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1 Introduction

We study the existence of solutions of the nonlinear equation on the half-line

x′′(t) = f (t, x, x′), t ∈ [0, ∞), (1.1)

coupled with the functional boundary conditions

L(x(0), x′(0), x) = 0, x′(+∞) := lim
t→+∞

x′(t) = B, (1.2)

where B ∈ R and L : C([0, ∞))×R2 → R is a continuous function and it is nonincreasing in
the second and third variables.

Boundary value problems on unbounded intervals are becoming popular in the literature
because of their applications to model real world problems in engineering or chemistry, see [1].
For instance, second-order nonlinear differential problems arise in the investigation of radial
solutions for elliptic equations.

The functional boundary conditions considered here are quite general and were recently
studied in [8]. They include the extensively studied Sturm–Liouville conditions [11, 12], in-
tegral boundary conditions [2], multipoint [18] and other boundary conditions with, for ex-
ample, maximum or minimum arguments. Observe that the boundary condition at infinity
implies that solutions, if they exist, are unbounded if B 6= 0.
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The main novelty here is that we allow the function f to satisfy weaker conditions than
usual. In particular, it may be discontinuous in the second variable over a countable number
of admissible curves. This more general case wants new fixed point theorems which generalize
the classical Schauder’s fixed point theorem [9, 15].

We shall assume the existence of well ordered upper and lower solutions on unbounded
domains and a Nagumo condition to control the first derivative in order to obtain existence
results for (1.1)–(1.2). Another interesting point in this paper is that we are able to relax the
usual definition of lower and upper solutions, cf. [2,8,11–13], and therefore our main existence
result is new even in the classical case of continuous right-hand sides in (1.1). See Remark 3.2
for details.

Furthermore, we also prove the existence of extremal solutions for (1.1)–(1.2) by adapting
the arguments in [5] to unbounded domains. This is also a new result even for a continuous
function f (t, x, x′).

This paper is organized as it follows: in Section 2 we present the fixed point tools which we
will employ later and we introduce the Banach space where we will look for solutions to (1.1)–
(1.2) as well as the definition for lower and upper solutions. The integral operator associated
to problem (1.1)–(1.2) is also studied here. In Section 3, an existence and localization result is
established. Finally, in Section 4, we investigate the existence of extremal solutions between
the lower and upper functions, that is, a least and a greatest solution.

2 Definition and preliminaries

First, we present some definitions and fixed point theorems based on multivalued theory
which will be the key to work with discontinuous operators.

Let K be a nonempty subset of a normed space (X, ‖ · ‖) and T : K −→ X an operator, not
necessarily continuous.

Definition 2.1. The closed-convex envelope of an operator T : K −→ X is the multivalued
mapping T : K −→ 2X given by

Tx =
⋂
ε>0

co T
(

Bε(x) ∩ K
)

for every x ∈ K, (2.1)

where Bε(x) denotes the closed ball centered at x and radius ε, and co means closed convex
hull.

Remark 2.2. The closed-convex envelope (cc-envelope, for short) is similar to the Krasovskij
regularization (see [10]), but here we are ‘convexifying’ operators instead of nonlinear parts
of differential equations.

Remark 2.3. Note that T is an upper semicontinuous multivalued mapping which assumes
closed and convex values (see [4, 15]) provided that T K is a relatively compact subset of X.

Theorem 2.4 ([15, Theorem 3.1]). Let K be a nonempty, convex and compact subset of X.
Any mapping T : K −→ K has at least one fixed point provided that for every x ∈ K ∩TK we have

{x} ∩Tx ⊂ {Tx}, (2.2)

where T denotes the closed-convex envelope of T.
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Remark 2.5. Condition (2.2) is equivalent to Fix(T) ⊂ Fix(T), where Fix(S) denotes the set of
fixed points of the operator S.

Theorem 2.6 ([9, Theorem 2.7]). Let K be a nonempty, closed and convex subset of X and T : K −→
K be a mapping such that T K is a relatively compact subset of X and it satisfies condition (2.2). Then
T has a fixed point in K.

Now we present some definitions and results concerning the problem (1.1)–(1.2). Consider
the space

X =

{
x ∈ C1([0, ∞)) : lim

t→∞

x(t)
eθt ∈ R, θ > 0 and lim

t→∞
x′(t) ∈ R

}
endowed with a Bielecki norm type in C1([0, ∞)),

‖x‖ := max {‖x‖0 , ‖x‖1} ,

where

‖x‖0 = sup
0≤t<∞

|x(t)|
eθt and ‖x‖1 = sup

0≤t<∞

∣∣x′(t)∣∣.
It is clear that (X, ‖·‖) is a Banach space and it was employed in [8] where problem (1.1)–(1.2)
was studied. For convenience we denote

Y =

{
x ∈ C([0, ∞)) : lim

t→∞

x(t)
eθt ∈ R, θ > 0

}
.

Our approach is based on lower and upper solutions method [7] and fixed point the-
ory. Thus we define the lower and upper solutions for problem (1.1)–(1.2) and we present
a Nagumo condition which gives some a priori bound on the first derivative for all possible
solutions of the differential equation (1.1) between the lower and the upper solutions.

Definition 2.7. A function α ∈ Y is said to be a lower solution for the problem (1.1)–(1.2) if
the following conditions are satisfied.

(i) For any t0 ∈ (0, ∞), either D−α(t0) < D+α(t0),
or there exists an open interval I0 such that t0 ∈ I0, α ∈W2,1(I0) and

α′′(t) ≥ f (t, α(t), α′(t)) for a.a. t ∈ I0.

(ii) D+α(0) ∈ R and L(α(0), D+α(0), α) ≤ 0.

(iii) There exists N ∈N such that α ∈W2,1((N, ∞)) and α′(+∞) ≤ B.

