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Abstract. In this paper, we study an initial-boundary value problem for a doubly non-
linear diffusion equation with logarithmic nonlinearity. By using the potential well
method, we give some threshold results on existence or nonexistence of global weak so-
lutions in the case of initial data with energy less than or equal to potential well depth.
In addition, the asymptotic behavior of solutions is also discussed.
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1 Introduction

In this paper, we will study the following doubly nonlinear diffusion equations with logarith-
mic nonlinearity 

ut − ∆p

(
u(m−1)

)
= fq (u) , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is an open bounded domain with smooth boundary ∂Ω, u(m−1) :=
|u|m−2 u, ∆p (u) := div

(
(∇u)(p−1)) the usual p-Laplacian operators and fq is of the form of

logarithmic term fq(s) = s(q−1) log |s|.
Let us consider the following equation which is so-called doubly nonlinear parabolic equa-

tions

ut − ∆p

(
u(m−1)

)
= f (u) , (1.2)
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where f (u) is a source if f (u) ≥ 0, whereas f (u) is called a sink. This equation generalizes
many equations such as heat equation (as m = 2 and p = 2), the porous medium equation
(as m > 1 and p = 2), and the p-Laplacian equation (as m = 2 and p > 1). The equation
(1.2) can be divided into three following cases which are called the degenerate, critical and
singular case, respectively.

(m− 1) (p− 1) > 1, (m− 1) (p− 1) = 1, and (m− 1) (p− 1) < 1 (1.3)

In this paper, we merely consider the degenerate case, that is, the constants m, p > 1 satisfy

(m− 1) (p− 1) > 1. (1.4)

The initial-boundary value problem for (1.2) has been studied by many mathematicians.
For example, Tsutsumi (see [32]) studied the existence, uniqueness, regularity and large time
behavior for weak, mild and strong solutions of an equivalent equation to (1.2) (after changing
variables) with absorption f (u) = −λuγ, λ > 0 and initial value u0 in some certain Lebesgue
spaces. In [23], Matas et al. also studied the existence of weak solution to the equation
(1.2) with inhomogeneous nonlinearities f (u) in the degenerate case with initial value u0

in Lebesgue spaces by using Galerkin method. The existence of weak solutions of Cauchy
problem for equation (1.2) with f (u) = 0 has been studied by Ishige [14] for all three cases
(1.3).

Regarding of the global existence and nonexistence results, there are some well-known
methods to study the equation (1.2) depends on whether Ω is bounded or unbounded domain
in Rn. For example, in the case Ω = Rn, Fujita [9] studied the initial value problem for heat
equations with power nonlinearity f (u) = up and then Levine in the survey [18] has extended
the results of Fujita for more general parabolic equations with nonlinear dissipative terms
in unbounded domains. In [25], Pokhozaev and Mitidieri introduced the nonlinear capacity
method in order to study of questions on the blow up of solutions of many nonlinear partial
differential equations and inequalities. It is noting that although these methods are really
powerful tools to treat the case of nonnegative nonlinearities f (u), it cannot be applied to the
case of sign-changing nonlinear terms. And therefore, this method cannot be applied to our
problem.

On the other hand, in the case of bounded subdomain of Rn, we refer the seminar papers
of Kaplan [16], Levine [17] and Ball [3] in which the authors proved the blow up results under
condition of non-positive initial energy. In [27], Payne and Sattinger developed the potential
well method which is introduced by Lions [20] and Sattinger [30] to study the existence and
nonexistence of global weak solutions to heat and wave equations with power like nonlinearity
under condition of positive initial energy. More precisely, in [27] the authors show that if the
initial energy J(u0) < d, then weak solution u(t) to equation (1.2) (for m = p = 2) is global
provided that u0 ∈ W (stable sets) and blows up in finite time provided that u0 ∈ U (unstable
sets). Afterward, analogous results have been studied extensively to various kind of equations.
We refer to [6,10–13,17,21,33] for many heat and wave equations and [7,19] for porous medium
equations.

In the case of p-Laplacian equation, Tsustumi [31], Fujii [8] and Ishii [15] studied the
initial-boundary value problem for the equation

ut − ∆pu = f (u), (1.5)

where f (u) = |u|q−2 u, with 2 ≤ q < p∗ = np
n−p . As for the existence and nonexistence of

global weak solutions to (1.5), the following results are well-known:
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(i) if p > q, (1.5) admits a global weak solution for any u0 ∈W1,p
0 (Ω);

(ii) if p < q, then weak solution u(t) of (1.5) is global when initial data u0 ∈ W1,p
0 (Ω) is in

stable sets and blows up in finite time when u0 ∈W1,p
0 (Ω) is in unstable sets.

(iii) when p = q, Fujii [8] derived sufficient conditions on blow-up of solutions depending
on first eigenvalue λ1 of the operator −∆p.

Although there is a lot of results of global existence and nonexistence of weak solutions to
(1.2) in the case of power nonlinearities and its generalization, there is a little known about
the one with logarithmic nonlinearity. We refer to [4, 5, 26] for a few recent papers involving
logarithmic nonlinearity. In this paper, in the same spirit with previous works, we utilize the
potential well method to study the existence and nonexistence of global weak solutions to
(1.2) with logarithmic nonlinearities fq(u) = (u)(q−1) log |u|, q > 2 and initial value u(m−1)

0

belonging to Sobolev space W1,p
0 (Ω). Roughly speaking, our results are as follows:

(i) if (m− 1) (p− 1) > q− 1, then (1.1) admits a global solution for each u(m−1)
0 ∈W1,p

0 (Ω);

(ii) if (m− 1) (p− 1) ≤ q − 1, then there exists a weak solution to (1.1) which is global
provided that u0 belonging to stable sets, and blows up provided that u0 belonging to
unstable sets. In addition, decay estimates are also proved for the former case.

