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Abstract. In this paper, we study a class of nonlinear singular system with coupled in-
tegral boundary condition. Based on the Guo–Krasnosel’skii fixed point theorem, some
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demonstrate the applicability of our results.
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1 Introduction

This paper is concerned with the existence of symmetric positive solutions for the follow-
ing singular fourth-order boundary value system with coupled integral boundary conditions
(BCs) 

(φp(u′′(t)))′′ = λ1a1(t) f1(t, u(t), v(t)), −1 < t < 1,

(φp(v′′(t)))′′ = λ2a2(t) f2(t, u(t), v(t)), −1 < t < 1,

u(−1) = u(1) =
∫ 1

−1
v(s)dA1(s), v(−1) = v(1) =

∫ 1

−1
u(s)dA2(s),

φp(u′′(−1)) = φp(u′′(1)) =
∫ 1

−1
φp(v′′(s))dB1(s),

φp(v′′(−1)) = φp(v′′(1)) =
∫ 1

−1
φp(u′′(s))dB2(s),

(1.1)
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where λ1 and λ2 are positive parameters, φp(x) = |x|p−2x, p > 1, φq = φ−1
p , 1

p + 1
q = 1,

f1, f2 : [−1, 1]× [0, ∞)× [0, ∞)→ [0, ∞) are continuous and f1(·, x, y), f2(·, x, y) are symmetric
on [−1, 1] for all x, y ∈ [0, ∞), a1, a2 : (−1, 1) → [0, ∞) are symmetric on (−1, 1) and may be
singular at t = −1 and/or t = 1, and the integrals from (1.1) are Riemann–Stieltjes integrals
with a signed measure, that is, Ai, Bi (i = 1, 2) are functions of boundary variation on [−1, 1].
By a symmetric positive solution of the system (1.1), we mean a pair of functions (u, v) ∈
(C2[−1, 1]∩C4(−1, 1))× (C2[−1, 1]∩C4(−1, 1)) satisfying (1.1), u, v are symmetric and u(t) >
0, v(t) > 0 for all t ∈ [−1, 1].

Coupled BCs arise from the study of reaction–diffusion equations, Sturm–Liouville prob-
lems, mathematical biology and so on. In [1], Asif and Khan studied the following a coupled
singular system subject to four-point coupled BCs of the type

− x′′(t) = f (t, x(t), y(t)), t ∈ (0, 1),

− y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αy(ξ),

y(0) = 0, y(1) = βx(η),

(1.2)

where the parameters α, β, ξ, η satisfy ξ, η ∈ (0, 1) and 0 < αβξη < 1, f , g : (0, 1)× [0, ∞)×
[0, ∞)→ [0, ∞) are continuous and singular at t = 0, t = 1. The authors obtained at least one
positive solution to the system (1.2) by using the Guo–Krasnosel’skii fixed-point theorem. For
other recent results concerning the Coupled BCs, we refer the reader to [2, 5, 6, 8, 15].

We notice that a type of symmetric problem has received much attention, for instance,
[3, 7, 9, 11–14, 16] and the references therein. At the same time, a class of boundary value
problems with integral BCs appeared in heat conduction, chemical engineering, underground
water flow, thermoelasticity, and plasma physics. For earlier contributions on problems with
Lebesgue integral BCs, we refer the reader to [3, 13, 14, 16] and the more general nonlocal
Riemann-Stieltjes integral BCs, we refer the reader to [2, 5, 6, 10] and references therein, such
integral BCs are a general type of nonlocal boundary conditions and cover multi-point and
integral BCs as special cases. Infante, Minhós, Pietramala [5] gave a general method for
dealing with these problems in the important case when p = 2. Ma [14] studied the existence
of a symmetric positive solution for the following singular fourth-order nonlocal boundary
value problem 

u′′′′(t) = h(t) f (t, u(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0
p(s)u(s)ds,

u′′(0) = u′′(1) =
∫ 1

0
q(s)u′′(s)ds,

where p, q ∈ L1[0, 1], h : (0, 1) → [0,+∞) is continuous, symmetric on (0, 1) and may be
singular at t = 0 and t = 1, f : [0, 1] × [0,+∞) → [0,+∞) is continuous and f (·, x) is
symmetric on [0, 1] for all x ∈ [0,+∞). The existence of at least one symmetric positive
solution was obtained by the application of the fixed point index in cones.

In [16], Zhang, Feng, Ge studied fourth-order boundary value problem with integral BCs:

(φp(u′′(t)))′′ = ω(t) f (t, u(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0
g(s)u(s)ds,

φp(u′′(0)) = φp(u′′(1)) =
∫ 1

0
h(s)φp(u′′(s))ds,
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where φp(t) = |t|p−2t, p > 1, φq = φ−1
p , 1

p +
1
q = 1, ω, g, h ∈ L1[0, 1] are nonnegative, symmetric

on [0, 1]. f : [0, 1]× [0, ∞) → [0, ∞) is continuous, f (1− t, x) = f (t, x) for all (t, x) ∈ [0, 1]×
[0, ∞). By using of fixed point theorem in cones, the existence and multiplicity of symmetric
positive solutions were obtained, and the nonexistence of a positive solution was also studied.

Inspired and motivated by the above mentioned work and wide applications of coupled
BCs in various fields of sciences and engineering, we study the existence of symmetric positive
solutions to a singular system (1.1). Of necessity u′(0) = 0, v′(0) = 0, u′′′(0) = 0 and
v′′′(0) = 0 for symmetric functions (u, v) ∈ (C2[−1, 1] ∩ C4(−1, 1))× (C2[−1, 1] ∩ C4(−1, 1)),
so the problem can be handled by considering the simpler problem (2.1) on [0, 1], then using
symmetry u(−t) = u(t), v(−t) = v(t) to extend the solution to [−1, 1].

Our work presented in this paper has the following new features. First of all, we discuss
the system (1.1) subject to coupled BCs with p-Laplacian operators, Riemann–Stieltjes integral
BCs are a general type of nonlocal boundary conditions and cover multi-point and integral
BCs as special cases, these are different from [3, 7, 11–14, 16]. The second new feature is that
the system (1.1) possesses singularity, that is, the nonlinear terms may be singular at t = −1, 1.
Thirdly, we involve the parameter λi (i = 1, 2) in the model and obtain the sufficient conditions
for the existence of symmetric positive solutions of system (1.1) within certain interval of λi
(i = 1, 2). To the best knowledge of the authors, there is no earlier literature studying the
existence of symmetric positive solutions for boundary value system with coupled integral
BCs.

