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Abstract

In this paper, we investigate the existence of solutions for multi-point boundary

value problems at resonance concerning fractional differential equation on a half-line.

Our analysis relies on the coincidence degree of Mawhin. As an application, an example

is presented to illustrate the main results.
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1 Introduction

Fractional differential equations have been of great interest recently. This is because of the
intensive development of the theory of fractional calculus itself as well as its applications.
Apart from diverse areas of mathematics, fractional differential equations arise in a variety
of different areas such as rheology, fluid flows, electrical networks, viscoelasticity, chemical
physics, and many other branches of science (see [1, 9, 10, 11, 16, 17, 25] and references
cited therein). The research of fractional differential equations on boundary value problems,
as one of the focal topics, has attained a great deal of attention from many researchers (see
[18, 19, 20, 21, 29, 34]).

In this paper, we study the existence of solutions for the fractional differential equation
at resonance with multi-point boundary value problem on a half-line:

Dα
0+x(t) = f(t, x(t), Dα−1

0+ x(t)), t ∈ (0, +∞), (1.1)

x(0) = 0, lim
t→+∞

Dα−1
0+ x(t) = βx(η), (1.2)

where 1 < α ≤ 2, η > 0, f : [0, +∞)×R×R → R is an S-Carathéodory function, and Dα
0+

is the standard Riemann-Liouville fractional derivative. Moreover, we need the following
condition

Γ(α) = βηα−1. (1.3)
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The condition (1.3) is critical since the fractional differential operator in (1.1) has a
nontrivial kernel. Boundary value problems with such critical conditions are so-called prob-
lems at resonance. Boundary value problems for differential equations of integer order at
resonance have been studied by many authors (see [3, 4, 5, 6, 7, 12, 13, 14, 22, 23, 24, 26, 27]
and references cited therein).

More recently, various types of multi-point boundary value problems for fractional dif-
ferential equations at resonance on a bounded domain have been analyzed by Kosmatov [8],
Jiang [35], Bai [30], Bai and Zhang [31, 32].

However, to our knowledge, it is rare for work to be done on the solutions of fractional
differential equations at resonance on a half-line. In this paper, our goal is to fill this gap
in the literature.

The layout of this paper is as follow. In Section 2, we provide some necessary background.
In particular, we shall introduce some lemmas and definitions related with problem (1.1)
and (1.2). In Section 3, the main results of problem (1.1) and (1.2) will be stated and
proved. Finally, one example is also included to illustrate the main results.

2 Background materials and preliminaries

In this section, to establish the existence of solutions, we present some necessary background
and lemmas. These definitions and lemmas can be found in the recent literature [1, 2, 15,
28, 36].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0, +∞) → R is given by

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t − s)α−1f(s)ds

provided the right side is pointwise defined on (0, +∞), and we have

Iα
0+tµ =

Γ(µ + 1)

Γ(µ + α + 1)
tµ+α, α > 0, µ > −1.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a function
f : (0, +∞) → R is given by

Dα
0+f(t) = DnIn−α

0+ f(t)

where n = [α] + 1, Dn = dn

dtn
, t > 0, and we have for λ > −1

Dα
0+tλ =

Γ(λ + 1)

Γ(λ − α + 1)
tλ−α.

Lemma 2.1. Assume that u ∈ C(0, +∞) ∩ Lloc(0, +∞) with a fractional derivative of
order α > 0 that belongs to C(0, +∞) ∩ Lloc(0, +∞). Then

Iα
0+Dα

0+x(t) = x(t) + c1t
α−1 + c2t

α−2 + · · · + cnt
α−N ,

for some ci ∈ R, i = 1, . . . , N , where N is the smallest integer greater than or equal to α.
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We now give the background from the coincidence degree theory.
Definition 2.3. Let X and Y be normed spaces. A linear operator L : dom(L) ⊂ X →

Y is said to be a Fredholm operator of index zero provided that
(i) ImL is closed subset of Y , and
(ii) dim KerL=codim ImL < +∞.
From definition2.3 it follows that there exist continuous projects P : X → X and

Q : Y → Y such that ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ and
L|DomL∩KerP

: DomL ∩ KerP → ImL is invertible. We denote the inverse that map
by Kp : ImL → DomL ∩ KerP . The generalized inverse of L denoted by KP,Q : Y →
DomL ∩ KerP is defined by KP,Q = KP (I − Q).