Define ϕ : Lm′ (Ω)→ Lm (Ω) as follows

ϕ(u) = u(m′−1),

where m′ > 1 is Hölder conjugate of m satisfying 1
m + 1

m′ = 1, then one has ϕ
(
u(m−1)) = u.

Hence, by changing variable w = u(m−1), the equation (1.1) leads to the reformulated equation

∂t ϕ(w)− ∆pw =
(
m′ − 1

)
fγ (w) , where γ =

(
m′ − 1

)
(q− 1) + 1. (1.6)

It is also noticed that fγ(s) is nonhomogeneous and can change signs for s ∈ (0,+∞). In
addition, since lims→0+ fγ(s) = 0, it can be extended continuously to the function f̃γ with
f̃γ (0) = 0.

In what follows, for the sake of brevity, we still denote f̃γ by fγ with noticing that fγ(0) =
fγ(1) = 0. The nonlinearity with such properties can be found in the paper [2]. Hence, instead
of (1.1) we consider the following initial boundary value problems

∂t ϕ(u)− ∆p (u) = (m′ − 1) fγ (u) , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.7)

where u0 ∈W1,p
0 (Ω) and γ = (m′ − 1) (q− 1) + 1 > 1, m′ is Hölder conjugate of m.

The rest of this paper is organized as follows: Section 2 devotes to preliminaries in which
we establish some properties of stationary problem associated to (1.7) and introduce the stable
sets (potential well) and unstable sets as well as its properties; Section 3 states main results of
this paper and their proofs are presented in the remaining sections.
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2 Local minima and potential wells

In this section, we need the following logarithmic Gagliardo–Nirenberg inequality which was
introduced by Merker [24].

Lemma 2.1 ([24], Logarithmic Gagliardo–Nirenberg inequalities). The inequalities∫ |u|q
‖u‖q

q
log

(
|u|q

‖u‖q
q

)
dx ≤ 1

1− q/p∗
log

(
Cq

n,p,q
‖∇u‖q

p

‖u‖q
q

)
(2.1)

are valid for parameters 1 ≤ p < +∞, 0 < q < p∗ and function u ∈ Lq (Rn) with ∇u ∈ Lp (Rn).
Hereby the constant C depends on n and p only in the case p < n, and on n, p and a finite upper bound
of q in the case p ≥ n.

This inequality can be reformulated in parametric form. Here, one introduces the follow-
ing parametric form of logarithmic Gagliardo–Nirenberg inequalities∫ |u|q

‖u‖q
q

log

(
|u|q

‖u‖q
q

)
dx ≤ µ

‖∇u‖r
p

‖u‖r
q

+
qp∗

(p∗ − q) r
log
( qp∗Cr

n,p,q

(p∗ − q)rµe

)
, (2.2)

for all µ > 0 where 0 < r ≤ min{p, q}. By virtue of Young’s inequality, one obtains the
following proposition.

Proposition 2.2 (Parametric form of logarithmic Gagliardo–Nirenberg inequality). Let us sup-
pose all assumptions in Lemma 2.1. Then we have∫

|u|q log

(
|u|q

‖u‖q
q

)
dx + Cr

n,p,q,µ‖u‖
q
q ≤ µ

r
p
‖∇u‖p

p + µ
p− r

p
‖u‖

(q−r)
p−r p

q ,

for all µ > 0 where 0 < r ≤ min{p, q} and Cr
n,p,q,µ is a constant given by

Cr
n,p,q,µ =

qp∗

(p∗ − q) r
log

(
(p∗ − q)rµe

qp∗Cr
n,p,q

)
.

Proposition 2.3 ([28,29], Parametric form of logarithmic Sobolev inequality). Let u ∈W1,p(Rn),
u 6= 0 and µ > 0 be any number. Then

p
∫

Rn
|u(x)|p log

(
|u(x)|
‖u‖p

)
dx +

n
p

log
(

pµe
nLp

) ∫
Rn
|u(x)|p dx ≤ µ

∫
Rn
|∇u(x)|p dx,

where

Lp =
p
n

(
p− 1

e

)p−1

π−
p
2

 Γ
( n

2 + 1
)

Γ
(

n p−1
p + 1

)


p
n

and for 1 ≤ p < +∞.
For u ∈ W1,p

0 (Ω), we can define u(x) = 0 for x ∈ Rn\Ω. Then u ∈ W1,p (Rn) and therefore, we
derive

p
∫

Ω
|u(x)|p log

(
|u(x)|
‖u‖p

)
dx +

n
p

log
(

pµe
nLp

) ∫
Ω
|u(x)|p dx ≤ µ

∫
Ω
|∇u(x)|p dx,

for u ∈W1,p
0 (Ω) and µ > 0 is any number.
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We now define the energy functional J and Nehari functional I on W1,p
0 (Ω) related to the

problem (1.7) as follows

J (u) =
1
p

∫
Ω
|∇u|p dx +

m′ − 1
γ2

∫
Ω
|u|γ dx− m′ − 1

γ

∫
Ω
|u|γ log (|u|) dx, (2.3)

I (u) =
∫

Ω
|∇u|p dx−

(
m′ − 1

) ∫
Ω
|u|γ log (|u|) dx. (2.4)

It is clear that the functionals I and J are continuous on W1,p
0 (Ω) and

J (u) =
(

1
p
− 1

γ

)
‖∇u‖p

p +
m′ − 1

γ2 ‖u‖γ
γ +

1
γ

I (u) . (2.5)

We also define the Nehari manifold as follows

N =
{

u ∈W1,p
0 (Ω) \{0} : I (u) =

〈
J′ (u) , u

〉
= 0

}
. (2.6)

We shall see below (see Lemma 2.5) that each half line starting from the origin of the phase
space W1,p

0 (Ω) intersects the Nehari manifold N exactly once.
It is also useful to understand the Nehari manifold N in terms of the critical points of the

fibrering map λ 7→ J (λu) for λ > 0 given by

J (λu) =
λp

p
‖∇u‖p

p +
m′ − 1

γ2 λγ ‖u‖γ
γ −

m′ − 1
γ

∫
Ω
|λu|γ log (|λu|) dx, λ > 0.