The rest of the paper is organized as follows. In Section 2, we present a positive cone, a
fixed point theorem which will be used to prove existence of symmetric positive solutions,
Green’s function for the modified system and some related lemmas. In Section 3, we present
main results of the paper and in Section 4 an example is given to illustrate the application of
our main results.

2 Preliminaries and lemmas

We recall that the function ω is said to be concave on [a, b] if

ω(τt1 + (1− τ)t2) ≥ τω(t1) + (1− τ)ω(t2), t1, t2 ∈ [a, b], τ ∈ (0, 1),

and the function ω is said to be symmetric on [−1, 1] if ω(−t) = ω(t), t ∈ [−1, 1].

Remark 2.1. If (u, v) ∈ (C2[−1, 1] ∩ C4(−1, 1))× (C2[−1, 1] ∩ C4(−1, 1)) is a symmetric pos-
itive solution of the singular system (1.1), obviously, u′(0) = 0, v′(0) = 0, u′′′(0) = 0 and
v′′′(0) = 0 are necessary. So the problem (1.1) can be handled by considering the following
simpler problem

(φp(u′′(t)))′′ = λ1a1(t) f1(t, u(t), v(t)), 0 < t < 1,

(φp(v′′(t)))′′ = λ2a2(t) f2(t, u(t), v(t)), 0 < t < 1,

u′(0) = 0, u(1) =
∫ 1

0
v(s)dA1(s), v′(0) = 0, v(1) =

∫ 1

0
u(s)dA2(s),

φp(u′′′(0)) = 0, φp(u′′(1)) =
∫ 1

0
φp(v′′(s))dB1(s),

φp(v′′′(0)) = 0, φp(v′′(1)) =
∫ 1

0
φp(u′′(s))dB2(s),

(2.1)
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on [0, 1], then using symmetry u(−t) = u(t) to extend the solution to [−1, 1]. In view of the
above, we will concentrate our study on the system (2.1).

The basic space used in this paper is E = C[0, 1] × C[0, 1]. Obviously, the space E is a
Banach space if it is endowed with the norm as follows:

‖(u, v)‖1 := max{‖u‖, ‖v‖}, ‖u‖ = max
0≤t≤1

|u(t)|, ‖v‖ = max
0≤t≤1

|v(t)|

for any (u, v) ∈ E.

Set

G(t, s) =

{
1− t, 0 ≤ s ≤ t ≤ 1,

1− s, 0 ≤ t ≤ s ≤ 1,

κi =
∫ 1

0
dAi(t), $i =

∫ 1

0
G(t, t)dAi(t), Gi(s) =

∫ 1

0
G(t, s)dAi(t), i = 1, 2,

κ̃i =
∫ 1

0
dBi(t), $̃i =

∫ 1

0
G(t, t)dBi(t), G̃i(s) =

∫ 1

0
G(t, s)dBi(t), i = 1, 2.

(2.2)

Obviously,
G(t, t)G(s, s) ≤ G(t, s) ≤ G(s, s) or G(t, t), ∀ t, s ∈ [0, 1]. (2.3)

In the rest of the paper, we make the following assumptions:

(H1) Ai, Bi (i = 1, 2) are functions of boundary variation on [−1, 1], ∆1 = 1− κ1κ2, and

κi > 0, κ̃i > 0, 0 < κ1κ2 < 1, 0 < κ̃1κ̃2 < 1, i = 1, 2.

(H2) a1, a2 : (−1, 1)→ [0, ∞) are continuous, symmetric on (−1, 1) and

0 <
∫ 1

0
G(s, s)ai(s)ds < ∞, i = 1, 2.

(H3) f1, f2 : [−1, 1]× [0, ∞)× [0, ∞)→ [0, ∞) are continuous and f1(·, x, y), f2(·, x, y) are sym-
metric on [−1, 1] for all x, y ∈ [0, ∞), i.e., fi satisfy fi(−t, x, y) = fi(t, x, y) (i = 1, 2).

Lemma 2.2. Assume that (H1) holds. Then for any x, y ∈ L1(0, 1) ∩ C(0, 1), the system of BVPs
consisting of the equations

− u′′(t) = φ−1
p (x(t)), −v′′(t) = φ−1

p (y(t)), t ∈ (0, 1) (2.4)

and the BCs

u′(0) = 0, u(1) =
∫ 1

0
v(t)dA1(t), v′(0) = 0, v(1) =

∫ 1

0
u(t)dA2(t) (2.5)

has a unique integral representation

u(t) =
∫ 1

0
H1(t, s)φ−1

p (x(s))ds +
∫ 1

0
K1(s)φ−1

p (y(s))ds, (2.6)

v(t) =
∫ 1

0
H2(t, s)φ−1

p (y(s))ds +
∫ 1

0
K2(s)φ−1

p (x(s))ds, (2.7)

where
H1(t, s) = G(t, s) +

κ1

∆1
G2(s), K1(s) =

1
∆1
G1(s), (2.8)

H2(t, s) = G(t, s) +
κ2

∆1
G1(s), K2(s) =

1
∆1
G2(s). (2.9)
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Proof. Let

u(t) =
∫ 1

0
G(t, s)φ−1

p (x(s))ds + c1 + c3(t− 1), (2.10)

v(t) =
∫ 1

0
G(t, s)φ−1

p (y(s))ds + c2 + c4(t− 1), (2.11)

where c1, c2, c3 and c4 are constants to be determined. Clearly, u(t) and v(t) satisfy (2.4). In
the following, we determine ci (1 ≤ i ≤ 4) so that u(t) and v(t) satisfy (2.5). Substituting
(2.10) and (2.11) into (2.5), we obtain c3 = c4 = 0 and

c1 − κ1c2 =
∫ 1

0
G1(s)φ−1

p (y(s))ds, (2.12)

−κ2c1 + c2 =
∫ 1

0
G2(s)φ−1

p (x(s))ds. (2.13)

Note that ∣∣∣∣ 1 −κ1

−κ2 1

∣∣∣∣ = 1− κ1κ2 = ∆1 6= 0.

Thus, the system (2.12)–(2.13) has a unique solution for ci (1 ≤ i ≤ 2). By the Cramer’s rule
and simple calculations, it follows that

c1 =
1

∆1

[∫ 1

0
G1(s)φ−1

p (y(s))ds + κ1

∫ 1

0
G2(s)φ−1

p (x(s))ds
]

,

c2 =
1

∆1

[∫ 1

0
G2(s)φ−1

p (x(s))ds + κ2

∫ 1

0
G1(s)φ−1

p (y(s))ds
]

.