Definition 2.4. Let L : Dom(L) ⊂ X → Y be a Fredholm operator, E be a metric
space, and N : E → Y be an operator. We say that N is L-compact on E if QN : E → Y
and KP,QN : E → X are compact on E.

Definition 2.5. f : [0, +∞)× R
2 → R is said to be an S-Carathéodory function if and

only if
(i) for each (u, v) ∈ R

2, t 7→ f(t, u, v) is measurable on [0, +∞);
(ii) for a.e. t ∈ [0, +∞), (u, v) 7→ f(t, u, v) is continuous on R

2;
(iii) for each r > 0, there exists ϕr(t) ∈ L1[0, +∞)∩C[0, +∞) satisfying supt≥0 |ϕr(t)| <

+∞, ϕr(t) > 0, t ∈ (0, +∞) such that

max{|u|, |v|} ≤ r impiles |f(t, (1 + tα−1)u, v)| ≤ ϕr(t), a.e. t ∈ [0, +∞).

Since the Arzela-Ascoli theorem fails to work in the space C∞, we need a modified com-
pactness criterion to prove that N is L-compact(C∞ = {x ∈ C[0, +∞), limt→+∞ x(t) exists}).

Lemma 2.6.[28] Let M ⊂ C∞ = {x ∈ C[0, +∞), limt→+∞ x(t) exists}. Then M is
relatively compact if the following conditions hold:

(i) all functions from M are uniformly bounded;
(ii) all functions from M are equicontinuous on any compact interval of [0, +∞);
(iii) all functions from M are equiconvergent at infinity, that is, for any given ε > 0,

there exists a T = T (ε) > 0 such that |f(t1) − f(t2)| < ε, for all t1, t2 > T and f ∈ M .
In this paper, we use the space X, Y defined by

X = {x ∈ C[0, +∞) : lim
t→+∞

x(t)/(1 + tα−1) exists, lim
t→+∞

Dα−1
0+ x(t) exists},

Y = {y ∈ C[0, +∞) : y ∈ L1[0, +∞), sup
t≥0

|y(t)| < +∞},

with the norm ‖x‖X = max{‖x‖0, ‖Dα−1
0+ x‖∞} and ‖y‖Y = max{‖y‖L1, ‖y‖∞} respectively,

where ‖ · ‖∞ is the supremum norm on [0, +∞) and ‖x‖0 = supt≥0 |x(t)|/(1+ tα−1), ‖y‖L1 =
∫ +∞
0

|y(s)|ds. By the standard arguments, we can prove that (X, ‖ · ‖X), (Y, ‖ · ‖Y ) are
Banach spaces.

Define L be the linear operator from DomL ∩ X to Y with

DomL = {x ∈ X : Dα
0+x ∈ L1[0, +∞) ∩ C[0, +∞), x satisfies (1.2)}

and
Lx = Dα

0+x, x ∈ DomL.

EJQTDE, 2011 No. 27, p. 3



We define N : X → Y by setting

(Nx)(t) = f(t, x(t), Dα−1
0+ x(t)).

Lemma 2.7. The operator L : Dom(L) ⊂ X → Y is a Fredholm operator of index zero.
Furthermore, the linear projector operator Q : Y → Y can be defined by

(Qy)(t) = w(t)

(
∫ +∞

0

y(s)ds − β

Γ(α)

∫ η

0

(η − s)α−1y(s)ds

)

where w(t) ∈ Y satisfy w(t) > 0 and
∫ +∞
0

w(s)ds − β

Γ(α)

∫ η

0
(η − s)α−1w(s)ds = 1 and the

linear operator Kp : ImL → DomL ∩ KerP can be written by

KP y(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds, t ∈ [0, +∞),

also

‖KP y‖X ≤ 1

Γ(α)
‖y‖L1, for all y ∈ ImL.

