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Abstract. In this paper, we study the minimizing problem

Sp,1,α,µ := inf
u∈W1,p(RN)\{0}

∫
RN |∇u|pdx− µ

∫
RN
|u|p
|x|p dx(∫

RN

∫
RN
|u(x)|p∗α |u(y)|p∗α

|x−y|α dxdy
) p

2·p∗α

,

where N > 3, p ∈ (1, N), µ ∈
[
0,
(N−p

p
)p), α ∈ (0, N) and p∗α = p

2
( 2N−α

N−p
)

is the Hardy–
Littlewood–Sobolev upper critical exponent. Firstly, by using refinement of the Hardy–
Littlewood–Sobolev inequality, we prove that Sp,1,α,µ is achieved in RN by a radially
symmetric, nonincreasing and nonnegative function. Secondly, we give a estimation of
extremal function.

Keywords: refinement of Hardy–Littlewood–Sobolev inequality, Hardy–Littlewood–
Sobolev upper critical exponent, p-Laplacian, minimizing.
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1 Introduction

In this paper, we consider the minimizing problem:

Sp,1,α,µ := inf
u∈W1,p(RN)\{0}

∫
RN |∇u|pdx− µ

∫
RN
|u|p
|x|p dx(∫

RN

∫
RN
|u(x)|p∗α |u(y)|p∗α
|x−y|α dxdy

) p
2·p∗α

, (P)

where N > 3, p ∈ (1, N), µ ∈
[
0,
(N−p

p

)p), α ∈ (0, N) and p∗α = p
2

( 2N−α
N−p

)
is the Hardy–

Littlewood–Sobolev upper critical exponent.
The paper was motivated by some papers appeared in recent years. For p = 2, problem

(P) is closely related to the nonlinear Choquard equation as follows:

− ∆u + V(x)u = (|x|α ∗ |u|q) |u|q−2u, in RN , (1.1)
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where α ∈ (0, N) and 2N−α
N 6 q 6 2N−α

N−2 . For q = 2 and α = 1, the equation (1.1) goes
back to the description of the quantum theory of a polaron at rest by Pekar in 1954 [19] and
the modeling of an electron trapped in its own hole in 1976 in the work of Choquard, as a
certain approximation to Hartree–Fock theory of one-component plasma [20]. For q = 2N−1

N−2
and α = 1, by using the Green function, it is obvious that equation (1.1) can be regarded as a
generalized version of Schrödinger–Newton system:{

−∆u + V(x)u = |u| N+1
N−2 φ, in RN ,

−∆φ = |u| 2N−1
N−2 , in RN .

The existence and qualitative properties of solutions of Choquard type equations (1.1) have
been widely studied in the last decades (see [16]). Moroz and Van Schaftingen [15] considered
equation (1.1) with lower critical exponent 2N−α

N if the potential 1−V(x) should not decay to
zero at infinity faster than the inverse of |x|2. In [1], the authors studied the equation (1.1)
with critical growth in the sense of Trudinger–Moser inequality and studied the existence
and concentration of the ground states. In 2018, Gao and Yang [11] firstly investigated the
following critical Choquard equation:

−∆u =

(∫
RN

|u|2∗α
|x− y|α dy

)
|u|2∗α−2u + λu, in Ω, (1.2)

where Ω is a bounded domain of RN with Lipschitz boundary, N > 3, α ∈ (0, N), λ > 0
and 2∗α = 2N−α

N−2 . By using variational methods, they established the existence, multiplicity and
nonexistence of nontrivial solutions to equation (1.2). In 2017, Mukherjee and Sreenadh [17]
considered the following fractional Choquard equation:

(−∆)su =

(∫
RN

|u|2∗α,s

|x− y|α dy
)
|u|2∗α,s−2u + λu, in Ω, (1.3)

where Ω is a bounded domain of RN with C1,1 boundary, s ∈ (0, 1), N > 2s, α ∈ (0, N),
λ > 0 and 2∗α,s = 2N−α

N−2s is the critical exponent in the sense of Hardy–Littlewood–Sobolev
inequality. By using variational methods, they established the existence, multiplicity and
nonexistence of nontrivial solutions to equation (1.3). For details and recent works, we refer
to [2, 6, 7, 12, 23–26, 30] and the references therein.