Then from (2.10) and (2.11), it is obvious that (2.6) and (2.7) hold.

Similar to the proof of Lemma 2.2, we have

Lemma 2.3. Assume that (H1)–(H3) hold. Then for any u, v ∈ C[0, 1], the system

− x′′(t) = λ1a1(t) f1(t, u(t), v(t)), t ∈ (0, 1),

− y′′(t) = λ2a2(t) f2(t, u(t), v(t)), t ∈ (0, 1),

x′(0) = 0, x(1) =
∫ 1

0
y(t)dB1(t),

y′(0) = 0, y(1) =
∫ 1

0
x(t)dB2(t),

has a unique integral representation

x(t) = λ1

∫ 1

0
H̃1(t, s)a1(s) f1(s, u(s), v(s))ds + λ2

∫ 1

0
K̃1(s)a2(s) f2(s, u(s), v(s))ds,

y(t) = λ2

∫ 1

0
H̃2(t, s)a2(s) f2(s, u(s), v(s))ds + λ1

∫ 1

0
K̃2(s)a1(s) f1(s, u(s), v(s))ds,

where ∆2 = 1− κ̃1κ̃2, and K̃1(s) = 1
∆2
G̃1(s), K̃2(s) = 1

∆2
G̃2(s),

H̃1(t, s) = G(t, s) +
κ̃1

∆2
G̃2(s), H̃2(t, s) = G(t, s) +

κ̃2

∆2
G̃1(s).
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Lemma 2.4. Assume that (H1) holds. Then the functions Hi(t, s), H̃i(t, s), Ki(s), K̃i(s) (i = 1, 2)
are continuous and

Hi(t, s) > 0, H̃i(t, s) > 0, Ki(s) > 0, K̃i(s) > 0, for t, s ∈ [0, 1), i = 1, 2,

Hi(t, s) ≥ 0, H̃i(t, s) ≥ 0, Ki(s) ≥ 0, K̃i(s) ≥ 0, for t, s ∈ [0, 1], i = 1, 2.

Proof. It follows from (2.3), Lemmas 2.2 and 2.3 that the results of Lemma 2.4 are true.

Lemma 2.5. Assume that (H1) holds. For all t, s ∈ [0, 1], we have

κi$j

∆1
G(s, s) ≤ Hi(t, s) ≤ 1

∆1
G(s, s), i = 1, 2, i + j = 3, (2.14)

$i

∆1
G(s, s) ≤ Ki(s) ≤

κi

∆1
G(s, s), i = 1, 2, (2.15)

κ̃i$̃j

∆2
G(s, s) ≤ H̃i(t, s) ≤ 1

∆2
G(s, s), i = 1, 2, i + j = 3, (2.16)

$̃i

∆2
G(s, s) ≤ K̃i(s) ≤

κ̃i

∆2
G(s, s), i = 1, 2, (2.17)

where κi, κ̃i, $i and $̃i(i = 1, 2) are defined by (2.2).

Proof. First, we will show that (2.14) is true. By (2.3), the first equalities of (2.8) and (2.9), we
obtain

Hi(t, s) = G(t, s) +
κi

∆1
Gj(s) ≤ G(s, s) +

κi

∆1

∫ 1

0
G(t, s)dAj(t)

≤ G(s, s) +
κi

∆1

∫ 1

0
dAj(t) · G(s, s) =

∆1 + κiκj

∆1
G(s, s)

=
1

∆1
G(s, s), t, s ∈ [0, 1], i = 1, 2, i + j = 3.

On the other hand, by (2.3), the first equalities of (2.8) and (2.9), we also have

Hi(t, s) = G(t, s) +
κi

∆1
Gj(s) ≥

κi

∆1
Gj(s)

≥ κi

∆1

∫ 1

0
G(t, t)G(s, s)dAj(t)

=
κi$j

∆1
G(s, s), t, s ∈ [0, 1], i = 1, 2, i + j = 3.

Next we show that (2.15) holds. In fact, using (2.3), the second equalities of (2.8) and (2.9),
we get

Ki(s) =
1

∆1

∫ 1

0
G(t, s)dAi(t) ≤

1
∆1

∫ 1

0
G(s, s)dAi(t) =

κi

∆1
G(s, s), s ∈ [0, 1], i = 1, 2.

On the other hand, by (2.3), the second equalities of (2.8) and (2.9), we also have

Ki(s) =
1

∆1

∫ 1

0
G(t, s)dAi(t) ≥

1
∆1

∫ 1

0
G(t, t)G(s, s)dAi(t) =

$i

∆1
G(s, s), s ∈ [0, 1], i = 1, 2.

Similar to the proof of (2.14) and (2.15), we obtain (2.16) and (2.17).
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Remark 2.6. From Lemma 2.5, for t, s ∈ [0, 1] we have

νG(s, s) ≤ Hi(t, s) ≤ µG(s, s), νG(s, s) ≤ Ki(s) ≤ µG(s, s), i = 1, 2,

ν̃G(s, s) ≤ H̃i(t, s) ≤ µ̃G(s, s), ν̃G(s, s) ≤ K̃i(s) ≤ µ̃G(s, s), i = 1, 2,

where

µ =
max {1, κ1, κ2}

∆1
, ν =

min {κ1$2, κ2$1, $1, $2}
∆1

,

µ̃ =
max {1, κ̃1, κ̃2}

∆2
, ν̃ =

min {κ̃1$̃2, κ̃2$̃1, $̃1, $̃2}
∆2

.

Denote C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0, 0 ≤ t ≤ 1}. Let

K =

{
(u, v) ∈ C+[0, 1]× C+[0, 1] : u, v are concave on [0, 1],

min
t∈[0,1]

u(t) ≥ γ‖(u, v)‖1, min
t∈[0,1]

v(t) ≥ γ‖(u, v)‖1

}
,

where γ :=
νφ−1

p (ν̃)

µφ−1
p (µ̃)

. Clearly 0 < γ < 1. It is easy to see that K is a cone of E. For any real

constant r > 0, define Kr = {(u, v) : (u, v) ∈ K, ‖(u, v)‖1 < r} and ∂Kr = {(u, v) : (u, v) ∈
K, ‖(u, v)‖1 = r}.