Proof. It is clear that KerL = {x = ctα−1 : c ∈ R}. Now we show that

ImL = {y ∈ Y :

∫ +∞

0

y(s)ds − β

Γ(α)

∫ η

0

(η − s)α−1y(s)ds = 0}. (2.1)

If y ∈ ImL, then there exists a function x ∈ DomL such that y(t) = Dα
0+x(t). By Lemma2.1,

Iα
0+y(t) = x(t) + c1t

α−1 + c2t
α−2.

By virtue of the boundary condition (1.2), we have

lim
t→+∞

Dα−1
0+ Iα

0+y(t) = βIα
0+y(η)

and therefore
∫ +∞

0

y(s)ds − β

Γ(α)

∫ η

0

(η − s)α−1y(s)ds = 0. (2.2)

On the other hand, suppose y ∈ Y and satisfies (2.2), let x(t) = Iα
0+y(t), then x(0) =

0, Dα−1
0+ x(t) =

∫ t

0
y(s)ds. Thus limt→+∞ Dα−1

0+ x(t) = βx(η). Then x ∈ DomL and Dα
0+x(t) =

y(t). That is to say, (2.1) holds.
For y ∈ Y , taking the projector

(Qy)(t) = w(t)

(
∫ +∞

0

y(s)ds − β

Γ(α)

∫ η

0

(η − s)α−1y(s)ds

)

.

It is easy to verify that the operator Q is a projector. Letting y1 = y − Qy. Then y1 ∈
ImL(since

∫ +∞
0

y1(s)ds− (β/Γ(α))
∫ η

0
(η−s)α−1y1(s)ds = 0). Hence Y = ImL+ImQ. From

y ∈ ImQ, there exists a constant c ∈ R, such that y = cw(t), and from y ∈ ImL, we obtain

c =

∫ +∞

0

cw(s)ds − β

Γ(α)

∫ η

0

(η − s)α−1cw(s)ds = 0,
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which implies ImL ∩ ImQ = {0} and Y = ImL ⊕ ImQ. Thus we have

dim KerL = dim ImQ = codim ImL = 1.

This implies that L is a Fredholm operator of index zero.
Taking P : X → X as follows:

(Px)(t) =
1

Γ(α)
Dα−1

0+ x(0)tα−1,

then the generalized inverse KP : ImL → DomL ∩ KerP can be written by

KP y(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds, t ∈ [0, +∞).

In fact, for y ∈ ImL, we have

(LKP )y(t) = Dα
0+((KP y)(t)) = y(t),

and for x ∈ DomL ∩ KerP , we know

(KPL)x(t) = (KP )Dα
0+x(t) = x(t) + c1t

α−1 + c2t
α−2,

for some c1, c2 ∈ R. In view of x ∈ DomL ∩ KerP , Dα−1
0+ x(0) = 0 and (1.2), we obtain

c1 = c2 = 0. Therefore
(KP L)x(t) = x(t).

This shows that KP = (L|DomL∩KerP
)−1.

Again from the definition of KP , we have

‖KP y‖0 = sup
t≥0

1

Γ(α)

∣

∣

∣

∣

∫ t

0

(t − s)α−1

1 + tα−1
y(s)ds

∣

∣

∣

∣

≤ 1

Γ(α)
‖y‖L1, (2.3)

and

‖Dα−1
0+ KP y‖∞ = sup

t≥0
|Dα−1

0+

1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds| = sup
t≥0

|
∫ t

0

y(s)ds| ≤ ‖y‖L1. (2.4)

It follows from (2.3) and (2.4) that

‖Kpy‖X ≤ 1

Γ(α)
‖y‖L1.

This completes the proof of Lemma 2.7.
Lemma 2.8. Let f be an S-Carathéodory function, then N is L-compact.
Proof. Obviously, QN and KP (I − Q)N are continuous. So we only need to prove the

compactness, i.e. QN and KP (I − Q)N maps bounded sets into relatively compact ones.
Suppose U ⊂ X is a bounded set. Then there exists r > 0 such that ‖x‖X ≤ r, for all

x ∈ U . Because f is an S-Carathéodory function, there exists ϕr(t) ∈ L1[0, +∞)∩C[0, +∞)
satisfying supt≥0 |ϕr(t)| < +∞, ϕr(t) > 0, t ∈ (0, +∞) such that

|f(t, x(t), Dα−1
0+ x(t))| = |f(t, (1 + tα−1)

x(t)