Similarly β ∈ Y is an upper solution for (1.1)–(1.2) if it satisfies the inequalities in the reverse
order.

Proposition 2.8. Let ᾱ, β̄ ∈ Y be such that ᾱ ≤ β̄ and define

r > max

{
sup

t∈[0,∞)

β̄(t)− ᾱ(0)
eθt , sup

t∈[0,∞)

β̄(0)− ᾱ(t)
eθt

}
.

Assume there exist a continuous function N̄ : [0, ∞)→ (0, ∞) and M̄ ∈ L1([0, ∞)) such that∫ ∞

r

1
N̄(s)

ds = +∞. (2.3)
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Define E :=
{
(t, x, y) ∈ [0, ∞)×R2 : ᾱ(t) ≤ x ≤ β̄(t)

}
. Then, there exists R > 0 such that for

every function f : E→ R satisfying for a.e. t ∈ [0, ∞) and all (x, y) ∈ R2 with (t, x, y) ∈ E,

| f (t, x, y)| ≤ M̄(t)N̄(|y|),

and for every solution x of (1.1) such that ᾱ ≤ x ≤ β̄, we have

‖x‖1 < R.

Proof. Let R > r be big enough such that∫ R

r

1
N̄(s)

ds >
∫ ∞

0
M̄(s) ds. (2.4)

Let x be a solution of (1.1) and t ∈ [0, ∞) such that x′(t) > R.
If |x′(t)| > r for all t ∈ [0, ∞), then for T > 0 big enough we have

β̄(T)− ᾱ(0)
eθT ≥ x(T)− x(0)

eθT ≥ x(T)− x(0)
T

=

∫ T
0 x′(s) ds

T
> r ≥ β̄(T)− ᾱ(0)

eθT ,

a contradiction.
Therefore there exist t0 < t1 (or t1 < t0) such that x′(t0) = r, x′(t1) = R and r ≤ x′(s) ≤ R

in [t0, t1] (or [t1, t0]). Then we have∫ R

r

1
N̄(s)

ds =
∫ t1

t0

x′′(s)
N̄(x′(s))

ds =
∫ t1

t0

f (s, x(s), x′(s))
N̄(x′(s))

ds ≤
∫ t1

t0

M̄(s) ds ≤
∫ ∞

0
M̄(s) ds,

a contradiction, so we deduce that x′(t) < R. In the same way we prove that x′(t) > −R.

Remark 2.9. Observe that condition (2.3) in Proposition 2.8 could just be replaced by condition
(2.4). However, the first one is easier to check in practice.

Remark 2.10. Notice that a better condition about N̄, which allows a quadratic growth with
respect to the third variable of the nonlinear term f for the differential equation (1.1), is
commonly employed in the literature (see, e.g. [2, 11, 12, 14]), namely,∫ ∞

r

s
N̄(s)

ds = +∞.

Unfortunately, this type of conditions require harder assumptions about M̄ such as

sup
0≤t<∞

(1 + t)k M̄(t) < +∞ for some k > 1.

In particular, the previous hypothesis avoids that M̄ could be singular at t = 0.

Lemma 2.11. Let h ∈ L1([0, ∞)). Then x ∈ X is the unique solution of the problem

x′′(t) = h(t), t ∈ [0, ∞),

x(0) = A,

x′(+∞) = B,

with A, B ∈ R, if and only if,

x(t) = A +
∫ t

0

(
B−

∫ ∞

s
h(r) dr

)
ds.
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Proof. It is immediate, see [8, Lemma 2.3].

For applying the fixed point theorems is necessary to guarantee that certain sets are
relatively compact. Nevertheless, the classical Ascoli–Arzelà theorem fails due to the non-
compactness of the infinite interval [0, ∞), so this difficulty is overcome by the following
result, see [1].

Lemma 2.12. Let A ⊂ X. The set A is said to be relatively compact if the following conditions hold:

(a) A is uniformly bounded in X;

(b) the functions belonging to A are equicontinuous on any compact interval of [0, ∞);

(c) the functions f from A are equiconvergent at +∞, i.e., given ε > 0 there exists T(ε) > 0 such
that ‖ f (t)− f (+∞)‖ < ε for any t > T(ε) and f ∈ A.

Now we shall construct a modified problem for proving the existence of solutions for
(1.1)–(1.2) under well-ordered lower and upper solutions.

Suppose that there exist α and β lower and upper solutions for (1.1)–(1.2), respectively,
such that α(t) ≤ β(t) for all t ∈ [0, ∞) and α, β ∈W1,∞((0, ∞)), and let

r > max

{
sup

t∈[0,∞)

β(t)− α(0)
eθt , sup

t∈[0,∞)

β(0)− α(t)
eθt

}
.

Assume that for f : [0, ∞)×R2 → R the following conditions hold:

(H1) compositions t ∈ I 7→ f (t, x(t), y(t)) are measurable whenever x(t) and y(t) are mea-
surable;

(H2) there exist a continuous function N : [0, ∞)→ (0, ∞) and M ∈ L1([0, ∞)) such that∫ ∞

r

1
N(s)

ds = +∞,

and for a.a. t ∈ [0, ∞), all x ∈ [α(t), β(t)] and all y ∈ R, we have | f (t, x, y)| ≤
M(t)N(|y|).

Consider the modified problem
x′′(t) = f (t, ϕ(t, x), δR((ϕ(t, x))′)),

x(0) = ϕ(0, x(0)− L(x(0), x′(0), x)),

x′(+∞) = B

(2.5)

where
ϕ(t, x) = max {min {x, β(t)} , α(t)} for (t, x) ∈ [0, ∞)×R, (2.6)

and
δR(y) = max {min {y, R} ,−R} for all y ∈ R, (2.7)

with R given by Proposition 2.8.
Notice that for t ∈ [0, ∞),

ϕ(t, x(t)) = x(t) + (α− x)+(t)− (x− β)+(t),
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where (u)+(t) = max{u(t), 0}. Hence, we have ϕ(·, x) ∈W1,∞((0, ∞)) and

(ϕ(t, x(t)))′ =
d
dt

ϕ(t, x(t)) =


α′(t), if x(t) < α(t),

x′(t), if α(t) ≤ x(t) ≤ β(t),

β′(t), if x(t) > β(t).