Employing Lemmas 2.2 and 2.3, the system (2.1) can be expressed as



u(t) =
∫ 1

0
H1(t, s)φ−1

p

(
λ1

∫ 1

0
H̃1(s, τ)a1(τ) f1(τ, u(τ), v(τ))dτ

+λ2

∫ 1

0
K̃1(τ)a2(τ) f2(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
K1(s)φ−1

p

(
λ2

∫ 1

0
H̃2(s, τ)a2(τ) f2(τ, u(τ), v(τ))dτ

+λ1

∫ 1

0
K̃2(τ)a1(τ) f1(τ, u(τ), v(τ))dτ

)
ds,

v(t) =
∫ 1

0
H2(t, s)φ−1

p

(
λ2

∫ 1

0
H̃2(s, τ)a2(τ) f2(τ, u(τ), v(τ))dτ

+λ1

∫ 1

0
K̃2(τ)a1(τ) f1(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
K2(s)φ−1

p

(
λ1

∫ 1

0
H̃1(s, τ)a1(τ) f1(τ, u(τ), v(τ))dτ

+λ2

∫ 1

0
K̃1(τ)a2(τ) f2(τ, u(τ), v(τ))dτ

)
ds.

(2.18)

By a solution of the system (2.1), we mean a solution of the corresponding system of integral
equations (2.18). Defined an operator T : K → K by T(u, v) = (T1(u, v), T2(u, v)), where
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operators Ti : K → K are defined by

Ti(u, v)(t) =
∫ 1

0
Hi(t, s)φ−1

p

(
λi

∫ 1

0
H̃i(s, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
K̃i(τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
Ki(s)φ−1

p

(
λj

∫ 1

0
H̃j(s, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

+λi

∫ 1

0
K̃j(τ)ai(τ) fi(τ, u(τ), v(τ))dτ

)
ds, t ∈ [0, 1], i = 1, 2, i + j = 3.

(2.19)

Clearly, (u, v) ∈ K is a fixed point of T if and only if (u, v) is a solution of system (2.1).

Lemma 2.7. Assume that (H1)–(H3) hold. Then T : K → K is well defined. Furthermore, T : K → K
is a completely continuous operator.

Proof. For any fixed (u, v) ∈ K, there exists a constant r > 0 such that ‖(u, v)‖ ≤ r. Thus, for
any t ∈ [0, 1], it follows from (2.19) and Remark 2.6 that

Ti(u, v)(t) =
∫ 1

0
Hi(t, s)φ−1

p

(
λi

∫ 1

0
H̃i(s, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
K̃i(τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
Ki(s)φ−1

p

(
λj

∫ 1

0
H̃j(s, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

+λi

∫ 1

0
K̃j(τ)ai(τ) fi(τ, u(τ), v(τ))dτ

)
ds

≤ µ
∫ 1

0
G(s, s)φ−1

p

(
λiµ̃

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λjµ̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+ µ
∫ 1

0
G(s, s)φ−1

p

(
λjµ̃

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

+λiµ̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

)
ds

≤ 2µφ−1
p (µ̃M)

∫ 1

0
G(s, s)φ−1

p

(
λ1

∫ 1

0
G(τ, τ)a1(τ)dτ + λ2

∫ 1

0
G(τ, τ)a2(τ)dτ

)
< ∞, i = 1, 2, i + j = 3,

where
M = max

(t,x,y)∈[0,1]×[0,r]×[0,r]
f1(t, x, y) + max

(t,x,y)∈[0,1]×[0,r]×[0,r]
f2(t, x, y).

Thus T : K → K is well defined.
For all (u, v) ∈ K, by (2.19) we have

(Ti(u, v))′′(t) =− φ−1
p (λi

∫ 1

0
H̃i(s, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+ λj

∫ 1

0
K̃i(τ)aj(τ) f j(τ, u(τ), v(τ))dτ ≤ 0,
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which implies that Ti(u, v) is concave on [0, 1]. Further, by (2.19), Lemmas 2.2 and 2.3 we
obtain Ti(u, v)(0) ≥ 0, Ti(u, v)(1) ≥ 0. It follows that Ti(u, v)(t) ≥ 0 for t ∈ [0, 1].

On the other hand, for (u, v) ∈ K, t ∈ [0, 1], using (2.19) and Remark 2.6, we obtain

Ti(u, v)(t) ≤ µ
∫ 1

0
G(s, s)φ−1

p

(
λiµ̃

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λjµ̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+ µ
∫ 1

0
G(s, s)φ−1

p

(
λjµ̃

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

+λiµ̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

)
ds

≤ 2µφ−1
p (µ̃)

∫ 1

0
G(s, s)φ−1

p

(
λi

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds, i = 1, 2, i + j = 3,

which implies that

‖Ti(u, v)‖ ≤ 2µφ−1
p (µ̃)

∫ 1

0
G(s, s)φ−1

p

(
λi

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds, i = 1, 2, i + j = 3.

(2.20)

Also, for (u, v) ∈ K, t ∈ [0, 1], using Remark 2.6, (2.19) and (2.20), we have

T1(u, v)(t) =
∫ 1

0
H1(t, s)φ−1

p

(
λ1

∫ 1

0
H̃1(s, τ)a1(τ) f1(τ, u(τ), v(τ))dτ

+λ2

∫ 1

0
K̃1(τ)a2(τ) f2(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
K1(s)φ−1

p

(
λ2

∫ 1

0
H̃2(s, τ)a2(τ) f2(τ, u(τ), v(τ))dτ

+λ1

∫ 1

0
K̃2(τ)a1(τ) f1(τ, u(τ), v(τ))dτ

)
ds

≥ ν
∫ 1

0
G(s, s)φ−1

p

(
λ1ν̃

∫ 1

0
G(τ, τ)a1(τ) f1(τ, u(τ), v(τ))dτ

+λ2ν̃
∫ 1

0
G(τ, τ)a2(τ) f2(τ, u(τ), v(τ))dτ

)
ds

+ ν
∫ 1

0
G(s, s)φ−1

p

(
λ2ν̃

∫ 1

0
G(τ, τ)a2(τ) f2(τ, u(τ), v(τ))dτ

+λ1ν̃
∫ 1

0
G(τ, τ)a1(τ) f1(τ, u(τ), v(τ))dτ

)
ds

≥ 2νφ−1
p (ν̃)

∫ 1

0
G(s, s)φ−1

p

(
λi

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

≥ γ‖Ti(u, v)‖, i = 1, 2, i + j = 3.
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This implies that
min

t∈[0,1]
T1(u, v)(t) ≥ γ‖(T1(u, v), T2(u, v))‖1.