1 + tα−1
, Dα−1

0+ x(t))| ≤ ϕr(t), a.e. t ∈ [0, +∞).
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Then for any x ∈ U ,

‖QNx‖L1 =

∫ +∞

0

∣

∣

∣

∣

w(t)(

∫ +∞

0

f(s, x(s), Dα−1
0+ x(s)) ds

− β

Γ(α)

∫ η

0

(η − s)α−1f(s, x(s), Dα−1
0+ x(s))ds)

∣

∣

∣

∣

dt

≤
∫ +∞

0

|w(t)|dt

(
∫ +∞

0

ϕr(s)ds +
βηα−1

Γ(α)

∫ η

0

ϕr(s)ds

)

≤
(

1 +
βηα−1

Γ(α)

)

‖w‖L1‖ϕr‖L1 ,

(2.5)

and

‖QNx‖∞ = sup
t≥0

∣

∣

∣

∣

w(t)(

∫ +∞

0

f(s, x(s), Dα−1
0+ x(s)) ds

− β

Γ(α)

∫ η

0

(η − s)α−1f(s, x(s), Dα−1
0+ x(s))dt)

∣

∣

∣

∣

≤
(

1 +
βηα−1

Γ(α)

)

‖w‖∞‖ϕr‖L1 .

(2.6)

It follows from (2.5) and (2.6) that ‖QNx‖Y = max{‖QNx‖L1 , ‖QNx‖∞} ≤ (1+βηα−1

Γ(α)
)‖w‖Y ‖ϕr‖L1 .

Noting that ImQ ≃ R, we have QN is compact.
Furthermore, for any x ∈ U we have

∣

∣

∣

∣

(KP,Qx)(t)

1 + tα−1

∣

∣

∣

∣

=
1

Γ(α)

∫ t

0

(t − s)α−1

1 + tα−1

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s))

− w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ)) dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)
∣

∣

∣

∣

ds

≤ 1

Γ(α)

∫ t

0

ϕr(s)ds +
1

Γ(α)

∫ t

0

w(s)ds

(
∫ +∞

0

ϕr(τ)dτ

+
β

Γ(α)

∫ η

0

(η − τ)α−1ϕr(τ)dτ

)

≤ 1

Γ(α)
‖ϕr‖L1 +

1

Γ(α)

(

1 +
βηα−1

Γ(α)

)

‖w‖L1‖ϕr‖L1 ,

(2.7)

and

|Dα−1
0+ (KP,Qx)(t)| =

∣

∣

∣

∣

∫ t

0

(f(s, x(s), Dα−1
0+ x(s)) − w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

≤ ‖ϕr‖L1 +

(

1 +
βηα−1

Γ(α)

)

‖w‖L1‖ϕr‖L1.

(2.8)
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It follows from (2.7) and (2.8) that KP,QU is uniformly bounded. Meanwhile, for any
t1, t2 ∈ [0, T ] with T is a positive constant

∣

∣

∣

∣

(KP,Qx)(t1)

1 + tα−1
1

− (KP,Qx)(t2)

1 + tα−1
2

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t1

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s))

− w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s))

− w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t1

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

|ϕr(s) + w(s)

(
∫ +∞

0

ϕr(τ)dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1ϕr(τ)dτ)

)

ds

∣

∣

∣

∣

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

ϕr(s) + w(s)

(
∫ +∞

0

ϕr(τ)dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1ϕr(τ)dτ)

)

ds

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t1

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

∣

∣

∣

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)

∣

∣

∣

∣

ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)

∣

∣

∣

∣

ds

→ 0 as t1 → t2

(2.9)

and

|Dα−1
0+ (KP,Qx)(t1) − Dα−1

0+ (KP,Qx)(t2)|

=

∣

∣

∣

∣

∫ t2

t1

f(s, x(s), Dα−1
0+ x(s)) − w(s)

(
∫ +∞

0

ϕr(τ)dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1ϕr(τ)dτ)

)

ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t2

t1

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)ds

∣

∣

∣

∣

→ 0 as t1 → t2.