For p 6= 2, in 2017, Pucci, Xiang and Zhang [22] studied the Schrödinger–Choquard–
Kirchhoff equations involving the fractional p-Laplacian as follows:

(a + b‖u‖p(θ−1)
s )[(−∆)s

pu + V(x)|u|p−2u] = λ f (x, u)

+

(∫
RN

|u|p∗α,s

|x− y|α dy
)
|u|p∗α,s−2u in RN ,

(1.4)

where ‖u‖s =
( ∫

RN

∫
RN
|u(x)−u(y)|p
|x−y|N+ps dxdy +

∫
RN V(x)|u|pdx

)
, a, b ∈ R+

0 with a + b > 0, λ > 0 is

a parameter, s ∈ (0, 1), N > ps, θ ∈
[
1, N

N−ps

)
, α ∈ (0, N), p∗α,s =

p(2N−α)
2(N−sp) is the critical exponent

in the sense of Hardy–Littlewood–Sobolev inequality, and f : RN → R is a Carathéodory
function, V : RN → R+ is a potential function. By using variational methods, they established
the existence of nontrivial nonnegative solution to equation (1.4).

There is an open problem in [22]. We define the best constant:

Sp,s,α,µ := inf
u∈Ws,p(RN)\{0}

∫
RN

∫
RN
|u(x)−u(y)|p
|x−y|N+ps dxdy− µ

∫
RN

|u|p
|x|ps dx(∫

RN

∫
RN
|u(x)|p∗α,s |u(y)|p∗α,s

|x−y|α dxdy
) p

2·p∗α,s

, (1.5)
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where N > 3, p ∈ (1, N), s ∈ (0, 1], α ∈ (0, N) and µ ∈ [0, CN,s,p), CN,s,p is defined in [9,

Theorem 1.1]. And p∗α,s =
p(2N−α)
2(N−sp) is the critical exponent in the sense of Hardy–Littlewood–

Sobolev inequality.

Open problem: Is the best constant Sp,s,α,µ achieved?
(Result 1) For p = 2, s = 1, µ = 0 and α ∈ (0, N), Gao and Yang [11] showed that S2,1,α,0 is
achieved in RN by the extremal function:

wσ(x) = C1σ−
N−2

2 w(x), w(x) =
b1

(b2
1 + |x− a1|2)

N−2
2

,

where C1 > 0 is a fixed constant, a1 ∈ RN and b1 ∈ (0, ∞).
(Result 2) For p = 2, s ∈ (0, 1), µ = 0 and α ∈ (0, N), Mukherjee and Sreenadh [17] proved
that S2,s,α,0 is achieved in RN by the extremal function:

wσ(x) = C2σ−
N−2s

2 w(x), w(x) =
b2

(b2
2 + |x− a2|2)

N−2s
2

,

where C2 > 0 is a fixed constant, a2 ∈ RN and b2 ∈ (0, ∞).

(Result 3) For p = 2, s ∈ (0, 1), µ ∈
[
0, 4s Γ2( N+2s

4 )

Γ2( N−2s
4 )

)
and α ∈ (0, N), Yang and Wu [34] showed

that S2,s,α,µ is achieved in RN .
For Open problem, we study the case of p ∈ (1, N), s = 1, µ ∈

[
0,
(N−p

p

)p) and α ∈ (0, N).
By using the refinement of Sobolev inequality in [18, Theorem 2], we show that Sp,1,α,µ is
achieved in RN (see Theorem 1.1).

For the case p 6= 2, one expects that the minimizers of Sp,s,α,µ have a form similar to the
function ωσ. However, it is not known the explicit formula of the extremal function. We give
the estimation of extremal function (see Theorem 1.2 and Theorem 1.3).

The first main result of this paper reads as follows.

Theorem 1.1. Let N > 3, p ∈ (1, N), α ∈ (0, N) and µ ∈
[
0,
(N−p

p

)p). Then Sp,1,α,µ is achieved in
RN by a radially symmetric, nonincreasing and nonnegative function.

The second main result of this paper reads as follows. For p = 2 and s ∈ (0, 1), by using
fractional Coulomb–Sobolev space and endpoint refined Sobolev inequality in [4], we give a
estimation of extremal function.

Theorem 1.2. Let N > 3, p = 2, α ∈ (0, N), s ∈ (0, 1) and µ ∈ [0, µ̄). Any nonnegative minimizer
u of S2,s,α,µ is radially symmetric and nonincreasing, and it satisfies for x 6= 0 that

C4

((
µ̄

µ̄− µ

)
S2,s,α,µ

) (N−α)(N−2s)
2N(N+2s−α)

(
N

ωN−1

) N−2s
2N 1

|x| N−2s
2

> u(x),

where ωN−1 is the area of the unit sphere in RN .

The third main result of this paper reads as follows. For p 6= 2 and s = 1, we give a
estimation of extremal function.