Furthermore, if {xn} ⊂ X is such that xn → x in X, then

lim
n→∞

(ϕ(t, xn(t)))′ = (ϕ(t, x(t)))′,

see [7, 17].
The operator T : X → X associated to the modified problem (2.5) is defined as

Tx(t) = ϕ(0, x(0)− L(x(0), x′(0), x)) +
∫ t

0

(
B−

∫ ∞

s
f (r, ϕ(r, x), δR((ϕ(r, x))′)) dr

)
ds. (2.8)

In order to achieve an existence result for problem (1.1)–(1.2) we shall prove that the oper-
ator T has a fixed point by applying Theorem 2.6. In this direction we present some previous
lemmas.

Lemma 2.13. Assume that conditions (H1) and (H2) hold. Then the operator T is well defined.

Proof. Given x ∈ X, we shall show that Tx ∈ X. From (H2), (2.6) and (2.7) we have

lim
t→∞

(Tx)(t)
eθt ≤ lim

t→∞

β(0)
eθt + lim

t→∞

∫ t
0

(
B−

∫ ∞
s f (r, ϕ(r, x), δR((ϕ(r, x))′)) dr

)
ds

eθt

≤ lim
t→∞

∫ t
0

(
B +

∫ ∞
s M̃(r) dr

)
ds

eθt

≤ lim
t→∞

∫ t
0 (B + k1) ds

eθt ≤ lim
t→∞

(B + k1)t
eθt = 0,

where M̃(t) = maxs∈[0,R] N(s)M(t) and k1 =
∫ ∞

0 M̃(r) dr.
Moreover,

lim
t→∞

(Tx)′(t) = lim
t→∞

(
B−

∫ ∞

t
f (s, ϕ(s, x), δR((ϕ(s, x))′)) ds

)
= B < +∞.

Therefore T is well defined.

Lemma 2.14. Assume that conditions (H1) and (H2) hold. Then TX is relatively compact.

Proof. It is a standard consequence of Lemma 2.12, see, e.g., [8, Lemma 2.8].

We shall allow the function f to be discontinuous in the second variable over some curves
satisfying a ‘transversality’ condition. These curves were introduced in [15], but as far as
we know this is the first time that such type of discontinuity conditions were presented for
boundary value problems on infinity intervals.

Definition 2.15. An admissible discontinuity curve for the differential equation (1.1) is a W2,1

function γ : [a, b] ⊂ [0, ∞) −→ R satisfying one of the following conditions:
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either γ′′(t) = f (t, γ(t), γ′(t)) for a.a. t ∈ [a, b] (and we then say that γ is viable for the
differential equation),

or there exist ε > 0 and ψ ∈ L1(a, b), ψ(t) > 0 for a.a. t ∈ [a, b], such that
either

γ′′(t) + ψ(t) < f (t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ(t)− ε, γ(t) + ε] (2.9)

and all z ∈ [γ′(t)− ε, γ′(t) + ε],

or

γ′′(t)− ψ(t) > f (t, y, z) for a.a. t ∈ [a, b], all y ∈ [γ(t)− ε, γ(t) + ε] (2.10)

and all z ∈ [γ′(t)− ε, γ′(t) + ε].

We say that the admissible discontinuity curve γ is inviable for the differential equation if it
satisfies (2.9) or (2.10).

Now we state three technical results that we need in the proof of condition (2.2) for the
operator T. Their proofs can be lookep up in [15].

In the sequel m denotes the Lebesgue measure in R.

Lemma 2.16. Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0 a.e., and h > 0 a.e. on (a, b).
For every measurable set J ⊂ (a, b) such that m(J) > 0 there is a measurable set J0 ⊂ J such that

m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]\J g(s) ds∫ t

τ0
h(s) ds

= 0 = lim
t→τ−0

∫
[t,τ0]\J g(s) ds∫ τ0

t h(s) ds
.

Corollary 2.17. Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be such that h > 0 a.e. on (a, b).
For every measurable set J ⊂ (a, b) such that m(J) > 0 there is a measurable set J0 ⊂ J such that

m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]∩J h(s) ds∫ t

τ0
h(s) ds

= 1 = lim
t→τ−0

∫
[t,τ0]∩J h(s) ds∫ τ0

t h(s) ds
.

Corollary 2.18. Let a, b ∈ R, a < b, and let f , fn : [a, b] → R be absolutely continuous functions
on [a, b] (n ∈ N), such that fn → f uniformly on [a, b] and for a measurable set A ⊂ [a, b] with
m(A) > 0 we have

lim
n→∞

f ′n(t) = g(t) for a.a. t ∈ A.

If there exists M ∈ L1(a, b) such that | f ′(t)| ≤ M(t) a.e. in [a, b] and also | f ′n(t)| ≤ M(t) a.e. in
[a, b] (n ∈N), then f ′(t) = g(t) for a.a. t ∈ A.

Now we present the result which gives the main difference between our existence results
and the classical ones. It provides the proof for condition (2.2) what allows to avoid the
continuity of the operator T and thus the continuity of f .

Lemma 2.19. Assume that conditions (H1), (H2) and

(H3) there exist admissible discontinuity curves γn : In = [an, bn] −→ R (n ∈ N) such that
α ≤ γn ≤ β on [0, ∞) and their derivatives are uniformly bounded, and for all y ∈ R and for
a.a. t ∈ [0, ∞) the function x 7→ f (t, x, y) is continuous on [α(t), β(t)] \⋃{n : t∈In}{γn(t)};
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(H4) for a.a. t ∈ [0, ∞) and all x ∈ [α(t), β(t)], the mapping y 7→ f (t, x, y) is continuous;

hold.
Then the operator T satisfies condition (2.2) for all x ∈ X, i.e., Fix(T) ⊂ Fix(T) where T is the

cc-envelope of T.