(2.10)

It follows from (2.9) and (2.10) that KP,QU is equicontinuous. From Lemma 2.6, we can see
that if KP,QU/(1+tα−1), Dα−1

0+ KP,QU are equiconvergent at infinity, then KP,QU is relatively
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compact in X. In fact, considering that the following estimate

1

Γ(α)

∫ +∞

L

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)ds <

ε

3
, (2.11)

holding for ε > 0 and some L > 0, we have

lim
t→∞

sup
s∈[0,L]

|g(t, s) − 1| ≤ lim
t→∞

g(t, L) = 0,

where g(t, s) = (t−s)α−1

1+tα−1 , s ∈ [0, L], t ∈ [L, +∞). Thus, there exists T > L such that for
t1, t2 ≥ T ,

sup
s∈[0,L]

|g(t1, s) − g(t2, s)|

≤ sup
s∈[0,L]

|g(t1, s) − 1| + sup
s∈[0,L]

|g(t2, s) − 1|

<
ε

3

(

‖ϕr‖L1(1 + ‖w‖L1(1 +
βηα−1

Γ(α)
))

)−1

.

(2.12)

Therefore, it follows from (2.11) and (2.12) that for t1, t2 ≥ T , we get
∣

∣

∣

∣

(KP,Qx)(t1)

1 + tα−1
1

− (KP,Qx)(t2)

1 + tα−1
2

∣

∣

∣

∣

≤ 1

Γ(α)

∫ L

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s))

− w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

+
1

Γ(α)

∫ t1

L

(t1 − s)α−1

1 + tα−1
1

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s)) − w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

+
1

Γ(α)

∫ t2

L

(t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s)) − w(s)

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)

ds

∣

∣

∣

∣

≤ ε

3

(
∫ L

0

|f(s, x(s), Dα−1
0+ x(s))| + w(s)

∣

∣

∣

∣

(
∫ +∞

0

f(τ, x(τ), Dα−1
0+ x(τ))dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1f(τ, x(τ), Dα−1
0+ x(τ))dτ)

)
∣

∣

∣

∣

ds

) (

‖ϕr‖L1(1 + ‖w‖L1(1 +
βηα−1

Γ(α)
))

)−1

+
1

Γ(α)

∫ t1

L

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)ds

+
1

Γ(α)

∫ t2

L

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)ds

≤ ε
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and

|Dα−1
0+ (KP,Qx)(t1) − Dα−1

0+ (KP,Qx)(t2)|

≤
∫ max{t1,t2}

min{t1,t2}

∣

∣

∣

∣

f(s, x(s), Dα−1
0+ x(s)) − w(s)

(
∫ +∞

0

ϕr(τ)dτ

− β

Γ(α)

∫ η

0

(η − τ)α−1ϕr(τ)dτ)

)
∣

∣

∣

∣

ds

≤
∫ +∞

L

ϕr(s) + w(s)‖ϕr‖L1(1 +
βηα−1

Γ(α)
)ds

≤ ε.

So we complete the proof.
The following fixed point theorem due to Mawhin is fundamental in the proofs of our

main results.
Lemma 2.9.[36] Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index

zero and N be L-compact on Ω. Assume that the following conditions are satisfied:
(i) Lx 6= λNx for every (x, λ) ∈ (DomL\KerL) ∩ ∂Ω) × (0, 1);
(ii) Nx ∈/ImL for every x ∈KerL ∩ ∂Ω;

(iii) deg(JQN |KerL∩∂Ω, Ω ∩ KerL, 0)6= 0, with Q : Y → Y a continuous projector such
that KerQ=ImL and J :ImQ →KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution in DomL ∩ Ω.

3 Main results

In this section, we present our main results and prove them.
Theorem 3.1. Assume that f is an S-Carathéodory function and the following condi-

tions are satisfied:
(H1) There exist functions a, b, c ∈ L1[0, +∞) such that

|f(t, u, v)| ≤ a(t)|u| + b(t)|v| + c(t), a.e. t ∈ [0, +∞) and all (u, v) ∈ R
2 (3.1)

and

‖a‖1 =

∫ +∞

0

a(s)(1 + tα−1)ds < +∞;