Theorem 1.3. Let N > 3, p ∈ (1, N), α ∈ (0, N) and µ ∈ [0, µ̃). Any nonnegative minimizer u of
Sp,1,α,µ is radially symmetric and nonincreasing, and it satisfies for x 6= 0 that(

2αN2

ω2
N−1

) 1
2·p∗α 1

|x|
N−p

p

> u(x),

where ωN−1 is the area of the unit sphere in RN .
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2 Preliminaries

The Sobolev space W1,p(RN) is the completion of C∞
0 (RN) with respect to the norm

‖u‖p
W =

∫
RN
|∇u|pdx.

For s ∈ (0, 1) and p ∈ (1, N), the fractional Sobolev space Ws,p(RN) is defined by

Ws,p(RN) :=
{

u ∈ L
Np

N−sp (RN)

∣∣∣∣ ∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+ps dxdy < ∞

}
.

For s ∈ (0, 1) and p ∈ (1, N), we introduce the Hardy inequalities:

µ̄
∫

RN

|u|2
|x|2s dx 6

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy, for any u ∈Ws,2(RN) and µ̄ = 4s Γ2(N+2s

4 )

Γ2(N−2s
4 )

,

and

µ̃
∫

RN

|u|p
|x|p dx 6

∫
RN
|∇u|pdx, for any u ∈W1,p(RN) and µ̃ =

(
N − p

p

)p

.

The fractional Coulomb–Sobolev space [4] is defined by

E s,α,2∗α,s(RN) =

{∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy < ∞

and
∫

RN

∫
RN

|u(x)|2∗α,s |u(y)|2∗α,s

|x− y|α dxdy < ∞
}

.
(2.1)

We endow the space E s,α,2∗α,s(RN) with the norm

‖u‖2
E ,α =

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy +

(∫
RN

∫
RN

|u(x)|2∗α,s |u(y)|2∗α,s

|x− y|α dxdy
) 1

2∗α,s
. (2.2)

We could define the best constant:

Sp,1,0,µ := inf
u∈W1,p(RN)\{0}

‖u‖p
W − µ

∫
RN
|u|p
|x|p dx

(
∫

RN |u|p∗dx)
p

p∗
, (2.3)

where Sp,1,0,µ is attained in RN (see [8]).

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality, [14]). Let t, r > 1 and 0 < µ < N with
1
t +

1
r +

µ
N = 2, f ∈ Lt(RN) and h ∈ Lr(RN). There exists a sharp constant C2 > 0, independent of

f , g such that ∫
RN

∫
RN

| f (x)||h(y)|
|x− y|µ dxdy 6 C2‖ f ‖t‖h‖r.

A measurable function u : RN → R belongs to the Morrey space ‖u‖Lr,v(RN) with r ∈ [1, ∞)

and v ∈ (0, N] if and only if

‖u‖r
Lr,v(RN) = sup

R>0,x∈RN
Rv−N

∫
B(x,R)

|u(y)|rdy < ∞.
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Lemma 2.2 ([18]). For any 1 < p < N, let p∗ = Np
N−p . There exists C3 > 0 such that for θ and ϑ

satisfying p
p∗ 6 θ < 1, 1 6 ϑ < p∗ = Np

N−p , we have

(∫
RN
|u|p∗dx

) 1
p∗

6 C3‖u‖θ
W‖u‖1−θ

Lϑ, ϑ(N−p)
p (RN)

,

for any u ∈W1,p(RN).

Lemma 2.3 (Endpoint refined Sobolev inequality, [4, Theorem 1.2]). Let α ∈ (0, N) and s ∈
(0, 1). Then there exists a constant C4 > 0 such that the inequality

‖u‖
L

2N
N−2s (RN)

6 C4

(∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

) (N−α)(N−2s)
2N(N+2s−α)

×
(∫

RN

∫
RN

|u(x)| 2N−α
N−2s |u(y)| 2N−α

N−2s

|x− y|α dxdy

) s(N−2s)
N(N+2s−α)

,

holds for all u ∈ E s,α,2∗α,s(RN).

3 The proof of Theorem 1.1

We show the refinement of the Hardy–Littlewood–Sobolev inequality. This inequality plays a
key role in the proof of Theorem 1.1.

Lemma 3.1. For any 1 < p < N and α ∈ (0, N), there exists C5 > 0 such that for θ and ϑ satisfying
p
p∗ 6 θ < 1, 1 6 ϑ < p∗ = Np

N−p , we have

(∫
RN

∫
RN

|u(x)|p∗α |u(y)|p∗α
|x− y|α dxdy

) 1
p∗α

6 C5‖u‖2θ
W‖u‖

2(1−θ)

Lϑ, ϑ(N−p)
p (RN)

,

for any u ∈W1,p(RN).