Proof. Without loss of generality, suppose that R > 0 as given by Proposition 2.8 satisfies

R > max

{
sup

t∈[0,∞)

∣∣α′(t)∣∣ , sup
t∈[0,∞)

∣∣β′(t)∣∣ , max
t∈In

∣∣γ′n(t)∣∣
}

. (2.11)

Consider the closed and convex subset of X,

K =

{
x ∈ X : α(0) ≤ x(0) ≤ β(0),

∣∣x′(t)− x′(s)
∣∣ ≤ ∫ t

s
M̃(r) dr (0 ≤ s ≤ t ≤ +∞)

}
, (2.12)

where M̃(t) = maxs∈[0,R] N(s)M(t). It is clear that TX ⊂ K and then TX ⊂ K.
The proof follows the ideas of [15, Theorem 4.4]. Thus, we fix x ∈ K and consider the

following three cases.

Case 1: m({t ∈ In : x(t) = γn(t)}) = 0 for all n ∈N. Then T is continuous at x.
The assumption implies that for a.a. t ∈ [0, ∞) the mapping f (t, ·, ·) is continuous at

(ϕ(t, x(t)), (ϕ(t, x(t))′). Hence if ‖xk − x‖ → 0 in K, then

f (t, ϕ(t, xk(t)), δR((ϕ(t, xk(t)))′))→ f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)) for a.a. t ∈ [0, ∞),

as one can easily check by considering all possible combinations of the cases x(t) ∈ [α(t), β(t)],
x(t) > β(t) or x(t) < α(t), and |x′(t)| ≤ R or |x′(t)| > R.

Moreover, ∣∣ f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′))
∣∣ ≤ M̃(t) (2.13)

for a.a. t ∈ [0, ∞), hence ‖Txk − Tx‖ → 0, by Lebesgue’s dominated convergence theorem.

Case 2: m({t ∈ In : x(t) = γn(t)}) > 0 for some n ∈ N such that γn is inviable. In this case we
can prove that x 6∈ Tx.

We shall show that there exist ρ, ε̃ > 0 such that for every finite family xi ∈ Bε̃(x) and
λi ∈ [0, 1] (i = 1, 2, . . . , m), with ∑ λi = 1, we have ‖x − ∑ λiTxi‖ ≥ ρ. In particular, it is
sufficient that ‖x−∑ λiTxi‖1 ≥ ρ.

First, we fix some notation. Let us assume that for some n ∈ N we have m({t ∈ In :
x(t) = γn(t)}) > 0 and there exist ε > 0 and ψ ∈ L1(In), ψ(t) > 0 for a.a. t ∈ In, such that
(2.10) holds with γ replaced by γn. (The proof is similar if we assume (2.9) instead of (2.10),
so we omit it.)

We denote J = {t ∈ In : x(t) = γn(t)}, and we observe that m({t ∈ J : γn(t) =

β(t)}) = 0. Indeed, if m({t ∈ J : γn(t) = β(t)}) > 0, then from (2.10) it follows that
β′′(t)− ψ(t) > f (t, β(t), β′(t)) on a set of positive measure, which is a contradiction with the
definition of upper solution.

Now we distinguish between two sub-cases.

Case 2.1: m({t ∈ J : x(t) = γn(t) = α(t)}) > 0. Since m({t ∈ J : γn(t) = β(t)}) = 0, we
deduce that m({t ∈ J : x(t) = α(t) 6= β(t)}) > 0, so there exists n0 ∈N such that

m
({

t ∈ J : x(t) = α(t), x(t) < β(t)− 1
n0

})
> 0.
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We denote A = {t ∈ J : x(t) = α(t), x(t) < β(t)− 1/n0} and we deduce from Lemma 2.16
that there is a measurable set J0 ⊂ A with m(J0) = m(A) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+

0

2
∫
[τ0,t]\A M̃(s) ds

(1/4)
∫ t

τ0
ψ(s) ds

= 0 = lim
t→τ−0

2
∫
[t,τ0]\A M̃(s) ds

(1/4)
∫ τ0

t ψ(s) ds
. (2.14)

By Corollary 2.17 there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1 we have

lim
t→τ+

0

∫
[τ0,t]∩J0

ψ(s) ds∫ t
τ0

ψ(s) ds
= 1 = lim

t→τ−0

∫
[t,τ0]∩J0

ψ(s) ds∫ τ0
t ψ(s) ds

. (2.15)

Let us now fix a point τ0 ∈ J1. From (2.14) and (2.15) we deduce that there exist t− < τ0

and t+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied:

2
∫
[τ0,t+]\A

M̃(s) ds <
1
4

∫ t+

τ0

ψ(s) ds, (2.16)∫
[τ0,t+]∩A

ψ(s) ds ≥
∫
[τ0,t+]∩J0

ψ(s) ds >
1
2

∫ t+

τ0

ψ(s) ds, (2.17)

2
∫
[t−,τ0]\A

M̃(s) ds <
1
4

∫ τ0

t−
ψ(s) ds, (2.18)∫

[t−,τ0]∩A
ψ(s) ds >

1
2

∫ τ0

t−
ψ(s) ds. (2.19)

Finally, we define a positive number

ρ = min
{

1
4

∫ τ0

t−
ψ(s) ds,

1
4

∫ t+

τ0

ψ(s) ds
}

, (2.20)

and we are now in a position to prove that x 6∈ Tx. It is sufficient to prove the following claim.