(H2) There exists constant A > 0 such that for x ∈ DomL, if |Dα−1
0+ x(t)| > A for all

t ∈ [0, +∞), then

∫ +∞

0

f(s, x(s), Dα−1
0+ x(s))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, x(s), Dα−1
0+ x(s))ds 6= 0;

(H3) There exists constant B > 0 such that for all c ∈ R with |c| > B, either

c

(
∫ +∞

0

f(s, csα−1, cΓ(α))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, csα−1, cΓ(α))ds

)

< 0 (3.2)
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or else

c

(
∫ +∞

0

f(s, csα−1, cΓ(α))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, csα−1, cΓ(α))ds

)

> 0. (3.3)

Then the BVP (1.1), (1.2) has at least one solution provided that

2

Γ(α)
‖a‖1 +

2

Γ(α)
‖b‖L1 < 1.

Proof. We construct an open bounded set Ω ⊂ X that satisfies the assumption of
Lemma 2.9. Let

Ω1 = {x ∈ DomL\KerL : Lx = λNx, for some λ ∈ [0, 1]}.

For x ∈ Ω1, we have x ∈/KerL, λ 6= 0 and Nx ∈ ImL. Note that KerQ = ImL and, thus,

∫ +∞

0

f(s, x(s), Dα−1
0+ x(s))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, x(s), Dα−1
0+ x(s))ds = 0

since QNx = 0. It follows from (H2) that there exists t0 ∈ [0, +∞) such that |Dα−1
0+ x(t0)| ≤

A. In view of Dα−1
0+ x(0) = Dα−1

0+ x(t0) −
∫ t0

0
Dα

0+x(t)dt, we have

|Dα−1
0+ x(0)| ≤ A + ‖Dα

0+x‖L1 = A + ‖Lx‖L1 ≤ A + ‖Nx‖L1 . (3.4)

Again for x ∈ Ω1, x ∈ DomL\KerL, then (I − P )x ∈ DomL ∩ KerP and LPx = 0, thus
from Lemma 2.7, we have

‖(I − P )x‖X = ‖KPL(I − P )x‖X ≤ 1

Γ(α)
‖L(I − P )x‖L1

=
1

Γ(α)
‖Lx‖L1 ≤ 1

Γ(α)
‖Nx‖L1 .

(3.5)

From (3.4), (3.5), we have

‖x‖X ≤ ‖Px‖X + ‖(I − P )x‖X ≤ A

Γ(α)
+

2

Γ(α)
‖Nx‖L1 . (3.6)

If (3.6) holds, from (3.1), we have

‖x‖X ≤ A

Γ(α)
+

2

Γ(α)
(‖a‖1‖x‖0 + ‖b‖L1‖Dα−1

0+ x‖∞ + ‖c‖L1). (3.7)

Thus from ‖x‖0 ≤ ‖x‖X and (3.7), we have

‖x‖0 ≤
1

1 − 2
Γ(α)

‖a‖1

(
A

Γ(α)
+

2

Γ(α)
(‖b‖L1‖Dα−1

0+ x‖∞ + ‖c‖L1)). (3.8)

Again from (3.7), (3.8) and ‖Dα−1
0+ x‖∞ ≤ ‖x‖X we obtain

‖Dα−1
0+ x‖∞ ≤ 1

1 − 2
Γ(α)

‖a‖1 − 2
Γ(α)

‖b‖L1

(
A

Γ(α)
+

2

Γ(α)
‖c‖L1). (3.9)
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It follows from (3.8) and (3.9) that, there exists an M > 0 such that ‖x‖X ≤ M for all
x ∈ Ω1, that is, Ω1 is bounded.

Let
Ω2 = {x ∈ KerL : Nx ∈ ImL}.

For x ∈ Ω2, x ∈ KerL implies that x can be expressed by x = ctα−1, where c is an arbitrary
constant, and QNx = 0, thus

w(t)

(
∫ +∞

0

f(s, csα−1, cΓ(α))ds − 1

Γ(α)

∫ η

0

(η − s)α−1f(s, csα−1, cΓ(α))ds

)

= 0.

It follows from (H2) that, we get ‖x‖X ≤ 1
Γ(α)

|c| ≤ 1
Γ(α)

A. So Ω2 is bounded too.
We define the isomorphism J : ImQ → KerL by

J(cw(t)) = ctα−1, c ∈ R.