Proof. By using Lemma 2.2, we have

(∫
RN
|u|p∗dx

) 1
p∗

6 C3‖u‖θ
W‖u‖1−θ

Lϑ, ϑ(N−p)
p (RN)

. (3.1)

By the Hardy–Littlewood–Sobolev inequality and (3.1), we obtain

(∫
RN

∫
RN

|u(x)|p∗α |u(y)|p∗α
|x− y|α dxdy

) 1
p∗α

6C
1

p∗α
2 ‖u‖

2
Lp∗ (RN)

6 C
1

p∗α
2 C2

3‖u‖2θ
W‖u‖

2(1−θ)

Lϑ, ϑ(N−p)
p (RN)

.

In [18], there is a misprint, the authors point out it by themselves. The right one is

Lp∗(RN) ↪→ Lr,r N−p
p (RN) (3.2)

for any p ∈ (1, N) and r ∈ [1, p∗). This embedding plays a key role in the proof of Theorem 1.1.
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Proof of Theorem 1.1.
Step 1. Suppose now 0 6 µ < µ̃ =

(N−p
p

)p. Applying Lemma 3.1 with ϑ = p, we have

(∫
RN

∫
RN

|u(x)|p∗α |u(y)|p∗α
|x− y|α dxdy

) 1
p∗α

6 C
(
‖u‖p

W − µ
∫

RN

|u|p
|x|p dx

) 2θ
p

‖u‖2(1−θ)

Lp,N−p(RN)
, (3.3)

for u ∈W1,p(RN). Let {un} be a minimizing sequence of Sp,1,α,µ, that is

‖un‖p
W − µ

∫
RN

|un|p
|x|p dx → Sp,1,α,µ, as n→ ∞,

and ∫
RN

∫
RN

|un(x)|p∗α |un(y)|p
∗
α

|x− y|α dxdy = 1.

Inequality (3.3) enables us to find C > 0 independent of n such that

‖un‖Lp,N−p(RN) > C > 0. (3.4)

We have the chain of inclusions

W1,p(RN) ↪→ Lp∗(RN) ↪→ Lp,N−p(RN), (3.5)

which implies that

‖un‖Lp,N−p(RN) 6 C. (3.6)

Applying (3.4) and (3.6), there exists C > 0 such that

0 < C 6 ‖un‖Lp,N−p(RN) 6 C−1.

Combining the definition of Morrey space and above inequalities, for all n ∈ N, we get the
existence of λn > 0 and xn ∈ RN such that

1
λ

p
n

∫
B(xn,λn)

|un(y)|pdy > ‖un‖p
Lp,N−p(RN)

− C
2n

> C̃ > 0,

for some new positive constant C̃ that does not depend on n.

Let vn(x) = λ
N−p

p
n un(λnx). Notice that, by using the scaling invariance, we have

‖vn‖p
W − µ

∫
RN

|vn|p
|x|p dx → Sp,1,α,µ, as n→ ∞,

and ∫
RN

∫
RN

|vn(x)|p∗α |vn(y)|p
∗
α

|x− y|α dxdy = 1.

Then ∫
B( xn

λn ,1)
|vn(y)|pdy =

1
λ

p
n

∫
B(xn,λn)

|un(y)|pdy > C̃ > 0.
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We can also show that vn is bounded in W1,p(RN). Hence, we may assume

vn ⇀ v in W1,p(RN), vn → v a.e. in RN , vn → v in Lq
loc(R

N) for all q ∈ [p, p∗).

We claim that { xn
λn
} is uniformly bounded in n. Indeed, for any 0 < β < p, by Hölder’s

inequality, we observe that

0 < C̃ 6
∫

B( xn
λn ,1)
|vn|pdy =

∫
B( xn

λn ,1)
|y|

pβ
p(N−β)

N−p
|vn|p

|y|
pβ

p(N−β)
N−p

dy

6

(∫
B( xn

λn ,1)
|y|

β(N−p)
p−β dy

)1− N−p
N−β

∫
B( xn

λn ,1)

|vn|
p(N−β)

N−p

|y|β
dy


N−p
N−β

.

By the rearrangement inequality, see [14, Theorem 3.4], we have∫
B( xn

λn ,1)
|y|

β(N−p)
p−β dy 6

∫
B(0,1)

|y|
β(N−p)

p−β dy 6 C.