Claim – Let ε̃ > 0 be defined as ε̃ = min{ε/eθbn , 1/n0}, where ε is given by our assumptions over γn

and 1/n0 by the definition of the set A, and let ρ be as in (2.20). For every finite family xi ∈ Bε̃(x)
and λi ∈ [0, 1] (i = 1, 2, . . . , m), with ∑ λi = 1, we have ‖x−∑ λiTxi‖1 ≥ ρ.

Let xi and λi be as in the Claim and, for simplicity, denote y = ∑ λiTxi. For a.a. t ∈ J =

{t ∈ In = [an, bn] : x(t) = γn(t)} we have

y′′(t) =
m

∑
i=1

λi(Txi)
′′(t) =

m

∑
i=1

λi f (t, ϕ(t, xi(t)), δR((ϕ(t, xi(t)))′)). (2.21)

On the other hand, for every i ∈ {1, 2, . . . , m} and for a.a. t ∈ J we have

ε

eθbn
≥ ε̃ ≥ |x(t)− xi(t)|

eθt ≥ |x(t)− xi(t)|
eθbn

=
|γn(t)− xi(t)|

eθbn
, (2.22)

so |γn(t)− xi(t)| ≤ ε. Moreover∣∣γ′n(t)− x′i(t)
∣∣ = ∣∣x′(t)− x′i(t)

∣∣ ≤ ε, (2.23)

for a.a. t ∈ J.
Since γn(t) ∈ [α(t), β(t)], for a.a. t ∈ A we have |ϕ(t, xi(t))− γn(t)| ≤ |xi(t)− γn(t)|, and

|(ϕ(t, xi(t)))′ − γ′n(t)| ≤ |x′i(t)− γ′n(t)| because if xi(t) < α(t), then (ϕ(t, xi(t)))′ = α′(t) =

γ′n(t).
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Hence, from (2.10) it follows that

γ′′n(t)− ψ(t) > f (t, ϕ(t, xi(t)), (ϕ(t, xi(t)))′)

for a.a. t ∈ A and for all xi(t) satisfying (2.22) and (2.23).
Moreover, since for a.a. t ∈ A we have |γ′n(t)| < R and |x′i(t)− γ′n(t)| < ε, without loss of

generality we can suppose |(ϕ(t, xi(t)))′| ≤ R and thus

γ′′n(t)− ψ(t) > f (t, ϕ(t, xi(t)), δR((ϕ(t, xi(t)))′)) (2.24)

for a.a. t ∈ A.
Therefore the assumptions on γn ensure that for a.a. t ∈ A we have

y′′(t) =
m

∑
i=1

λi f (t, ϕ(t, xi(t)), δR((ϕ(t, xi(t)))′)) <
m

∑
i=1

λi (γ
′′
n(t)− ψ(t)) = x′′(t)− ψ(t). (2.25)

Now we compute

y′(τ0)− y′(t−) =
∫ τ0

t−
y′′(s) ds =

∫
[t−,τ0]∩A

y′′(s) ds +
∫
[t−,τ0]\A

y′′(s) ds

<
∫
[t−,τ0]∩A

x′′(s) ds−
∫
[t−,τ0]∩A

ψ(s) ds

+
∫
[t−,τ0]\A

M̃(s) ds (by (2.25), (2.21) and (2.13))

= x′(τ0)− x′(t−)−
∫
[t−,τ0]\A

x′′(s) ds−
∫
[t−,τ0]∩A

ψ(s) ds

+
∫
[t−,τ0]\A

M̃(s) ds

≤ x′(τ0)− x′(t−)−
∫
[t−,τ0]∩A

ψ(s) ds + 2
∫
[t−,τ0]\A

M̃(s) ds

< x′(τ0)− x′(t−)−
1
4

∫ τ0

t−
ψ(s) ds (by (2.18) and (2.19)),

hence ‖x− y‖1 ≥ y′(t−)− x′(t−) ≥ ρ provided that y′(τ0) ≥ x′(τ0).
Similar computations with t+ instead of t− show that if y′(τ0) ≤ x′(τ0) then we also have

‖x− y‖1 ≥ ρ. The claim is proven.

Case 2.2: m({t ∈ J : γn(t) ∈ (α(t), β(t))}) > 0.
The set {t ∈ J : γn(t) ∈ (α(t), β(t))} can be written as the following countable union

⋃
n∈N

{
t ∈ J : α(t) +

1
n
< x(t) < β(t)− 1

n

}
,

so there exists some n0 ∈ N such that m({t ∈ J : α(t) + 1/n0 < x(t) < β(t)− 1/n0}) > 0.
Now we denote A = {t ∈ J : α(t) + 1/n0 < x(t) < β(t)− 1/n0}. Since A is a set of positive
measure we can argue as in Case 2.1 for obtaining inequalities (2.16)–(2.19) and we are in
position to prove the Claim again.

Let xi and λi be as in the Claim and, for simplicity, denote y = ∑ λiTxi. Then for ev-
ery i ∈ {1, 2, . . . , m} and all t ∈ A we have xi(t) ∈ (α(t), β(t)), so ϕ(t, xi(t)) = xi(t) and
(ϕ(t, xi(t)))′ = x′i(t) and thus

|ϕ(t, xi(t))− γn(t)| = |xi(t)− x(t)| ≤ ε and
∣∣(ϕ(t, xi(t)))′ − γ′n(t)

∣∣ = ∣∣x′i(t)− x′(t)
∣∣ ≤ ε,
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for all t ∈ A.
Hence, from (2.10) it follows that

γ′′n(t)− ψ(t) > f (t, ϕ(t, xi(t)), (ϕ(t, xi(t)))′)

for a.a. t ∈ A and all xi ∈ Bε̃(x).
Now the proof of the Claim follows exactly as in Case 2.1.

Case 3: m({t ∈ In : x(t) = γn(t)}) > 0 only for some of those n ∈ N such that γn is viable. Let us
prove that in this case the relation x ∈ Tx implies x = Tx.