Then we have

d
dλ

J (λu) =
〈

J′ (λu) , u
〉
=

1
λ

〈
J′ (λu) , λu

〉
=

1
λ

I (λu) , for λ > 0. (2.7)

This implies the following lemma immediately.

Lemma 2.4. Let u ∈ W1,p
0 (Ω) \{0} and λ > 0. Then λu ∈ N if and only if λ is a critical point of

the map λ 7→ J (λu), that is, d
dλ J (λu) = 0.

Thanks to (2.7), in order to study the critical point of fibrering map, we need to study zero
points of the map λ 7→ I (λu) for u ∈W1,p

0 (Ω) \{0} given by I (λu) = λpK (λu), λ > 0 where

K (λu) = ‖∇u‖p
p −

(
m′ − 1

)
λγ−p

∫
Ω
|u|γ log (|u|) dx−

(
m′ − 1

)
‖u‖γ

γ λγ−p log λ.

Lemma 2.5. Let 2 ≤ p ≤ γ and u ∈W1,p
0 (Ω) \{0}. Then we possess

(i) there exists a unique λ∗ := λ∗ (u) > 0 such that I (λ∗u) = 0 and I (λu) > 0 for λ ∈ (0, λ∗),
and I (λu) < 0 for λ > λ∗;

(ii) the fibrering map λ 7→ J (λu) attains its maximizer at λ = λ∗, that is,

d
dλ

J (λu)
∣∣∣∣
λ=λ∗

= 0 and
d2

dλ2 J (λu)
∣∣∣∣
λ=λ∗

< 0.
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Proof. In the case p = γ, it is not difficult to see that

λ∗ := λ∗ (u) = exp
{

I (u) /
(
m′ − 1

)
‖u‖p

p

}
satisfies (i) and (ii). It remains to verify for the case p < γ. Indeed, if this is the case, it is not
difficult to see that the function λ 7→ K (λu) is continuous on (0,+∞) and

lim
λ→0+

K (λu) = ‖∇u‖p
p > 0 and lim

λ→+∞
K (λu) = −∞,

and K (λu) attains its unique maximizer at λ̄ := λ̄ (u) > 0

λ̄ = exp

{
‖u‖γ

γ + (γ− p)
∫

Ω |u|
γ log (|u|) dx

(p− γ) ‖u‖γ
γ

}
.

Hence, there must be a unique λ∗ > λ̄ such that K (λ∗u) = 0 and K (λu) > 0 for λ ∈ (0, λ∗),
and K (λu) < 0 for λ > λ∗. As a consequence, the proof follows from I (λu) = λpK (λu) and
(2.7).

We now define the depth of potential well

d = inf
{

supλ≥0 J (λu) : u ∈W1,p
0 (Ω) \{0}

}
,

which is also characterized as

0 < d = inf
u∈N

J(u). (2.8)

Lemma 2.6. Let p ≥ 2 and p ≤ γ < np
n−p := p∗. Then there exists an extremal of the variational

problem
0 < d = inf

u∈N
J(u).

Proof. The case γ = p can be proved similarly to [26]. It remains to consider the case γ > p.
Let u ∈ N , then it follows by (2.5)

J (u) =
(

1
p
− 1

γ

)
‖∇u‖p

p +
m′ − 1

γ2 ‖u‖γ
γ . (2.9)

On the other hand, by logarithmic Gagliardo–Nirenberg inequality, one has

1
m′ − 1

‖∇u‖p
p =

∫
Ω
|u|γ log (|u|) dx

≤ µr
γp
‖∇u‖p

p + µ
p− r
γp
‖u‖

γ−r
p−r p
γ +

1
γ

Cr
n,p,γ,µ ‖u‖

γ
γ +

1
γ
‖u‖γ

γ log
(
‖u‖γ

γ

)
,

where r ∈ (0, p) is a constant and Cr
n,p,q,µ is a constant given by Proposition 2.2. By choosing

µ = γp
(m′−1)r then we get

p− r
(m′ − 1) r

‖u‖
γ−r
p−r p
γ +

1
γ

Cr
n,p,q,µ ‖u‖

γ
γ +

1
γ
‖u‖γ

γ log
(
‖u‖γ

γ

)
≥ 0. (2.10)
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It is noticed that for r ∈ (0, p) and p < γ then γ−r
p−r p > γ. And therefore, we deduce from

(2.10) that there exists a positive constant R independent of u such that ‖u‖γ ≥ R > 0 which
implies

‖∇u‖p ≥
1

Sp,γ
‖u‖γ ≥

R
Sp,γ

. (2.11)

Here Sp,γ stands for the best constant in the Sobolev embedding W1,p
0 (Ω) ↪→ Lγ (Ω) with

0 < γ ≤ p∗ = np
n−p (p < n). Thus, the proof follows from (2.9) and (2.11).

Denote the nontrivial stationary solution of problem (1.7) by

E =
{

u ∈W1,p
0 (Ω) \{0} : −∆pu =

(
m′ − 1

)
fγ (u) : u|∂Ω = 0

}
,

Ed = {u ∈ E : J(u) = d} .

Then, by virtue of critical point theory, it is not difficult to see that if u ∈ E (in weak sense)
then u is a nontrivial critical point of J(u). Hence, we get

Ed = {u ∈ N : J(u) = d} . (2.12)

As a consequence of Lemma 2.6, Ed is a nonempty set.
We now define stable setW and unstable set U as in [15, 27].