In the same way as above, we can prove that

min
t∈[0,1]

T2(u, v)(t) ≥ γ‖(T1(u, v), T2(u, v))‖1.

Hence, T(K) ⊂ K.
Next, we prove that T : K → K is completely continuous. For any natural number n, we

set

ain(t) =


ai(t), 0 ≤ t ≤ n− 1

n
,

inf
1− 1

n≤s<t
ai(s), 1− 1

n
≤ t ≤ 1,

i = 1, 2. Then a1n, a2n : [0, 1] → [0,+∞) are continuous and a1n(t) ≤ a1(t), a2n(t) ≤ a2(t),
t ∈ (0, 1). Let

Tin(u, v)(t) =
∫ 1

0
Hi(t, s)φ−1

p

(
λi

∫ 1

0
H̃i(s, τ)ain(τ) fi(τ, u(τ), v(τ))dτ

+λj

∫ 1

0
K̃i(τ)ajn(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+
∫ 1

0
Ki(s)φ−1

p

(
λj

∫ 1

0
H̃j(s, τ)ajn(τ) f j(τ, u(τ), v(τ))dτ

+λi

∫ 1

0
K̃j(τ)ain(τ) fi(τ, u(τ), v(τ))dτ

)
ds,

i = 1, 2, i + j = 3. Similar to [14], by the approximating theorem of completely continuous
operators, we can prove T : K → K is a completely continuous operator.

Lemma 2.8 ([4]). Let X be a real Banach space, P be a cone in X. Assume that Ω1 and Ω2 are two
bounded open sets of X with θ ∈ Ω1 and Ω1 ⊂ Ω2. Let T : P ∩ (Ω2\Ω1) → P be a completely
continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2 \Ω1).

3 Main results

Denote

L1 = max
{

2µφ−1
p

(
µ̃
∫ 1

0
G(τ, τ)a1(τ)dτ

)
, 2µφ−1

p

(
µ̃
∫ 1

0
G(τ, τ)a2(τ)dτ

)}
,

L2 = min
{

2νφ−1
p

(
ν̃
∫ 1

0
G(τ, τ)a1(τ)dτ

)
, 2νφ−1

p

(
ν̃
∫ 1

0
G(τ, τ)a2(τ)dτ

)}
,

Mi = max
t∈[0,1]

fi(t, 1, 1), mi = min
t∈[0,1]

fi(t, 1, 1), i = 1, 2.

And, we also suppose
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(H4) fi(t, x, y) is nondecreasing in x and nonincreasing in y, and there exist ξi, ηi ∈ [0, 1) such
that

cξi fi(t, x, y) ≤ fi(t, cx, y), fi(t, x, cy) ≤ c−ηi fi(t, x, y), ∀x, y > 0, c ∈ (0, 1), i = 1, 2.

(H5) fi(t, x, y) is nonincreasing in x and nondecreasing in y, and there exist ξi, ηi ∈ [0, 1) such
that

cξi fi(t, x, y) ≤ fi(t, x, cy), fi(t, cx, y) ≤ c−ηi fi(t, x, y), ∀x, y > 0, c ∈ (0, 1), i = 1, 2.

Remark 3.1. (H4) implies that

fi(t, cx, y) ≤ cξi fi(t, x, y), fi(t, x, cy) ≤ cηi fi(t, x, y), ∀x, y > 0, c > 1, i = 1, 2.

Remark 3.2. (H5) implies that

fi(t, x, cy) ≤ cξi fi(t, x, y), fi(t, x, y) ≤ cηi fi(t, cx, y), ∀x, y > 0, c > 1, i = 1, 2.

Theorem 3.3. Assume that fi(t, 1, 1) 6= 0, t ∈ [0, 1] and (H1)–(H4) hold. Then for any 0 < r0 <

1 < R0 < ∞, the system (1.1) has at least one symmetric positive solution for

λi ∈
(

rp−1−ξi
0

miγξi φp(L2)
,

Rp−1−ξi
0 γηi

Miφp(L1)

)
, i = 1, 2 (3.1)

provided that Miφp(L1)r
p−1−ξi
0 < miφp(L2)Rp−1−ξi

0 γξi+ηi (i = 1, 2).

Proof. For any (u, v) ∈ ∂Kr0 , by the definition of ‖ · ‖, we have

r0 = ‖(u, v)‖1 ≥ ‖u‖ ≥ u(t) ≥ γ‖(u, v)‖1 = γr0,

r0 = ‖(u, v)‖1 ≥ ‖v‖ ≥ v(t) ≥ γ‖(u, v)‖1 = γr0.
(3.2)

Suppose that λi satisfy (3.1). So, for any (u, v) ∈ ∂Kr0 , by (H4) and (3.2), we have

Ti(u, v)(t) ≥ ν
∫ 1

0
G(s, s)φ−1

p

(
λiν̃

∫ 1

0
G(τ, τ)ai(τ) fi(τ, γr0, 1)dτ

+λjν̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, γr0, 1))dτ

)
ds

+ ν
∫ 1

0
G(s, s)φ−1

p

(
λjν̃

∫ 1

0
G(τ, τ)aj(τ) f j(τ, γr0, 1)dτ

+λiν̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, γr0, 1)dτ

)
ds

≥ ν

[
φ−1

p

(
λiγ

ξi rξi
0 ν̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, 1, 1)dτ

)
+φ−1

p

(
λjγ

ξ j r
ξ j
0 ν̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, 1, 1)dτ

)]
≥ ν

[
φ−1

p

(
λiγ

ξi rξi
0 miν̃

∫ 1

0
G(τ, τ)ai(τ)dτ

)
+ φ−1

p

(
λjγ

ξ j r
ξ j
0 mjν̃

∫ 1

0
G(τ, τ)aj(τ)dτ

)]
≥ φ−1

p (λiγ
ξi rξi

0 mi)
L2

2
+ φ−1

p (λjγ
ξ j r

ξ j
0 mj)

L2

2
≥ r0, t ∈ [0, 1], i = 1, 2, i + j = 3,
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which implies that

‖T(u, v)‖1 = max{‖T1(u, v)‖, ‖T2(u, v)‖} ≥ r0 = ‖(u, v)‖1, (u, v) ∈ ∂Kr0 . (3.3)