Note first that x ∈ Tx implies that x satisfies the boundary conditions in (2.5), because
every element in Tx is, roughly speaking, a limit of convex combinations of functions y satis-
fying 

y′′(t) = f (t, ϕ(t, x), δR((ϕ(t, x))′)),

y(0) = ϕ(0, x(0)− L(x(0), x′(0), x)),

y′(+∞) = B,

and L is continuous.
Now it only remains to show that x ∈ Tx implies that x satisfies the ODE in (2.5).
Let us consider the subsequence of all viable admissible discontinuity curves in the condi-

tions of Case 3, which we denote again by {γn}n∈N to avoid overloading notation. We have
m(Jn) > 0 for all n ∈N, where

Jn = {t ∈ In : x(t) = γn(t)}.

For each n ∈ N and for a.a. t ∈ Jn we have γ′′n(t) = f (t, γn(t), γ′n(t)) and from α ≤ γn ≤ β

and |γ′n(t)| < R it follows that γ′′n(t) = f (t, ϕ(t, γn(t)), δR((ϕ(t, γn(t)))′)), so γn is viable for
(2.5). Then for a.a. t ∈ Jn we have

x′′(t) = γ′′n(t) = f (t, ϕ(t, γn(t)), δR((ϕ(t, γn(t)))′)) = f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)),

and therefore

x′′(t) = f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)) a.e. in J =
⋃

n∈N Jn. (2.26)

Now we assume that x ∈ Tx and we prove that it implies that

x′′(t) = f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)) a.e. in [0, ∞) \ J,

thus showing that x = Tx.
Since x ∈ Tx then for each k ∈N we can choose ε = ρ = 1/k to guarantee that we can find

functions xk,i ∈ B1/k(x) and coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . , m(k)) such that ∑ λk,i = 1 and∥∥∥∥∥x−
m(k)

∑
i=1

λk,iTxk,i

∥∥∥∥∥ <
1
k

.

Let us denote yk = ∑m(k)
i=1 λk,iTxk,i, and notice that y′k → x′ uniformly in [0, ∞) and

‖xk,i − x‖ ≤ 1/k for all k ∈N and all i ∈ {1, 2, . . . , m(k)}. Note also that

y′′k (t) =
m(k)

∑
i=1

λk,i f (t, ϕ(t, xk,i(t)), δR((ϕ(t, xk,i(t)))′)) for a.a. t ∈ [0, ∞). (2.27)
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For a.a. t∈ [0, ∞)\ J we have that either x(t)∈ [α(t), β(t)], and then f (t, ϕ(t, ·), δR((ϕ(t, ·))′))
is continuous at x(t), so for any ε > 0 there is some k0 = k0(t) ∈ N such that for all k ∈ N,
k ≥ k0, we have

| f (t, ϕ(t, xk,i(t)), δR((ϕ(t, xk,i(t)))′))− f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′))| < ε

for all i ∈ {1, 2, . . . , m(k)},

or x(t) < α(t) (analogously if x(t) > β(t)), so there is some k0 = k0(t) ∈ N such that for all
k ∈ N, k ≥ k0 we have xk,i(t) < α(t) for all i ∈ {1, 2, . . . , m(k)} and then ϕ(t, x(t)) = α(t) =
ϕ(t, xk,i(t)), which implies

| f (t, ϕ(t, xk,i(t)), δR((ϕ(t, xk,i(t)))′))− f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′))| = 0

for all i ∈ {1, 2, . . . , m(k)}.

Now we deduce from (2.27) that y′′k (t)→ f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)) for a.a. t ∈ [0, ∞) \ J,
and then Corollary 2.18 guarantees for each n ∈N that x′′(t) = f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′))
for a.a. t ∈ [0, n] \ J. Thus x′′(t) = f (t, ϕ(t, x(t)), δR((ϕ(t, x(t)))′)) for a.a. t ∈ [0, ∞) \ J.
Combining this result with (2.26), we see that x solves (2.5), which implies that x is a fixed
point of T.

Remark 2.20. Admissible discontinuity curves may be defined in infinite intervals as the union
of that in Definition 2.15.

3 Existence results

We establish an existence and localization result for (1.1)–(1.2).

Theorem 3.1. Suppose that there exist α and β lower and upper solutions to (1.1)–(1.2), respectively,
such that α ≤ β on [0, ∞) and α, β ∈ W1,∞((0, ∞)). Assume that conditions (H1)–(H4) hold. Then
problem (1.1)–(1.2) has at least a solution x ∈ X and there exists R > 0 such that α(t) ≤ x(t) ≤ β(t)
and |x′(t)| < R for all t ∈ [0, ∞).

Proof. For simplicity, we divide the proof in several steps. First, we will prove that the modi-
fied problem (2.5) has at least a solution, that is, we will ensure that the operator T defined as
in (2.8) has a fixed point. Later, we will show that it is a solution for problem (1.1)–(1.2).

Step 1. Problem (2.5) has at least a solution x ∈ X.
By Lemma 2.13, the operator T is well defined. Consider the closed and convex set D

defined as
D = {x ∈ X : ‖x‖ ≤ ρ} ,

where

ρ := max
{

max{|α(0)| , |β(0)|}+ B + k1

θe
, |B|+ k1

}
and k1 =

∫ ∞
0 M̃(r) dr.

For x ∈ D, we have

‖Tx‖0 = sup
t∈[0,∞)

|(Tx)(t)|
eθt ≤ sup

t∈[0,∞)

(
max{|α(0)| , |β(0)|}+ (B + k1)t

eθt

)
≤ ρ,
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and

‖Tx‖1 = sup
t∈[0,∞)

∣∣(Tx)′(t)
∣∣ ≤ sup

t∈[0,∞)

∣∣∣∣B− ∫ ∞

t
f (s, ϕ(s, x), δR((ϕ(s, x))′)) ds

∣∣∣∣ ≤ |B|+ k1 ≤ ρ.