Therefore,

0 < C 6
∫

B( xn
λn ,1)

|vn|
p(N−β)

N−p

|y|β
dy. (3.7)

Now, suppose on the contrary, that xn
λn
→ ∞ as n → ∞. Then, for any y ∈ B

( xn
λn

, 1
)
, we have

|y| > | xn
λn
| − 1 for n large. Thus,

∫
B( xn

λn ,1)

|vn|
p(N−β)

N−p

|y|β
dy 6

1
(| xn

λn
| − 1)β

∫
B( xn

λn ,1)
|vn|

p(N−β)
N−p dy

6

∣∣∣B( xn
λn

, 1)
∣∣∣ β

N

(| xn
λn
| − 1)β

(∫
B( xn

λn ,1)
|vn|

Np
N−p dy

) N−β
N

6

∣∣∣B( xn
λn

, 1)
∣∣∣ β

N

(| xn
λn
| − 1)β

·
‖vn‖

N−β
N

W

S
N−β
N−p
p,1,0,0

6
C

(| xn
λn
| − 1)β

→ 0 as n→ ∞,

which contradicts (3.7). Hence, { xn
λn
} is bounded, and there exists R > 0 such that∫

B(0,R)
|vn(y)|pdy >

∫
B( xn

λn ,1)
|vn(y)|pdy > C̃ > 0.

Since the embedding W1,p(RN) ↪→ Lq
loc(R

N) q ∈ [p, p∗) is compact, we deduce that∫
B(0,R)

|v(y)|pdy > C̃ > 0,

which means v 6≡ 0.
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Step 2. Set

h(t) = t
2·p∗α

p , t > 0 (1 < p < N).

Since p ∈ (1, N) and α ∈ (0, N), we get

2 · p∗α
p

=
2N − α

N − p
> 1 and N + p− α > 0.

We know that

h′′(t) =
(2N − α)(N + p− α)

(N − p)2 t
2p−α
N−p > 0,

which implies that h(t) is a convex function. By using h(0) = 0 and l ∈ [0, 1], we know

h(lt) = h(lt + (1− l) · 0) 6 lh(t) + (1− l)h(0) = lh(t). (3.8)

For any t1, t2 ∈ [0, ∞), applying last inequality with l = t1
t1+t2

and l = t2
t1+t2

, we get

h(t1) + h(t2) = h
(
(t1 + t2)

t1

t1 + t2

)
+ h

(
(t1 + t2)

t2

t1 + t2

)
6

t1

t1 + t2
h (t1 + t2) +

t2

t1 + t2
h (t1 + t2) (by (3.8))

= h (t1 + t2) .

(3.9)

Now, we claim that vn → v strongly in W1,p(RN). Set

K(u, v) =
∫

RN
|∇u|p−2∇u∇vdx− µ

∫
RN

|u|p−2uv
|x|p dx.

Since {vn} is a minimizing sequence,

lim
n→∞

K(vn, vn) = Sp,1,α,µ.

By using Brézis–Lieb type lemma [5] and [22, Theorem 2.3], we know

K(v, v) + lim
n→∞

K(vn − v, vn − v) = lim
n→∞

K(vn, vn) + o(1) = Sp,1,α,µ + o(1), (3.10)

and ∫
RN

∫
RN

|vn(x)|p∗α |vn(y)|p
∗
α

|x− y|α dxdy−
∫

RN

∫
RN

|vn(x)− v(x)|p∗α |vn(y)− v(y)|p∗α
|x− y|α dxdy

=
∫

RN

∫
RN

|v(x)|p∗α |v(y)|p∗α
|x− y|α dxdy + o(1),

(3.11)

where o(1) denotes a quantity that tends to zero as n→ ∞. Therefore,

1 = lim
n→∞

∫
RN

∫
RN

|vn(x)|p∗α |vn(y)|p
∗
α

|x− y|α dxdy

= lim
n→∞

∫
RN

∫
RN

|vn(x)− v(x)|p∗α |vn(y)− v(y)|p∗α
|x− y|α dxdy

+
∫

RN

∫
RN

|v(x)|p∗α |v(y)|p∗α
|x− y|α dxdy

6 S
− 2·p∗α

p
p,1,α,µ

(
lim
n→∞

K(vn − v, vn − v)
) 2·p∗α

p
+ S

− 2·p∗α
p

p,1,α,µ (K(v, v))
2·p∗α

p

6 S
− 2·p∗α

p
p,1,α,µ

(
lim
n→∞

K(vn − v, vn − v) + K(v, v)
) 2·p∗α

p
(by (3.9))

6 1 (by (3.10)).
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Therefore, all the inequalities above have to be equalities. We know that

(
lim
n→∞

K(vn − v, vn − v)
) 2·p∗α

p
+ (K(v, v))

2·p∗α
p =

(
lim
n→∞

K(vn − v, vn − v) + K(v, v)
) 2·p∗α

p
. (3.12)

We show that limn→∞ K(vn − v, vn − v) = 0. Combining (3.9) and (3.12), we know that

either lim
n→∞

K(vn − v, vn − v) = 0 or K(v, v) = 0.