W =
{

u ∈W1,p
0 (Ω) : J(u) < d, I(u) > 0

}
∪ {0}, (2.13)

U =
{

u ∈W1,p
0 (Ω) : J(u) < d, I(u) < 0

}
. (2.14)

By continuity of the functionals I and J on W1,p
0 (Ω), one has

W =
{

u ∈W1,p
0 (Ω) : J(u) ≤ d, I(u) ≥ 0

}
and U =

{
u ∈W1,p

0 (Ω) : J(u) ≤ d, I(u) ≤ 0
}

.

Some properties ofW and U are listed below.

Lemma 2.7.

(i) W is a bounded neighborhood of 0 in W1,p
0 (Ω), that is, there exist 0 < r1 < r2 such that

B (0, r1) ⊂ W ⊂ B (0, r2);

(ii) 0 /∈ U ;

(iii) Ed ⊂ N andW ∩U = Ed.

Proof. (i) Let u ∈ W with u 6= 0, then it follows from the definition ofW and (2.5) that

‖∇u‖p
p <

pγ

γ− p
d and ‖u‖γ

γ <
γ2

m′ − 1
d, (2.15)

for γ > p. In the case γ = p, we also deduce from (2.5) that

‖u‖p
p <

p2

m′ − 1
d and I (u) < pd. (2.16)
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On the other hand, by virtue of logarithmic Sobolev inequality, we get

I (u) ≥
(

1− µ(m′ − 1)
p

)
‖∇u‖p

p +
n (m′ − 1)

p2 log
(

pµe
nLp

)
‖u‖p

p −
m′ − 1

p
‖u‖p

p log
(
‖u‖p

p

)
.

It follows that (
1− µ(m′ − 1)

p

)
‖∇u‖p

p ≤ I (u) +
n (m′ − 1)

p2 log
(

nLp

pµe

)
‖u‖p

p

+
m′ − 1

p
‖u‖p

p log
(
‖u‖p

p

)
. (2.17)

By choosing µ < p
m′−1 , it follows from (2.15)–(2.17) that ‖∇u‖p

p < Cd, where Cd independent
of u. The remain part of (i) can be prove similar to Lions [20]. Hence, we possess (i).

(ii) By contradiction, we assume that 0 ∈ U . Then there exists a sequence {un} ∈ U such
that un → 0 in W1,p

0 (Ω) as n → ∞. It follows from (i) that un ∈ W for n sufficiently large.
This contradicts to the fact thatW ∩U = ∅.

(iii) It is clear that Ed ⊂ N . We now let u ∈ W ∩ U , then I(u) = 0 and J(u) ≤ d. Since
(ii), we get u 6= 0 and therefore u ∈ N . On the other hand, by variational characterization
of d, one has J(u) = d. Thus u ∈ Ed. Conversely, if u ∈ Ed, then it follows from (2.12) that
u ∈ W1,p

0 (Ω) \{0} satisfying I(u) = 0 and J(u) = d. This implies u ∈ W ∩ U . The lemma has
been proven.

3 Main results

Firsly, we introduce the definitions of weak solutions to (1.7) and maximal existence time.

Definition 3.1. A function u is said to be a weak solution of problem (1.7) on [0, T) if u ∈
L∞(0, T; W1,p

0 (Ω)
)

is such that ϕ(u) ∈ L∞ (0, T; Lm (Ω)) with

∂t ϕ(u) ∈ Lp′
(

0, T; W−1,p′ (Ω)
)

and ∂t

(
|u|

m′
2

)
∈ L2 (QT) ,

satisfies the initial value u(0) = u0 and the equation (1.7) in a generalized sense, that is,∫ T

0
〈∂t ϕ (u) , v〉 dt +

∫ T

0

〈
(∇u)(p−1) ,∇v

〉
dt =

(
m′ − 1

) ∫ T

0
〈 fγ (u) , v〉 dt, (3.1)

for all v ∈ Lp(0, T; W1,p
0 (Ω)

)
.

Definition 3.2 (Maximal existence time). Let u be a weak solution to problem (1.7). Then we
define the maximal existence time Tmax of u as follows:

• if u := u(t) exists on [0, T) for all T > 0, then Tmax = +∞. In this case, we say that u is a
global solution of (1.7);

• if there is T > 0 such that u := u(t) exists on [0, T), but it does not exist at t = T, then
Tmax = T. In this case, we say that u is blow up at t = T.

We now give the existence and nonexistence of global weak solutions to (1.7) depending
on parameters m, p and q.
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Theorem 3.3. Let T > 0, u0 ∈ W1,p
0 (Ω) and let m, p be constants satisfying (1.4). Then we possess

the following statements.

(i) If (m′ − 1)(q− 1) < p− 1, then there exists a weak solution u to problem (1.7) on [0, Tmax) for

Tmax = T which satisfies ∂t
(
|u|

m′
2
)
∈ L2 (QT) and the energy inequality∫ t

0
‖Uτ(τ)‖2

2 dτ + J (u(t)) ≤ J(u0), a.e. in [0, Tmax) , (3.2)

where U (t) = 2
√

m′−1
m′ |u(t)|

m′
2 .

(ii) If (m′ − 1)(q− 1) ≥ p− 1 and q > 2 such that

(
m′ − 1

)
(q− 1) + 1 < p

(
1 +

m′

n

)
if p < n.

then there exists a weak solution u satisfying (3.2) on [0, Tmax) with 0 < Tmax < T.

Next, we give similar results as in [15, 27, 31] on the existence and nonexistence of global
solution when the initial data u0 is in stable setW and unstable set U .