If the first part of (H3) is fulfilled, we set

Ω3 = {x ∈ KerL : −λJ−1x + (1 − λ)QNx = 0}.

For every x = ctα−1 ∈ Ω3, one has λJ−1x = (1 − λ)QNx,

λcw(t) = (1−λ)w(t)

(
∫ +∞

0

f(s, csα−1, cΓ(α))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, csα−1, cΓ(α))ds

)

.

If λ = 1, then c = 0 and, if |c| > B, in view of (3.2), one has

λc2w(t) = (1−λ)w(t)c

(
∫ +∞

0

f(s, csα−1, cΓ(α))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, csα−1, cΓ(α))ds

)

< 0,

which contradicts λc2w(t) > 0. If the other part of (H3) is satisfied, we take

Ω3 = {x ∈ KerL : λJ−1x + (1 − λ)QNx = 0}

and, again, obtain a contradiction. Thus, in ether case ‖x‖X ≤ ( 1
Γ(α)

+ 1)|c| ≤ ( 1
Γ(α)

+ 1)B,
that is, Ω3 is bounded.

In what follows, we shall prove that all conditions of Lemma 2.9 are satisfied. Set Ω be
a bounded open subset of X such that ∪3

i=1Ωi ⊂ Ω. we know that L is a Fredholm operator
of index zero and N is L-compact on Ω. By the definition of Ω, we have
(i)Lx 6= λNx for every (x, λ) ∈ (DomL\KerL) ∩ ∂Ω) × (0, 1);
(ii) Nx ∈/ImL, for every x ∈ KerL ∩ ∂Ω.
At last we will prove that (iii) of Lemma 2.9 is satisfied. To this end, let

H(x, λ) = ±λIdx + (1 − λ)JQNx,

where Id is the identical operator. By virtue of the definition of Ω, we know Ω ⊃ Ω3, thus
H(x, λ) 6= 0 for x ∈ KerL ∩ ∂Ω, then by homotopy property of degree, we get

deg(JQN |KerL∩∂Ω
, Ω ∩ KerL, 0) = deg(H(·, 0), Ω ∩ KerL, 0)

= deg(H(·, 1), Ω ∩ KerL, 0)

= deg(±Id, Ω ∩ KerL, 0)

= ±1 6= 0.
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So, the third assumption of Lemma 2.9 is fulfilled and Lx = Nx has at least one solution
in DomL ∩ Ω. The proof is complete.

Corollary 3.2. Assume that f is an S-Carathéodory function and the conditions (H1)
and (H3) in Theorem 3.1 are satisfied with (H2) replaced with

(H
′

2): There exist functions l, m ∈ L1[0, +∞) with l(t), m(t) ≥ 0 and l(t) ≡/0 such that

f(t, u, v) ≥ l(t)|v| − m(t).

Then the BVP (1.1) and (1.2) has at least one solution provided that

2

Γ(α)
‖a‖1 +

2

Γ(α)
‖b‖L1 < 1.

Proof. We only need to prove that the hypothesis (H
′

2) implies the hypothesis (H2) in
Theorem 3.1.

In fact, setting

A = 2‖m‖L1

(
∫ η

0

(1 − β

Γ(α)
(η − s)α−1)l(s)ds +

∫ +∞

η

l(s)ds

)−1

,

we have
∫ +∞

0

f(s, x(s), Dα−1
0+ x(s))ds − β

Γ(α)

∫ η

0

(η − s)α−1f(s, x(s), Dα−1
0+ x(s))ds

=

∫ η

0

(1 − β

Γ(α)
(η − s)α−1)f(s, x(s), Dα−1

0+ x(s))ds +

∫ +∞

η

f(s, x(s), Dα−1
0+ x(s))ds

>

∫ η

0

(1 − β

Γ(α)
(η − s)α−1)(l(s)A − m(s))ds +

∫ +∞

η

(l(s)A − m(s))ds

= 2‖m‖L1 −
∫ η

0

(1 − β

Γ(α)
(η − s)α−1)(m(s)ds −

∫ +∞

η

m(s)ds ≥ 0.

Therefore, the hypothesis (H2) in Theorem 3.1 is satisfied and the conclusion of the corollary
follows from Theorem 3.1.