Since v 6≡ 0, so K(v, v) 6= 0. Therefore,

lim
n→∞

K(vn − v, vn − v) = 0. (3.13)

This implies that vn → v strongly in W1,p(RN). Moreover, we get

lim
n→∞

∫
RN

∫
RN

|vn(x)− v(x)|p∗α |vn(y)− v(y)|p∗α
|x− y|α dxdy = 0. (3.14)

Step 3. Since v 6≡ 0, putting (3.13) into (3.10), and inserting (3.14) into (3.11), we know

lim
n→∞

(
‖vn‖p

W − µ
∫

RN

|vn|p
|x|p dx

)
→ Sp,1,α,µ = ‖v‖p

W − µ
∫

RN

|v|p
|x|p dx,

and ∫
RN

∫
RN

|v(x)|p∗α |v(y)|p∗α
|x− y|α dxdy = 1.

Then v is an extremal.
In addition, |v| ∈W1,p(RN) and |∇|v|| = |∇v| a.e. in RN , therefore, |v| is also an extremal,

and then there exist non–negative extremals.
Let v̄ > 0 be an extremal. Denote by v̄∗ the symmetric–decreasing rearrangement of v̄ (See

[14, Section 3]). From [21] it follows that∫
RN
|∇v̄∗|pdx 6

∫
RN
|∇v̄|pdx. (3.15)

According to the simplest rearrangement inequality in [14, Theorem 3.4], we get

∫
RN

|v̄|p
|x|p dx 6

∫
RN

|v̄∗|p
|x|p dx. (3.16)

By using Riesz’s rearrangement inequality in [14, Theorem 3.7], we have

∫
RN

∫
RN

|v̄(x)|p∗α |v̄(y)|p∗α
|x− y|α dxdy 6

∫
RN

∫
RN

|v̄∗(x)|p∗α |v̄∗(y)|p
∗
α

|x− y|α dxdy. (3.17)

Combining (3.15), (3.16) and (3.17), and the fact that µ > 0, we get that v̄∗ is also an extremal,
and then there exist radially symmetric and nonincreasing extremal.
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4 Proof of Theorem 1.2

For p = 2 and s ∈ (0, 1), we give a estimation of extremal function u(x). The proof of
Theorem 1.2 is based on the Coulomb–Sobolev space E s,α,2∗α,s(RN) and the endpoint refined
Sobolev inequality in Lemma 2.3.

Proof of Theorem 1.2. We show some properties of radially symmetric, nonincreasing and non-

negative function u(x). Let µ̄ = 4s Γ2( N+2s
4 )

Γ2( N−2s
4 )

. By the definition of extremal u (see the proof of

Theorem 1.1), we know∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy− µ

∫
RN

|u|2
|x|2 dx = S2,s,α,µ, (4.1)

and ∫
RN

∫
RN

|u(x)|2∗α,s |u(y)|2∗α,s

|x− y|α dxdy = 1. (4.2)

Applying (4.1), (4.2) and the definition of Coulomb–Sobolev space E s,α,2∗α,s(RN), we get u ∈
E s,α,2∗α,s(RN).

By using (4.1), (4.2), u ∈ E s,α,2∗α,s(RN) and Lemma 2.3, we have

‖u‖
L

2N
N−2s (RN)

6 C4

(∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

) (N−α)(N−2s)
2N(N+2s−α)

×
(∫

RN

∫
RN

|u(x)| 2N−α
N−2s |u(y)| 2N−α

N−2s

|x− y|α dxdy

) s(N−2s)
N(N+2s−α)

= C4

(∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

) (N−α)(N−2s)
2N(N+2s−α)

6 C4

((
µ̄

µ̄− µ

)
S2,s,α,µ

) (N−α)(N−2s)
2N(N+2s−α)

.