Theorem 3.4 (Global existence for J(u0) < d). Let m, p satisfy (1.4) and q > 2 such that

p ≤ (m′ − 1)(q− 1) + 1 < p∗ =
np

n− p
as p < n, (3.3)

and u0 ∈ W . Then the problem (1.7) admits a global weak solution u ∈ L∞(0, T; W1,p
0 (Ω)

)
with

∂tU ∈ L2 (QT) and u(t) ∈ W for t ∈ [0, T) for any T > 0. In addition, we have the following decay
estimates:

‖∇u(t)‖p ≤ ‖∇u0‖p

(
p

m′ + ω(p−m′)t

) 1
p−m′

for t ≥ 0, (3.4)

for some ω > 0.

Theorem 3.5 (Blow up for J(u0) < d). Let m, p satisfy (1.4) and q > 2 such that

p ≤ (m′ − 1)(q− 1) + 1 < p∗ as p < n, (3.5)

and u0 ∈ U . Then weak solution u of the problem (1.7) blows up in finite time, that is, there is T∗ such
that

lim
t→T∗
‖∇u(t)‖p

p = +∞.

Remark 3.6. The results of Theorem 3.4 and 3.5 are still valid if we replace the initial value
u0 by u(t0) for some t0 ∈ [0, Tmax). In Theorem 3.4, by assumption u0 ∈ W , we can relax the
constraint on γ < p

(
1 + m′

n

)
by γ < p∗.

Remark 3.7 (Sharp condition for J(u0) < d). Let m, p satisfy (1.4) and q > 2 such that

p ≤
(
m′ − 1

)
(q− 1) + 1 < p∗,

and u0 ∈ W1,p
0 (Ω) \{0} with J(u0) < d. Then problem 1.7 admits a global weak solution

provided that I(u0) > 0 and does not admit any global weak solution provided that I(u0) < 0.
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Finally, we have a threshold result on the existence and non-existence of global weak
solution to (1.7) in the case J(u0) = d.

Theorem 3.8. Let m, p satisfy (1.4) and q > 2 such that

p ≤ (m′ − 1)(q− 1) + 1 < p∗ =
np

n− p
as p < n, (3.6)

and u0 ∈ W1,p
0 (Ω) \{0} with J(u0) = d. Then the local weak solution u of (1.7) is global provided

that I(u0) > 0 and blows up in finite time provided that I(u0) < 0. Moreover, in the former case, there
exists a positive constant ω1 such that

‖∇u(t)‖p ≤ ‖∇u(t1)‖p

(
p

m′ + ω1(p−m′)t

) 1
p−m′

, for t ≥ t1, (3.7)

for some t1 > 0.

4 Proof of Theorem 3.3

In this section we prove the existence of weak solutions by Faedo–Galerkin method. The proof
comprises of several steps in which we use the following well-known Gronwall–Bellman–
Bihari integral inequality [1, p. 53].

Lemma 4.1 (Gronwall–Bellman–Bihari). Let S(t) be a nonnegative continuous function such that

S(t) ≤ C1 + C2

∫ t

0
Sκ(s)ds,

where C1, C2 are positive constants. Then we get

(i) S(t) ≤
[
C1−κ

1 + (1− κ)C2t
] 1

1−κ for 0 < κ < 1;

(ii) S(t) ≤ C1 exp{C2t} for κ = 1;

(iii) S(t) ≤ C1

[
1− (κ − 1)C2Cκ−1

1 t
]− 1

κ−1 for κ > 1.

Step 1: Finite-dimensional approximations

Let
{

wj
}

be a system of basis functions in W1,p
0 (Ω) and define

Vk = {w1, w2, . . . , wk} .

Let u0k be an element of Vk such that

u0k =
k

∑
j=1

ajkwj → u0, in W1,p
0 (Ω) , (4.1)

as k → ∞. We shall construct the approximate solutions uk (x, t) of the problem (1.1) by the
form

uk(t) =
k

∑
j=1

αkj(t)wj, for k = 1, 2, . . . , (4.2)
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where the coefficients αkj (1 ≤ j ≤ k) satisfies the system of integro-differential equations〈(
m′ − 1

)
|uk(t)|m

′−2 ukt(t), wi

〉
+
〈
(∇uk(t))

(p−1) ,∇wi

〉
=
(
m′ − 1

) 〈
(uk(t))

(γ−1) log (|uk(t)|) , wi

〉
, (4.3)

for i = 1, 2, . . . , k, with the initial conditions

αkj(0) = akj, j = 1, 2, . . . , k. (4.4)

In order to recognize that the system (4.3)–(4.4) has a local solution, for α = (α1, α2, . . . , αk) ∈
Rk, we set

• ψ(α) = (ψ1(α), . . . , ψk(α))
T, with

ψi(α) =
∫

Ω


(

k

∑
j=1

αjwj

)(m′−1)

wi

 dx;

• B(α) = (B1(α), . . . ,Bk(α))
T, with

Bi(α) =
∫

Ω


(

k

∑
j=1

αj∇wj

)(p−1)

∇wi

 dx;

• F (α) = (F1(α), . . . ,Fk(α))
T, with

Fi(α) =
(
m′ − 1

) ∫
Ω


(

k

∑
j=1

αjwj

)(γ−1)

log

(∣∣∣∣∣ k

∑
j=1

αjwj

∣∣∣∣∣
)widx.

Then it is obvious that the system (4.3)–(4.4) can be rewritten as

d
dt

ψ (αk(t)) + B (αk(t)) = F (αk(t)) , (4.5)

which is also equivalent to the integral equation

ψ (αk(t)) = ψ (αk(0))−
∫ t

0
[−B (αk (s)) +F (αk (s))] ds, (4.6)

where αk(t) = (αk1 (t) , αk2 (t) , . . . , αkk (t))
T. The standard theory of ordinary differential and

integral equations yields that there exists a positive 0 < Tk ≤ T such that αkj ∈ C1 ([0, Tk]),

and therefore uk ∈ C1([0, Tk]; W1,p
0 (Ω)

)
.