Therefore, TD ⊂ D. In addition, TD is relatively compact, by Lemma 2.14, and T satisfies
condition (2.2), by Lemma 2.19. Then Theorem 2.6 guarantees that the operator T has at least
a fixed point x ∈ D.

Step 2. Every solution of (2.5) satisfies α(t) ≤ x(t) ≤ β(t) for all t ∈ [0, ∞).
Let x ∈ X be a solution of (2.5). Suppose that there exists t ∈ [0, ∞) such that α(t) > x(t).

Then
inf

t∈[0,∞)
{x(t)− α(t)} < 0.

It does not happen at 0, since

x(0) = ϕ
(
0, x(0)− L(x(0), x′(0), x)

)
≥ α(0).

If the infimum is attained as t tends to infinity, there exists T > 0 such that

x(t)− α(t) < 0 for all t ∈ [T, ∞),

and α ∈W2,1((T, ∞)). Hence,

x′′(t) = f (t, ϕ(t, x), δR((ϕ(t, x))′)) = f (t, α(t), α′(t)) ≤ α′′(t) for a.a. t ∈ [T, ∞), (3.1)

and so x− α is a concave function on [T, ∞).
Then there are two options: either there exists t0 > T such that t0 is a relative minimum

(in this case the reasoning is analogous to that we do below when the infimum is attained at
t0 ∈ (0, ∞)) or there exists T̃ > T such that (x− α)′(T̃) < 0 and, by (3.1),

(x− α)′(t) ≤ (x− α)′(T̃) for all t ≥ T̃,

which implies
lim
t→∞

(
x′(t)− α′(t)

)
= x′(+∞)− α′(+∞) < 0.

However, by the definition of α,

0 > x′(+∞)− α′(+∞) = B− α′(+∞) ≥ 0,

a contradiction.
Hence there exist t0 ∈ (0, ∞) such that

min
t∈[0,∞)

(x(t)− α(t)) = x(t0)− α(t0) < 0.

Then we have
x′(t0)− D−α(t0) ≤ x′(t0)− D+α(t0)

so, by the definition of lower solution, there exists an open interval I0 such that t0 ∈ I0 and

α′′(t) ≥ f (t, α(t), α′(t)) for a.a. t ∈ I0.

Further x′(t0) = α′(t0) and for all r > 0 there exists tr ∈ (t0 − r, t0) such that x′(tr) < α′(tr).
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On the other hand, by the continuity of x − α, there exists ε > 0 such that for all t ∈
(t0 − ε, t0 + ε) we have x(t)− α(t) < 0. Then,

x′′(t) = f (t, ϕ(t, x), δR((ϕ(t, x))′)) = f (t, α(t), α′(t)) ≤ α′′(t) for a.a. t ∈ [t0 − ε, t0] ∩ I0.

Thus, the function x′(t)− α′(t) is nonincreasing on (t0 − ε, t0) ∩ I0, so for t ∈ (t0 − ε, t0) ∩ I0,

x′(t)− α′(t) ≥ x′(t0)− α′(t0) = 0,

a contradiction.

Step 3. Every solution x of problem (2.5) satisfies |x′(t)| < R for all t ∈ [0, ∞).
It is an immediate consequence of the Nagumo condition, see Proposition 2.8.

Step 4. Every solution x of problem (2.5) is a solution to (1.1)–(1.2).
Let x be a solution of the modified problem (2.5). It is enough to show that

α(0) ≤ x(0)− L(x(0), x′(0), x) ≤ β(0).

Suppose, to the contrary, that

α(0) > x(0)− L(x(0), x′(0), x).

Then, x(0) = ϕ(0, x(0)− L(x(0), x′(0), x)) = α(0). Therefore, since α ≤ x and x′(0) ≥ D+α(0),
from the monotonicity properties of L, we get the contradiction

0 > x(0)− L(x(0), x′(0), x)− α(0) = −L(x(0), x′(0), x) ≥ −L(α(0), D+α(0), α) ≥ 0.

Analogously, we can prove that x(0)− L(x(0), x′(0), x) ≤ β(0).

Remark 3.2. It is usual in the literature (see [8, 11–13]) to consider upper and lower solutions
with more strict boundary conditions at infinity, that is, α′(+∞) < B and β′(+∞) > B.
Moreover, in the recent paper [13, Remark 3.3], the authors observe that it is unknown if this
strict inequality can be weakened. Observe that this difficulty was overcome in our previous
theorem.

To finish this section, we illustrate our existence result with an example which shows its
applicability.

Example 3.3. Let {qn}n∈N be an enumeration of all rational numbers. Define φ : R→ R as

φ(u) = ∑
n: qn<u

2−n.

Notice that φ is continuous at the irrational points and discontinuous at the rational numbers,
see [16, Prop. 2, p. 108-109]. Moreover, φ(u) ∈ (0, 1) for each u ∈ R.

Consider the problem (1.1)–(1.2) with the following functional boundary conditions

L(x(0), x′(0), x) = 2(x(0))3 − x′(0)−
∫ η

0
x(t) dt = 0,

x′(+∞) = 0,

where 0 < η ≤ 1, and the function

f (t, x, y) =
1

1 + t2 φ(t− x) + min
{

1√
t
,

1
t2

}
y cos(2πy),
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for all x, y ∈ R and t ∈ [0, ∞).
First, the functions M(t) = min

{
1/
√

t, 1/t2} and N(y) = 1 + y satisfy condition (H2).
For all y ∈ R and for a.a. t ∈ [0, ∞) the function x 7→ f (t, x, y) is continuous on R \⋃

{n : t∈In}{γn(t)} where for each n ∈N,

γn(t) = t + qn for all t ∈ In = [max{0,−qn}, ∞).