(4.3)

For any 0 < R < ∞ and B(R) := B(0, R) ⊂ RN , we obtain

C4

((
µ̄

µ̄− µ

)
S2,s,α,µ

) (N−α)(N−2s)
2N(N+2s−α)

>
(∫

RN
|u(x)| 2N

N−2s dx
) N−2s

2N

>
(∫

B(R)
|u(x)| 2N

N−2s dx
) N−2s

2N

> |u(R)|ω
N−2s

2N
N−1

(∫ R

0
ρN−1dρ

) N−2s
2N

= |u(R)|
(ωN−1

N

) N−2s
2N

R
N−2s

2 ,

which implies

C4

((
µ̄

µ̄− µ

)
S2,s,α,µ

) (N−α)(N−2s)
2N(N+2s−α)

(
N

ωN−1

) N−2s
2N 1

|x| N−2s
2

>|u(x)|.
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5 Proof of Theorem 1.3

For p 6= 2 and s ∈ (0, 1), we give a estimation of extremal function u(x). From Theorem 1.1,
we know that u(x) is a radially symmetric, nonincreasing and nonnegative function.

The proof of Theorem 1.3 is different from Theorem 1.2. The endpoint refined Sobolev
inequality in Lemma 2.3 is true for p = 2. However, we do not know that the endpoint refined
Sobolev inequality is true or not for p 6= 2.

Proof of Theorem 1.3. Let µ̃ =
(

N−p
p

)p
. By the definition of extremal u, we know

‖u‖p
W − µ

∫
RN

|u|p
|x|p dx = Sp,1,α,µ, (5.1)

and ∫
RN

∫
RN

|u(x)|p∗α |u(y)|p∗α
|x− y|α dxdy = 1. (5.2)

For any R ∈ (0, ∞) and B(R) := B(0, R) ⊂ RN , by Hölder’s inequality, we obtain

(∫
B(R)
|u|p∗α dx

) 1
p∗α

6

(∫
B(R)

dx
)1− p∗α

p∗
(∫

B(R)
|u|p

∗
α·

p∗
p∗α dx

) p∗α
p∗
 1

p∗α

= |B(R)|
1

p∗α
− 1

p∗
(∫

B(R)
|u|p∗dx

) 1
p∗

6 |B(R)|
1

p∗α
− 1

p∗ S
− 1

p
p,1,0,0‖u‖W

6 |B(R)|
1

p∗α
− 1

p∗ S
− 1

p
p,1,0,0

((
µ̃

µ̃− µ

)
Sp,1,α,µ

) 1
p

< ∞.

By Fubini’s theorem, we get

(2R)−α

(∫
B(R)
|u(x)|p∗α dx

)2

= (2R)−α
∫

B(R)
|u(x)|p∗α dx

∫
B(R)
|u(y)|p∗α dy

= (2R)−α
∫

B(R)

∫
B(R)
|u(x)|p∗α |u(y)|p∗α dxdy

6
∫

B(R)

∫
B(R)

|u(y)|p∗α |u(x)|p∗α
|x− y|α dxdy,

which implies (∫
B(R)
|u(x)|p∗α dx

)2

6(2R)α
∫

RN

∫
RN

|u(y)|p∗α |u(x)|p∗α
|x− y|α dxdy. (5.3)

According to (5.1), (5.2) and (5.3), we have

1 =
∫

RN

∫
RN

|u(x)|p∗α |u(y)|p∗α
|x− y|α dxdy

> (2R)−α

(∫
B(R)
|u|p∗α dx

)2

> (2R)−α|u(R)|2·p∗α
(

ωN−1

∫ R

0
ρN−1dρ

)2

>
ω2

N−1

2αN2 |u(R)|2·p∗α R2N−α.
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Then we know (
2αN2

ω2
N−1

) 1
2·p∗α 1

R
N−p

p

> |u(R)|.

Hence, for any 0 < |x| < ∞, we obtain(
2αN2

ω2
N−1

) 1
2·p∗α 1

|x|
N−p

p

> u(x).