Step 2: The fundamental priori estimates

In order to obtain the boundedness of the approximate solutions {uk}, we need the following
inequality.
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Lemma 4.2. Let 1 < m′ < p < ∞ and r be a constant such that

p ≤ r < p
(

1 +
m′

n

)
if p < n and p ≤ r if p ≥ n.

Then for each ε > 0, there exists a positive constant Cε such that

‖v‖r
r ≤ ε ‖∇v‖p

p + Cε

(
‖v‖m′

m′

)κ
, (4.7)

for all v ∈W1,p
0 (Ω), where

κ =
(1− θ) r
(1− α)m′

> 1, θ =

(
1

m′
− 1

r

)(
1

m′
− 1

p∗

)−1

, α =
θr
p

.

Proof. By virtue of Gagliardo–Nirenberg inequality, we have

‖v‖r ≤ C ‖∇v‖θ
p ‖v‖

1−θ
m′ , ∀v ∈W1,p

0 (Ω) ,

where

θ =

(
1

m′
− 1

r

)(
1

m′
− 1

p∗

)−1

.

This implies

‖v‖r
r ≤ C

(
‖∇v‖p

p

)α (
‖v‖m′

m′

) (1−θ)r
m′ , with α =

θr
p

.

Since p ≤ r < p (1 + m′/n), we get θ ≤ α = θr/p < 1. By virtue of Young’s inequality, one
has

‖v‖r
r ≤ ε ‖∇v‖p

p + Cε

(
‖v‖m′

m′

)κ
,

where κ = (1−θ)r
(1−α)m′ > 1. The proof is complete.

Multiplying both sides of (4.3) by αki(t) and taking the sum over i = 1, 2, . . . , k, and then
integrating with respect to time variable from 0 to t, one has

‖uk(t)‖m′
m′ = ‖u0k‖m′

m′ −
∫ t

0
I (uk(τ)) dτ, (4.8)

where

I (uk(t)) = ‖∇uk(t)‖p
p −

(
m′ − 1

) ∫
Ω
|uk(t)|γ log (|uk(t)|) dx. (4.9)

We now estimate I (uk(t)). By elementary inequality, we get the following estimate for β > 0
sufficiently small∫

Ω
|uk(t)|γ log |uk(t)| dx =

∫
{|uk(t)|≤1}

|uk(t)|γ log |uk(t)| dx +
∫
{|uk(t)|>1}

|uk(t)|γ log |uk(t)| dx

≤ e−1 |Ω|+ 1
β

∫
Ω
|uk(t)|γ+β dx. (4.10)
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We now consider the two following cases:
Case 1: (m′ − 1)(q− 1) < p− 1. In this case, we have γ < p. By virtue of Young inequality
and Poincaré inequality, we get∫

Ω
|uk(t)|γ log |uk(t)| dx ≤ ε ‖∇uk(t)‖p

p + C (Ω, ε) , (4.11)

with ε > 0. It follows from (4.9) and (4.11) that

I (uk(t)) ≥
(
1− (m′ − 1)ε

)
‖∇uk(t)‖p

p − C (Ω, ε) . (4.12)

By choosing ε = p−1
p(m′−1) , we deduce from (4.1), (4.8) and above inequality that

Sk(t) := ‖uk(t)‖m′
m′ +

1
p

∫ t

0
‖∇uk(τ)‖p

p dτ ≤ CT, ∀t ∈ [0, T], ∀k ∈N. (4.13)

Case 2: (m′ − 1)(q− 1) ≥ p− 1 and (m′ − 1) (q− 1) + 1 < p
(
1 + m′

n

)
. If this is the case, then

we have p ≤ γ < p
(
1 + m′

n

)
. By Lemma 4.2 and (4.10), we derive that∫

Ω
|uk(t)|γ log |uk(t)| dx ≤ ε ‖∇uk(t)‖p

p + C (ε)
(
‖uk(t)‖m′

m′

)κ
+ C (Ω, ε) , (4.14)

where κ > 1 and ε > 0, which implies

I (uk(t)) ≥
(
1− (m′ − 1)ε

)
‖∇uk(t)‖p

p − C (ε)
(
‖uk(t)‖m′

m′

)κ
− C (Ω, ε) . (4.15)

By choosing ε = p−1
p(m′−1) , it follows from (4.1), (4.8) and (4.15) that

Sk(t) ≤ C1 + C2

∫ t

0
Sκ

k(τ)dτ, ∀t ∈ [0, T] , (4.16)

where κ > 1 and C1, C2 are positive constants independence of k, and

Sk(t) = ‖uk(t)‖m′
m′ +

1
p

∫ t

0
‖∇uk(τ)‖p

p dτ. (4.17)

By virtue of Gronwall–Bellman–Bihari integral inequality, Lemma 4.1, there exists a constant
T∗ = 1/2(κ − 1)C2Cκ−1

1 ∈ (0, T) such that

Sk(t) ≤ CT∗ , ∀t ∈ [0, T∗], ∀k ∈N. (4.18)

Now, by multiplying the ith equation of (4.3) by α′ki(t), summing up with respect to i and
integrating with respect to time variable from 0 to t, we obtain∫ t

0
‖Ukτ(τ)‖2

L2(Ω) dτ + J (uk(t)) ≤ J (u0k) , ∀t ∈ [0, T] , (4.19)

where Uk(t) = 2
√

m′−1
m′ |uk(t)|

m′
2 . Thanks to (4.1) and the continuity of J, there is a positive

constant C such that

J (u0k) ≤ C, ∀k ∈N. (4.20)
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We now estimate J (uk(t)). It is worth noting that

J (uk(t)) =
(

1
p
− 1

γ

)
‖∇uk(t)‖p

p +
m′ − 1

γ2 ‖uk(t)‖γ
γ +

1
γ

I (uk(t)) .