Notice that these curves can be defined in compact domains as in Definition 2.15 by writing
the infinite interval [max{0,−qn}, ∞) as a countable union of compact intervals.

The curves γn are inviable admissible discontinuity curves. Indeed, for ε > 0 small enough
we have

γ′′(t) = 0 <
1
2

min
{

1√
t
,

1
t2

}
< f (t, y, z)

for a.a. t ∈ In, all y ∈ [γn(t)− ε, γn(t) + ε] and z ∈ [γ′n(t)− ε, γ′n(t) + ε].
It is easy to check that the functions α(t) = −t− 1 and β(t) = 0 are, respectively, lower

and upper solutions for this problem.
Therefore, Theorem 3.1 ensures that it has a solution between α and β.
Observe that the function f is not monotone in the third argument, changes sign and it

is discontinuous in the second variable over a set of curves which is dense in [0, ∞) × R.
Moreover, it is singular at t = 0, and even in the case of being continuous in the second
variable, it would fall outside the scope of the results in [8] because the function M is not a
possible bound for the nonlinearities considered there, see Remark 2.10.

Multiplicity results can also be derived by means of degree theory and the existence of
two pairs of lower and upper solutions as done, for example, in [2, 11, 13].

4 Existence of extremal solutions

In this section, we provide sufficient conditions for the existence of extremal solutions for the
following problem {

x′′(t) = f (t, x, x′), t ∈ [0, ∞),

L(x(0), x′(0)) = 0, x′(+∞) = B,
(4.1)

where B ∈ R and L is continuous and nonincreasing in the second argument.
Since problem (4.1) is a particular case of (1.1)–(1.2) (by removing the functional depen-

dence in the boundary conditions), the existence of solutions is guaranteed by Theorem 3.1
when well ordered lower and upper solutions exist. Now we establish the existence of ex-
tremal solutions between them.

Theorem 4.1. Under the conditions of Theorem 3.1, problem (4.1) has extremal solutions between α

and β.

Proof. Consider the set of solutions for problem (4.1) located between the lower and upper
solution

S = {x ∈ [α, β] : x solution of (4.1)} = {x ∈ X : x solution of (2.5)} = {x ∈ X : x = Tx}.

By Lemma 2.19,
S = {x ∈ X : x ∈ Tx} = (I −T)−1({0}),
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which implies that S is a closed subset of X due to T is upper semicontinuous and {0} is a
closed set, see [3, Lemma 17.4]. Hence, since TX is relatively compact and S ⊂ TX, S is a
compact set.

Define xmin(t) = inf{x(t) : x ∈ S} for t ∈ [0, ∞). The evaluation map δt : X → R given by
δt(x) = x(t) is a continuous map and then δt(S) = {x(t) : x ∈ S} is compact. Thus, for each
t0 ∈ [0, ∞), there exists a function x0 ∈ S such that x0(t0) = xmin(t0) and xmin is a continuous
function on [0, ∞).

Let us see that xmin is a solution of (2.5). It is clear that xmin will be the least solution. By
the upper semicontinuity of the operator T and the condition Fix(T) = Fix(T), the limit in X
of a sequence of elements in S must be a solution of (2.5).

Given T > 0 and ε > 0 we shall prove that there exists v ∈ S such that

|v(t)− xmin(t)| ≤ ε for all t ∈ [0, T].

Then, a sequence of elements in S converges pointwise to xmin and by the compactness of S,
up to a subsequence, it converges in S.

Following [5, Theorem 4.1], the idea is to construct an upper solution for problem (4.1)
and to apply Theorem 3.1 in order to obtain the function v ∈ S looked for.

By the equicontinuity of S and the continuity of xmin on [0, T], there exists δ > 0 such that
t, s ∈ [0, T] with |t− s| < δ implies

|x(t)− x(s)| < ε/2 for all x ∈ S ∪ {xmin}.

Let {t0, t1, . . . , tn} ⊂ [0, T] such that t0 = 0, tn = T and ti+1 − ti < δ for i = 0, 1, . . . , n − 1.
Choose a function x0 ∈ S such that x0(0) = xmin(0) and denote β0 ≡ x0.

For each i ∈ {1, 2, . . . , n− 1}, define recursively βi ≡ βi−1 if βi−1(ti) = xmin(ti) and other-
wise, take xi ∈ S such that xi(ti) = xmin(ti), define

si = inf{t ∈ [ti−1, ti] : xi(s) < βi−1(s) for all s ∈ [t, ti]}

and the function

βi(t) =

{
βi−1(t) if t ∈ [0, si],

xi(t) if t ∈ (si, ∞).

Then βn−1(0) = x0(0) and β′n−1(0) ≤ x′0(0), so from the monotonicity hypothesis about L and
the fact that x0 ∈ S, we have

L(βn−1(0), β′n−1(0)) ≥ L(x0(0), x′0(0)) = 0,

and it is immediate to check that βn−1 is an upper solution for problem (4.1).
From Theorem 3.1 it follows that there exists v ∈ S such that α(t) ≤ v(t) ≤ βn−1(t) for

t ∈ [0, ∞) and, by the construction of βn−1 and the definition of xmin, we have that v(ti) =

xmin(ti) for i = 0, 1, . . . , n− 1. Hence, for each t ∈ [0, T] there is i ∈ {0, 1, . . . , n− 1} such that
t ∈ [ti, ti+1], so

|v(t)− xmin(t)| ≤ |v(t)− v(ti)|+ |xmin(ti)− xmin(t)| < ε.

A similar reasoning shows that problem (4.1) has the greatest solution between α and β.

Remark 4.2. We note that the existence of extremal solutions in addition to information about
the set of solutions for problem (4.1) it provides a method to achieve new existence results for
problems where the nonlinearity f has a functional dependence, see [6].
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