6 Conclusions and future works

The results in this paper set the foundation for the study of a number of questions related to
minimizing problem

Sp,1,α,µ := inf
u∈W1,p(RN)\{0}

∫
RN |∇u|pdx− µ

∫
RN
|u|p
|x|p dx(∫

RN

∫
RN
|u(x)|p∗α |u(y)|p∗α
|x−y|α dxdy

) p
2·p∗α

,

where N > 3, p ∈ (1, N), α ∈ (0, N) and µ ∈
[
0,
(N−p

p

)p).
During the preparation of the manuscript we faced several problems which are worth to

be tackled in forthcoming investigations. In the sequel, we shall formulate some of them.
(a) The challenging problems are to prove the rest of Open problem: the case of N > 3,

p ∈ (1, N), s ∈ (0, 1), α ∈ (0, N) and µ ∈ [0, CN,s,p), and CN,s,p is defined in [9, Theorem 1.1].
(b) In [27], the authors studied the following minimizing problem:

I2,s,α,µ(u, v) := inf
u,v∈Ws,2(RN)\{0}

∫
RN

∫
RN
|u(x)−u(y)|2+|v(x)−v(y)|2

|x−y|N+2s dxdy− µ
∫

RN

(
|u|2
|x|2s +

|v|2
|x|2s

)
dx(∫

RN

∫
RN
|u(x)|2∗α,s |u(y)|2∗α,s+|v(x)|2∗α,s |v(y)|2∗α,s

|x−y|α dxdy
) 1

2∗α

,

where N > 3, p = 2, s ∈ (0, 1), µ ∈
[
0, 4s Γ2( N+2s

4 )

Γ2( N−2s
4 )

)
and α ∈ (0, N).

It is worth to extend the study of I2,s,α,µ(u, v) to the following minimizing problem:

Ip,s,α,µ(u, v) := inf
u∈Ws,p(RN)\{0}

∫
RN

∫
RN
|u(x)−u(y)|p+|v(x)−v(y)|p

|x−y|N+ps dxdy− µ
∫

RN

(
|u|p
|x|ps +

|v|p
|x|ps

)
dx(∫

RN

∫
RN
|u(x)|p∗α,s |u(y)|p∗α,s+|v(x)|p∗α,s |v(y)|p∗α,s

|x−y|α dxdy
) p

2·p∗α,s

,

where N > 3, p ∈ (1, N), s ∈ (0, 1), µ ∈ [0, CN,s,p) and α ∈ (0, N).
(c) By using Theorem 1.1 and Lemma 3.1, we could study the Choquard equation involving

two critical nonlinearities:

−∆pu− µ
|u|p−2u
|x|p =

(∫
RN

|u|p∗α
|x− y|α dy

)
|u|p∗α−2u + |u|p∗−2u, in RN ,

where N > 3, p ∈ (1, N), µ ∈
[
0,
(N−p

p

)p) and α ∈ (0, N).
(d) Ambrosetti, Brezis and Cerami [3] proved the existence of infinity many solutions to

the following problem {
−∆u = |u|2∗−2u + λ|u|q−2u in Ω,

u = 0 in ∂Ω,
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where Ω ⊂ RN is a smooth bounded domain, N > 3, λ > 0 and q ∈ (1, 2). García and Peral
[13] proved the existence of infinity many solutions to following problem{

−∆pu = |u|p∗−2u + λ|u|q−2u in Ω,

u = 0 in ∂Ω,

where −∆p is the p-Laplacian operator, Ω ⊂ RN is a smooth bounded domain, N > 3, λ > 0,
q ∈ (1, p) and p∗ = Np

N−p . Gao and Yang [10] proved the existence of infinity many solutions
to following problem−∆u =

(∫
Ω
|u|2∗α
|x−y|α dy

)
|u|2∗α−2u + λ|u|q−2u in Ω,

u = 0 in RN \Ω,

where Ω ⊂ RN is a bounded domain with C0,1 bounded boundary, N > 3, λ > 0, q ∈ (1, 2),
0 < α < N and 2∗α = 2N−α

N−2 is the Hardy–Littlewood–Sobolev upper critical exponent.
It is natural to ask: does there exist a solution to following problem?−∆pu =

(∫
Ω
|u|p∗α
|x−y|α dy

)
|u|p∗α−2u + λ|u|q−2u in Ω,

u = 0 in RN \Ω,

where Ω ⊂ RN is a bounded domain with C0,1 bounded boundary, N > 3, λ > 0, p ∈ (1, N),
q ∈ (1, p) and 0 < α < N.

(e) Wang, Xie, Zhang [28] study the critical Kirchhoff-type p-Laplacian problems. For de-
tails and recent works, we refer to [29,31–33] and the references therein. By using Theorem 1.1,
we could study the Schrödinger–Choquard–Kirchhoff equation involving critical nonlinearity:

−(a + b‖u‖p(θ−1)
W )∆pu =

(∫
RN

|u|p∗α
|x− y|α dy

)
|u|p∗α−2u, in RN ,

where ‖u‖p
W =

∫
RN |∇u|pdx, N > 3, p ∈ (1, N), θ ∈

[
1, 2N

N−p

]
and α ∈ (0, N).
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