
∗ dx− bl2

4
‖u∗‖2

≥ a
4
‖u∗‖2 − λ1(a− κ)

4

∫
Ω

u2
∗dx− λ

1− γ

∫
Ω

u1−γ
∗ dx− bl2

4
‖u∗‖2

≥ κ

4
‖u∗‖2 − λ

1− γ
|Ω|

5+γ
6 S−

1−γ
2 ‖u∗‖1−γ − bl2

4
‖u∗‖2

≥ − Dλ
2

1+γ − bl2

4
‖u∗‖2,

(3.11)

where the last inequality is obtained by the Young inequality. On the other hand, it follows
from (3.5), (3.9) and (3.10) that

a‖wεn‖2 + b‖wεn‖4 + b‖wεn‖2‖u∗‖2 −
∫

Ω
w6

εn
dx = o(1), (3.12)

and

Iεn(uεn) = I(u∗) +
a
2
‖wεn‖2 +

b
4
‖wεn‖4 +

b
2
‖wεn‖2‖u∗‖2 − 1

6

∫
Ω

w6
εn

dx + o(1). (3.13)

From (1.7), one has ∫
Ω

w6
εn

dx ≤ ‖wεn‖6

S3 ,

consequently, it follows from (3.12) that

al2 + bl4 + bl2‖u∗‖2 ≤ l6

S3 ,
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which implies that

l2 ≥ bS3 +
√

b2S6 + 4S3(a + b‖u∗‖2)

2
. (3.14)

Since Iεn(uεn) < Θ− Dλ
2

1+γ , from (3.12)–(3.14), we obtain

I(u∗) < lim
n→∞

[
Θ− Dλ

2
1+γ − a

2
‖wεn‖2 − b

4
‖wεn‖4 − b

2
‖wεn‖2‖u∗‖2 +

1
6

∫
Ω

w6
εn

dx
]

= Θ− Dλ
2

1+γ −
(

a
3

l2 +
b

12
l4 +

b
3

l2‖u∗‖2
)

≤ Θ− Dλ
2

1+γ −
[ a
(

bS3 +
√

b2S6 + 4S3(a + b‖u∗‖2)
)

6

+
b

48

(
bS3 +

√
b2S6 + 4S3(a + b‖u∗‖2)

)2

+
b‖u∗‖2

6

(
bS3 +

√
b2S6 + 4S3(a + b‖u∗‖2)

) ]
− bl2

4
‖u∗‖2

≤ Θ− Dλ
2

1+γ −
(

abS3

4
+

b3S6

24
+

aS
√

b2S4 + 4aS
6

+
b2S4
√

b2S4 + 4aS
24

)
− bl2

4
‖u∗‖2

< − Dλ
2

1+γ − bl2

4
‖u∗‖2,

which contradicts (3.11). Hence, l ≡ 0, that is, uεn → u∗ in H1
0(Ω) as n → ∞. Moreover, since

(3.8) holds any φ ∈ H1
0(Ω), we get that u∗ is a positive solution of problem (1.1). Similarly, for

{vεn}, up to a subsequence, there exists v∗ ∈ H1
0(Ω) with v∗ > 0 such that vεn → v∗ in H1

0(Ω)

and v∗ is a positive solution of problem (1.1).
Second, we prove that u∗ and v∗ are two different positive solutions of problem (1.1).

According to Theorem 2.3, one has I(u∗) = limn→∞ Iεn(uεn) = limn→∞ mεn ≤ 0 and I(v∗) =

limn→∞ Iεn(vεn) > ρ > 0. Therefore, u∗ and v∗ are two different positive solutions of problem
(1.1). This completes the proof of Theorem 1.1.
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