To illustrate how our main results can be used in practice we present an example.
Example 3.1. Consider the following boundary value problem

D
3

2

0+x(t) =

√
π

8
e−t(3 sin(x2(t) + D

1

2

0+x(t)) + D
1

2

0+x(t)), (3.10)

x(0) = 0, lim
t→+∞

D
1

2

0+x(t) =
√

πx(
1

4
). (3.11)

Conclusion. The BVP (3.10), (3.11) has at least one solution in X = {x ∈ C[0, +∞) :

limt→+∞ x(t)/(1 +
√

t) exists, limt→+∞ D
1

2

0+x(t) exists}.
Proof. Let α = 3

2
, β =

√
π, η = 1

4
, it is easily to see Γ(α) = βη

1

2 , that is, the BVP

(3.10), (3.11) is a resonance problem. And let f(t, u, v) =
√

π

8
e−t(3 sin(u2 + v) + v), then we

have

|f(t, u, v)| ≤
√

π

8
e−t(3 + |v|).
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Setting a(t) = 0, b(t) =
√

π

8
e−t, c(t) = 3

√
π

8
e−t. Obviously (H2) is fulfilled as well as the

conditions
2

Γ(3
2
)
‖a‖1 +

2

Γ(3
2
)
‖b‖L1 =

1

2
< 1.

Now taking A = 4, for any x ∈ X, assuming |D
1

2

0+x(t)| > 4 holds for t ∈ [0, +∞), from

the condition of (H2), we have either D
1

2

0+x(t) > A or D
1

2

0+x(t) < −A holds for t ∈ [0, +∞).

If D
1

2

0+x(t) > A holds, for t ∈ [0, +∞), then

QNx = w(t)

(
∫ +∞

0

√
π

8
e−s(3 sin(x2(s) + D

1

2

0+x(s)) + D
1

2

0+x(s))ds

−2

∫ 1

4

0

(
1

4
− s)

1

2

√
π

8
e−s(3 sin(x2(s) + D

1

2

0+x(s)) + D
1

2

0+x(s))ds

)

> w(t)

∫ +∞

1

4

8e−sds(A − 3) > 0,

and if D
1

2

0+x(t) < −A holds, for t ∈ [0, +∞), then

QNx = w(t)

(
∫ +∞

0

√
π

8
e−s(3 sin(x2(s) + D

1

2

0+x(s)) + D
1

2

0+x(s))ds

−2

∫ 1

4

0

(
1

4
− s)

1

2

√
π

8
e−s(3 sin(x2(s) + D

1

2

0+x(s)) + D
1

2

0+x(s))ds

)

< w(t)

∫ +∞

1

4

8e−sds(3 − A) < 0.

Thus the condition (H1) holds.
It is easy to see that for all c > 0, we have

c

(
∫ +∞

0

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

−2

∫ 1

4

0

(
1

4
− s)

1

2

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

)

> c

(√
π

2
c − 3

)
∫ +∞

1

4

√
π

8
e−sds

and for all c < 0, we have

c

(
∫ +∞

0

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

−2

∫ 1

4

0

(
1

4
− s)

1

2

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

)

> c

(√
π

2
c + 3

)
∫ +∞

1

4

√
π

8
e−sds.
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Hence the second inequality in (H3) becomes

c

(
∫ +∞

0

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

−2

∫ 1

4

0

(
1

4
− s)

1

2

√
π

8
e−s(3 sin(c2s + c

√
π

2
) + c

√
π

2
)ds

)

> min{c
(√

π

2
c − 3

)

, c

(√
π

2
c + 3

)

}
∫ +∞

1

4

√
π

8
e−sds > 0

and is satisfied for all c with |c| > 6√
π
. So the condition (H3) holds. Thus, Theorem

3.1 implies BVP (3.10) and (3.11) has at least one solution in X = {x ∈ C[0, +∞) :

limt→+∞ x(t)/(1 +
√

t) exists, limt→+∞ D
1

2

0+x(t) exists}.
Remark 1. Example implies that there is a large number of functions that satisfy the

conditions of Theorem 3.1. In addition, the conditions of Theorem 3.1 also easy to check.
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