On the other hand, it follows from (4.12)–(4.13) and (4.15)–(4.18) that

I (uk(t)) ≥
(
1− ε(m′ − 1)

)
‖∇uk(t)‖p

p − C,

for sufficiently small ε > 0. Hence, we get

J (uk(t)) ≥
(

1
p
− ε(m′ − 1)

γ

)
‖∇uk(t)‖p

p +
m′ − 1

γ2 ‖uk(t)‖γ
γ − C. (4.21)

It follows from (4.19)-(4.21) that∫ t

0
‖Ukτ(τ)‖2

2 dτ +

(
1
p
− ε(m′ − 1)

γ

)
‖∇uk(t)‖p

p +
m′ − 1

γ2 ‖uk(t)‖γ
γ ≤ C, (4.22)

for sufficiently small ε > 0.

Step 3: Passage to the limit

In this section, we use some compactness results which is given by Matas and Merker [23].

Lemma 4.3 ([23]). Let m, p satisfy (1.4), then we have

(i) the map ϕ : W1,p
0 (Ω) ∩ Lm′(Ω) → Lm(Ω′) defined by ϕ(u) = u(m′−1) is compact for any

arbitrary bounded subdomain Ω′ ⊂ Ω.

(ii) Let {uk} ⊂ Lp(0, T; W1,p
0 (Ω)

)
∩ L∞(0, T; Lm′(Ω)

)
be the sequence of weak solutions of pro-

jected equations. Then {ϕ (uk)} is relatively compact in L1(0, T; Lm(Ω)).

From the priori estimates devired above (see (4.13), (4.18) and (4.22)), we deduce a subse-
quence that still denotes as {uk} such that

uk → u weakly in Lp
(

0, T; W1,p
0 (Ω)

)
, (4.23)

uk → u weakly star in L∞
(

0, T; W1,p
0 (Ω) ∩ Lm′ (Ω)

)
, (4.24)

d
dt

Uk →
(

d
dt

U
)

ex
weakly in L2 (0, T; L2 (Ω)

)
, (4.25)

ϕ(uk)→ (ϕ(u))ex weakly star in L∞ (0, T; Lm (Ω)) , (4.26)

∆puk →
(
∆pu

)
ex weakly in Lp′

(
0, T; W−1,p′ (Ω)

)
. (4.27)

It is obviously to deduce from (4.23)–(4.25) that
( d

dt U
)

ex = d
dt U. By virtue of Lemma 4.3, it

follows from (4.23)–(4.24) that ϕ (uk) is bounded in L∞ (0, T; Lm (Ω)) and is relatively compact
in L1 (0, T; Lm (Ω)). By monotone operator theory, using similar arguments as in [23], we get
(ϕ(u))ex = ϕ(u) and

ϕ(uk) −→ ϕ(u) strongly in L1 (0, T; Lm (Ω)) and a.e. in QT = Ω× [0, T] . (4.28)
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This implies

uk(x, t)→ u(x, t) a.e. in QT which implies fγ(uk(x, t))→ fγ(u(x, t)) a.e. in QT. (4.29)

On the other hand, direct computation gives us∫
Ω
| fγ (uk(t))|γ

′
dx =

∫
|uk(t)|≤1

| fγ (uk(t))|γ
′
dx +

∫
|uk(t)|>1

| fγ (uk(t))|γ
′
dx

≤ e−γ′ |Ω|+ C
∫

Ω
|uk(t)|γ+εγ′ dx.

By the Poincaré inequality and Lemma 4.2, it is not difficult to see that∫
Ω
| fγ (uk(t))|γ

′
dx ≤ CT,Ω for γ > 1. (4.30)

Combining (4.29) and (4.30), we get

fγ (uk) −→ fγ (u) weakly star in L∞
(

0, T; Lγ′ (Ω)
)

. (4.31)

Let k→ ∞ in (4.2)–(4.3), we obtain∫ T

0
〈∂t ϕ(u), w〉 dt +

∫ T

0

〈
(∇u)p−1 , w

〉
dt =

(
m′ − 1

) ∫ T

0
〈 fγ (u) , w〉 dt, (4.32)

for all w ∈ Lp(0, T; W1,p
0 (Ω)

)
.

Moreover, if m′ ≥ 2, then we have 1 < m′
m′−1 ≤ 2 and ∂t ϕ(u) ∈ L

m′
m′−1 (QT), since

∫
Ω
|∂t ϕ(u(t))|

m′
m′−1 dx =

∫
Ω

((
m′ − 1

)
|u(t)|m

′−2 ut(t)
) m′

m′−1 dx

=

(
m′
√

m′ − 1
2

) m′
m′−1 ∫

Ω
|Ut(t)|

m′
m′−1 |u(t)|

m′(m′−2)
2(m′−1) dx

≤
(

m′
√

m′ − 1
2

) m′
m′−1 (∫

Ω
|Ut(t)|2 dx

) m′
2(m′−1)

(∫
Ω
|u(t)|m

′
dx
) m′−2

2(m′−1)

=

(
m′
√

m′ − 1
2

) m′
m′−1 (

‖Ut(t)‖2
2

) m′
2(m′−1)

(
‖u(t)‖m′

m′

) m′−2
2(m′−1)

≤ C
(
‖Ut(t)‖2

2 + ‖u(t)‖
m′
m′

)
.