On the other hand, for any (u, v) ∈ ∂KR0 , t ∈ [0, 1], similar to (3.2), we have

R0 = ‖(u, v)‖1 ≥ u(t) ≥ γ‖(u, v)‖1 = γR0 > γ,

R0 = ‖(u, v)‖1 ≥ v(t) ≥ γ‖(u, v)‖1 = γR0 > γ.
(3.4)

By (3.1), (3.4), Remarks 2.6 and 3.1, for any t ∈ [0, 1], we have

Ti(u, v)(t) ≤ µ
∫ 1

0
G(s, s)φ−1

p

(
λiµ̃

∫ 1

0
G(τ, τ)ai(τ) fi(τ, R0, γ)dτ

+λjµ̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, R0, γ)dτ

)
ds

+ µ
∫ 1

0
G(s, s)φ−1

p

(
λjµ̃

∫ 1

0
G(τ, τ)aj(τ) f j(τ, R0, γ)dτ

+λiµ̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, R0, γ)dτ

)
ds

≤ µ

[
φ−1

p

(
λiµ̃Rξi

0 γ−ηi

∫ 1

0
G(τ, τ)ai(τ) fi(τ, 1, 1)dτ

)
+φ−1

p

(
λjµ̃Rξi

0 γ−ηj

∫ 1

0
G(τ, τ)aj(τ) f j(τ, 1, 1)dτ

)]
≤ µ

[
φ−1

p

(
λiµ̃Rξi

0 γ−ηi Mi

∫ 1

0
G(τ, τ)ai(τ)dτ

)
+φ−1

p

(
λjµ̃Rξi

0 γ−ηj Mj

∫ 1

0
G(τ, τ)aj(τ)dτ

)]
≤ φ−1

p (λiR
ξi
0 γ−ηi Mi)

L1

2
+ φ−1

p (λjR
ξi
0 γ−ηj Mj)

L1

2
≤ R0, i = 1, 2, i + j = 3.

Therefore, we have

‖T(u, v)‖1 = max{‖T1(u, v)‖, ‖T2(u, v)‖} ≤ R0 = ‖(u, v)‖1, ∀ (u, v) ∈ ∂KR0 . (3.5)

It follows from (3.3), (3.5) and Lemma 2.8 that for any λi ∈
( r

p−1−ξi
0

miγ
ξi φp(L2)

, R
p−1−ξi
0 γηi

Miφp(L1)

)
(i = 1, 2),

T has a fixed point (u0, v0) ∈ KR0 \ K̄r0 with r0 ≤ ‖(u0, v0)‖1 ≤ R0. Moreover, (u0, v0) is
positive. In fact, from ‖(u0, v0)‖1 ≥ r0 > 0, by construction of the cone K, we have

min
t∈[0,1]

u0(t) ≥ γ‖(u0, v0)‖1 > 0,

which implies that u0(t) > 0 for all t ∈ [0, 1]. Similarly, we also have v0(t) > 0 for all t ∈ [0, 1].
Hence, (u0, v0) is a positive solution of the system (2.1). Let

u∗(t) =

{
u0(−t), − 1 ≤ t < 0,

u0(t), 0 ≤ t ≤ 1,
v∗(t) =

{
v0(−t), − 1 ≤ t < 0,

v0(t), 0 ≤ t ≤ 1.

By Remark 2.1 we know that (u∗, v∗) is the desired symmetric positive solution for the system
(1.1).
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Similar to the proof of Theorem 3.3, we have the following result.

Theorem 3.4. Assume that fi(t, 1, 1) 6= 0, t ∈ [0, 1], (H1)–(H3) and (H5) hold. Then for any
0 < r0 < 1 < R0 < ∞, the system (1.1) has at least one symmetric positive solution for

λi ∈
(

rp−1−ξi
0

miγξi φp(L2)
,

Rp−1−ξi
0 γηi

Miφp(L1)

)
, i = 1, 2

provided that Miφp(L1)r
p−1−ξi
0 < miφp(L2)Rp−1−ξi

0 γξi+ηi (i = 1, 2).

Theorem 3.5. Assume that fi(t, 1, 1) 6= 0, t ∈ [0, 1] and (H1)–(H3) hold. In addition, assume

(H6) f1(t, x, y) is nondecreasing in x and nonincreasing in y, and there exist ξ1, η1 ∈ [0, 1) such that

cξ1 f1(t, x, y) ≤ f1(t, cx, y), f1(t, x, cy) ≤ c−η1 f1(t, x, y), ∀ x, y > 0, c ∈ (0, 1),

and f2(t, x, y) is nonincreasing in x and nondecreasing in y, and there exist ξ2, η2 ∈ [0, 1) such
that

cξ2 f2(t, x, y) ≤ f2(t, x, cy), f2(t, cx, y) ≤ c−η2 f2(t, x, y), ∀ x, y > 0, c ∈ (0, 1).

Then for any 0 < r0 < 1 < R0 < ∞, the system (1.1) has at least one symmetric positive solution for

λi ∈
(

rp−1−ξi
0

miγξi φp(L2)
,

Rp−1−ξi
0 γηi

Miφp(L1)

)
, i = 1, 2

provided that Miφp(L1)r
p−1−ξi
0 < miφp(L2)Rp−1−ξi

0 γξi+ηi (i = 1, 2).

Theorem 3.6. Assume that fi(t, 1, 1) 6= 0, t ∈ [0, 1] and (H1)–(H3) hold. In addition, assume

(H7) f1(t, x, y) is nonincreasing in x and nondecreasing in y, and there exist ξ1, η1 ∈ [0, 1) such that

cξ1 f1(t, x, y) ≤ f1(t, x, cy), f1(t, cx, y) ≤ c−η1 f1(t, x, y), ∀x, y > 0, c ∈ (0, 1),

and f2(t, x, y) is nondecreasing in x and nonincreasing in y, and there exist ξ2, η2 ∈ [0, 1) such
that

cξ2 f2(t, x, y) ≤ f2(t, cx, y), f2(t, x, cy) ≤ c−η2 f2(t, x, y), ∀x, y > 0, c ∈ (0, 1).

Then for any 0 < r0 < 1 < R0 < ∞, the system (1.1) has at least one symmetric positive solution for

λi ∈
(

rp−1−ξi
0

miγξi φp(L2)
,

Rp−1−ξi
0 γηi

Miφp(L1)

)
, i = 1, 2

provided that Miφp(L1)r
p−1−ξi
0 < miφp(L2)Rp−1−ξi

0 γξi+ηi (i = 1, 2).

Theorem 3.7. Assume that (H1)–(H3) hold and there exist R > r > 0 such that

λi min
t∈[0,1]

γr≤x,y≤r

fi(t, x, y) ≥ φp

(
γr
L2

)
, λi max

t∈[0,1]
0≤x,y≤R

fi(t, x, y) ≤ φp

(
R
L1

)
, i = 1, 2. (3.6)

Then the system (1.1) has at least one symmetric positive solution (u∗, v∗) satisfying

r ≤ ‖(u∗, v∗)‖1 ≤ R.
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Proof. Set Kr = {(u, v) ∈ K : ‖(u, v)‖1 < r}. For any (u, v) ∈ ∂Kr, by the definition of ‖ · ‖, we
have

γr ≤ γ‖(u, v)‖1 ≤ u(t) ≤ r, γr ≤ γ‖(u, v)‖1 ≤ v(t) ≤ r, t ∈ [0, 1]. (3.7)

Thus, for any (u, v) ∈ ∂Kr, by the first inequality of (3.6), we have

λi min
t∈[0,1]

γr≤u(t),v(t)≤r

fi(t, u(t), v(t)) ≥ φp

(
γr
L2

)
, i = 1, 2. (3.8)

So, for any (u, v) ∈ ∂Kr, by (3.8) and Remark 2.6, we have

Ti(u, v)(t) ≥ ν
∫ 1

0
G(s, s)φ−1

p

(
λiν̃

∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

+λjν̃
∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

)
ds

+ ν
∫ 1

0
G(s, s)φ−1

p

(
λjν̃

∫ 1

0
G(τ, τ)aj(τ) f j(τ, u(τ), v(τ))dτ

+λiν̃
∫ 1

0
G(τ, τ)ai(τ) fi(τ, u(τ), v(τ))dτ

)
ds

≥ ν

φ−1
p

λiν̃ min
τ∈[0,1]

γr≤u(τ),v(τ)≤r

fi(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)ai(τ)dτ


+φ−1

p

λjν̃ min
τ∈[0,1]

γr≤u(τ),v(τ)≤r

f j(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)aj(τ)dτ


≥ φ−1

p

λi min
τ∈[0,1]

γr≤u(τ),v(τ)≤r

fi(τ, u(τ), v(τ))

 L2

2γ

+ φ−1
p

λi min
τ∈[0,1]

γr≤u(τ),v(τ)≤r

f j(τ, u(τ), v(τ))

 L2

2γ

≥ r, t ∈ [0, 1], i = 1, 2, i + j = 3.

Therefore, we have

‖T(u, v)‖1 = max{‖T1(u, v)‖, ‖T2(u, v)‖} ≥ r = ‖(u, v)‖1, (u, v) ∈ ∂Kr. (3.9)

Take KR = {(u, v) ∈ K : ‖(u, v)‖1 < R}. For any (u, v) ∈ ∂KR, by the definition of ‖ · ‖, we
have

u(t) ≤ ‖u‖ ≤ ‖(u, v)‖1 ≤ R, v(t) ≤ ‖v‖ ≤ ‖(u, v)‖1 ≤ R, t ∈ [0, 1]. (3.10)

Thus, for any (u, v) ∈ ∂KR, by the second inequality of (3.6) and (3.10), we have

λi max
t∈[0,1]

0≤u(t),v(t)≤R

fi(t, u(t), v(t)) ≤ φp

(
R
L1

)
. (3.11)
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By (3.11) and Remark 2.6, we have

Ti(u, v)(t) ≤ µ
∫ 1

0
G(s, s)φ−1

p

λiµ̃ max
τ∈[0,1]

0≤u(τ),v(τ)≤R

fi(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)ai(τ)dτ

+λjµ̃ max
τ∈[0,1]

0≤u(τ),v(τ)≤R

f j(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)aj(τ)dτ

 ds

+ µ
∫ 1

0
G(s, s)φ−1

p

λjµ̃ max
τ∈[0,1]

0≤u(τ),v(τ)≤R

f j(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)aj(τ)dτ

+λiµ̃ max
τ∈[0,1]

0≤u(τ),v(τ)≤R

fi(τ, u(τ), v(τ))
∫ 1

0
G(τ, τ)ai(τ)dτ

 ds

≤ µR
L1

φ−1
p

(
µ̃
∫ 1

0
G(τ, τ)ai(τ)dτ

)
+

µR
L1

φ−1
p

(
µ̃
∫ 1

0
G(τ, τ)aj(τ)dτ

)
≤ R

L1
× L1

2
+

R
L1
× L1

2
= R, t ∈ [0, 1], i = 1, 2, i + j = 3.

Therefore, we have

‖T(u, v)‖1 = max{‖T1(u, v)‖, ‖T2(u, v)‖} ≤ R = ‖(u, v)‖1, ∀ (u, v) ∈ ∂KR. (3.12)

It follows from (3.9) and (3.12), T has a fixed point (u0, v0) ∈ KR \ K̄r with r ≤ ‖(u0, v0)‖1 ≤
R. Moreover, (u0, v0) is positive. In fact, from ‖(u0, v0)‖1 ≥ r > 0, by construction of the cone
K, we have

min
t∈[0,1]

u0(t) ≥ γ‖(u0, v0)‖1 > 0,

which implies that u0(t) > 0 for all t ∈ [0, 1]. Similarly, we also have v0(t) > 0 for all t ∈ [0, 1].
Hence, (u0, v0) is a positive solution of the system (2.1). Let

u∗(t) =

{
u0(−t), − 1 ≤ t < 0,

u0(t), 0 ≤ t ≤ 1,
v∗(t) =

{
v0(−t), − 1 ≤ t < 0,

v0(t), 0 ≤ t ≤ 1.

By Remark 2.1 we know that (u∗, v∗) is the desired symmetric positive solution for the system
(1.1).

Corollary 3.8. From the proof of Theorem 3.7, then for

λ1 min
t∈[0,1]

γr≤x,y≤r

f1(t, x, y) ≥ φp

(
γr
L21

)
, λi max

t∈[0,1]
0≤x,y≤R

fi(t, x, y) ≤ φp

(
R
L1

)
, i = 1, 2,

or

λ2 min
t∈[0,1]

γr≤x,y≤r

f2(t, x, y) ≥ φp

(
γr
L22

)
, λi max

t∈[0,1]
0≤x,y≤R

fi(t, x, y) ≤ φp

(
R
L1

)
, i = 1, 2,

the conclusion of Theorem 3.5 is valid, where

L21 = γνφ−1
p

(
ν̃
∫ 1

0
G(τ, τ)a1(τ)dτ

)
, L22 = γνφ−1

p

(
ν̃
∫ 1

0
G(τ, τ)a2(τ)dτ

)
.
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4 An example

Example 4.1. Consider the differential system

(φp(u′′(t)))′′ = λ1a1(t)
2u(t)1/2

(v(t) + 7)1/3 , −1 < t < 1,

(φp(v′′(t)))′′ = λ2a2(t)
(1 + t2)u(t)1/3

(3 + v(t))1/2 , −1 < t < 1,

u(−1) = u(1) =
∫ 1

−1
v(t)dA1(t), φp(u′′(−1)) = φp(u′′(1)) =

∫ 1

−1
φp(v′′(t))dB1(t),

v(−1) = v(1) =
∫ 1

−1
u(t)dA2(t), φp(v′′(−1)) = φp(v′′(1)) =

∫ 1

−1
φp(u′′(t))dB2(t),

(4.1)

where λi > 0 (i = 1, 2) are some parameters,

f1(t, x, y) =
2x1/2

(y + 7)1/3 , f2(t, x, y) =
(1 + t2)x1/3

(3 + y)1/2 , (t, x, y) ∈ [−1, 1]× [0, ∞)× [0, ∞).

Obviously, fi(·, x, y) are symmetric on [−1, 1] for all x, y ∈ [0, ∞) (i = 1, 2), so the condition
(H3) holds. Let

a1(t) = t2, a2(t) = |t|, A1(t) =
3
4

t5, A2(t) =
1
3

t3, B1(t) = t, B2(t) =
1
2

t3, t ∈ [−1, 1],

and p = 5
2 , then q = 5

3 , φ−1
p (z) = φq(z) = z2/3 as z > 0. By Remark 2.1, we only need to

consider the following boundary value problem on the interval [0, 1],

(φp(u′′(t)))′′ = λ1
2t2u(t)1/2

(v(t) + 7)1/3 , 0 < t < 1,

(φp(v′′(t)))′′ = λ2
t(1 + t2)u(t)1/3

(3 + v(t))1/2 , 0 < t < 1,

u′(0) = 0, u(1) =
∫ 1

0
v(s)dA1(s), φp(u′′′(0)) = 0, φp(u′′(1)) =

∫ 1

0
φp(v′′(s))dB1(s),

v′(0) = 0, v(1) =
∫ 1

0
u(s)dA2(s), φp(v′′′(0)) = 0, φp(v′′(1)) =

∫ 1

0
φp(u′′(s))dB2(s).

By a simple computation, we have

κ1 =
3
4

, κ2 =
1
3

, κ̃1 = 1, κ̃2 =
1
2

,

∆1 = 1− κ1κ2 =
3
4
> 0, ∆2 = 1− κ̃1κ̃2 =

1
2
> 0,

∫ 1

0
G(s, s)a1(s)ds =

1
12

,
∫ 1

0
G(s, s)a2(s)ds =

1
6

.

Clearly, the conditions (H1) and (H2) hold. In addition, fi(t, x, y) (i = 1, 2) is nondecreasing
in x and nonincreasing in y on [0, 1]× [0, ∞)× [0, ∞). Take ξ1 = 2

3 , ξ2 = 1
2 , η1 = 1

3 , η2 = 1
2 , we
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can get

f1(t, cx, y) =
2(cx)1/2

(y + 7)1/3 =
2c1/2x1/2

(y + 7)1/3 > c
2
3 f1(t, x, y), ∀ x, y > 0, c ∈ (0, 1),

f1(t, x, cy) =
2x1/2

(cy + 7)1/3 <
2x1/2

(cy + 7c)1/3 = c−
1
3 f1(t, x, y), ∀ x, y > 0, c ∈ (0, 1),

f2(t, cx, y) =
(1 + t2)(cx)1/3

(3 + y)1/2 =
(1 + t2)c1/3x1/3

(3 + y)1/2 > c
1
2 f2(t, x, y), ∀ x, y > 0, c ∈ (0, 1),

f2(t, x, cy) =
(1 + t2)x1/3

(3 + cy)1/2 <
(1 + t2)x1/3

(3c + cy)1/2 = c−
1
2 f2(t, x, y), ∀ x, y > 0, c ∈ (0, 1).

So, the condition (H4) is also valid. Furthermore,

$1 =
∫ 1

0
G(t, t)dA1(t) =

1
8

, $2 =
∫ 1

0
G(t, t)dA2(t) =

1
12

,

$̃1 =
∫ 1

0
G(t, t)dB1(t) =

1
2

, $̃2 =
∫ 1

0
G(t, t)dB2(t) =

1
8

,

µ =
max {1, κ1, κ2}

∆1
=

4
3

, ν =
min {κ1$2, κ2$1, $1, $2}

∆1
=

1
18

,

µ̃ =
max {1, κ̃1, κ̃2}

∆2
= 2, ν̃ =

min {κ̃1$̃2, κ̃2$̃1, $̃1, $̃2}
∆2

=
1
4

,

γ =
νφ−1

p (ν̃)

µφ−1
p (µ̃)

=
ν · ν̃2/3

µ · µ̃2/3 =
1
96

,

L1 = max
{

2µφ−1
p

(
µ̃
∫ 1

0
G(τ, τ)a1(τ)dτ

)
, 2µφ−1

p

(
µ̃
∫ 1

0
G(τ, τ)a2(τ)dτ

)}
=

8
35/3 ,

L2 = min
{

2νφ−1
p

(
ν̃
∫ 1

0
G(τ, τ)a1(τ)dτ

)
, 2νφ−1

p

(
ν̃
∫ 1

0
G(τ, τ)a2(τ)dτ

)}
=

1
364/3 ,

M1 = max
t∈[0,1]

f1(t, 1, 1) = 1, m1 = min
t∈[0,1]

f1(t, 1, 1) = 1,

M2 = max
t∈[0,1]

f2(t, 1, 1) = 1, m2 = min
t∈[0,1]

f2(t, 1, 1) =
1
2

.

Take r0 = 1
64 , R0 = 66 = 46656. By Theorem 3.3, for λ1 ∈ (849.1203, 1169.9500) and λ2 ∈

(396.8174, 3280.5000), the system (4.1) has at least one symmetric positive solution.

Remark 4.2. Example 4.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 3.3. In addition, the conditions of Theorem 3.3 are also easy to check.
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