Here we use the well-known Hölder and Young inequalities. If 1 < m′ < 2, then we have
ut ∈ Lm′ (QT),∫

Ω
|ut(t)|m

′
dx =

(
m′

2
√

m′ − 1

)m′ ∫
Ω
(|Ut(t)|)m′ |u(t)|

(2−m′)m′
2 dx

≤
(

m′

2
√

m′ − 1

)m′ (∫
Ω
|Ut(t)|2 dx

) m′
2
(∫

Ω
|u(t)|m

′
dx
) 2−m′

2

≤
(

m′

2
√

m′ − 1

)m′ (m′

2

∫
Ω
|Ut(t)|2 dx +

2−m′

2

∫
Ω
|u(t)|m

′
dx
)

.
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Step 4: Energy estimate

Similar to the method in [20, 26, 31], let Θ be the function which lies in C[0, T] and is non-
negative. We deduce from (4.19) that

∫ T

0
Θ(t)

∫ t

0
‖Ukτ(τ)‖2

2 dτdt +
∫ T

0
J (uk(t))Θ(t)dt =

∫ T

0
J (u0k)Θ(t)dt.

Let k → ∞, the right-hand side of this equality tends to
∫ T

0 J (u0)Θ(t)dt and using the lower
semi-continuous with respect to the weak topology of Lp(0, T; W1,p

0 (Ω)
)

and L2 (QT), we get

∫ T

0
Θ(t)

∫ t

0
‖Uτ(τ)‖2

2 dτdt +
∫ T

0
J (u(t))Θ(t)dt ≤

∫ T

0
J (u0)Θ(t)dt.

Since Θ is arbitrary, this inequality implies (3.2).

5 Proof of Theorem 3.4

Step 1: Global existence

As in the proof of Theorem 3.3, since u0 ∈ W , we can find a sequence of Faedo–Galerkin
approximation solutions {uk} such that

uk(0) = u0k → u0 strongly in W1,p
0 (Ω) , (5.1)

and satisfies the following identities

d
dt
‖uk(t)‖m′

m′ = −I(uk(t)) and
∫ t

0
‖Ukτ(τ)‖2

2 dτ + J(uk(t)) = J(u0k), 0 ≤ t < Tmax. (5.2)

From (5.1) and the continuity of J, it follows from (5.2) that∫ t

0
‖Ukτ (τ)‖2

2 dτ + J (uk(t)) = J (u0k) < d, 0 ≤ t < Tmax. (5.3)

Next, we shall show that uk(t) ∈ W for all t ∈ [0, Tmax) for k sufficiently large. Indeed, by
contradiction, we assume that there exists t0 ∈ (0, Tmax) such that uk(t) ∈ W for all t ∈ [0, t0)
and uk(t0) ∈ ∂W , that is,

J (uk(t0)) = d or I (uk(t0)) = 0.

On the other hand, thanks to (5.3), we must have I (uk(t0)) = 0 which implies uk(t0) ∈ N and
therefore

J (uk(t0)) ≥ inf
u∈N

J(u) = d.

This contradicts to (5.3). Hence, we get uk(t) ∈ W for all t ∈ [0, Tmax). From this fact and (5.2),
we arrive at

d
dt
‖uk(t)‖m′

m′ = −I (uk(t)) ≤ 0.
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On the other hand, by virtue of Lemma 2.7, one has

uk is bounded in L∞
(

0, Tmax; W1,p
0 (Ω)

)
. (5.4)

In addition, since I (uk(t)) ≥ 0, we deduce from (2.5) that

J (uk(t)) ≥
(

1
p
− 1

γ

)
‖∇uk(t)‖p

p +
m′ − 1

γ2 ‖uk(t)‖γ
γ .

Hence, (5.3) leads to∫ t

0
‖Ukτ (τ)‖2

2 dτ +

(
1
p
− 1

γ

)
‖∇uk(t)‖p

p +
m′ − 1

γ2 ‖uk(t)‖γ
γ < d.

This inequality allows us to take Tmax = T for arbitrary T > 0. The rest of the proof is similar
to the proof of Theorem 3.3. Hence, u is a global solution of (1.7) and u(t) ∈ W for t ≥ 0.

Step 2: Decay estimates

We shall need the following lemma.

Lemma 5.1 (see [22]). Let f : R+ → R+ be a nonincreasing function and σ is a nonnegative constant
such that ∫ +∞

t
f 1+σ(s)ds ≤ 1

ω
f σ(0) f (t), ∀t ≥ 0.

Then we have

(a) f (t) ≤ f (0)e1−ωt, for all t ≥ 0, whenever σ = 0,

(b) f (t) ≤ f (0)
( 1+σ

1+ωσt

)1/σ, for all t ≥ 0, whenever σ > 0.

We first construct subsets of W which are invariant under the flow of (1.7). For any
ε ∈ (0, d), let

W ε :=
{

u ∈ W : J(u) ≤ d− ε
}

.

Since the boundedness of W , we get immediately that for any ε ∈ (0, d), the set W ε is closed
and bounded. In addition, the invariant ofW ε under the flow of (1.7) is given by the following
lemma which its proof is just a consequence of Step 1.

Lemma 5.2. Suppose parameters m, p and q satisfy conditions in Theorem 3.4. Furthermore, assume
that ε ∈ (0, d) and u0 ∈ W ε. Then the local solution u(t) of (1.7) is global and u(t) ∈ W ε for t ≥ 0.

Since u0 ∈ W ⊂ W ε for ε > 0, it follows from Lemma 5.2 that

u(t) ∈ W ε for t ≥ 0.

It is worth noting that if there exists first T > 0 such that I (u(T)) = 0, then we get a contra-
diction

d = inf
u∈N

J(u) ≤ J(u(T)) ≤ d− ε.
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Hence, one must have I (u(t)) > 0 for t > 0. On the other hand, by Lemma 2.5, there exists
λ∗ > 1 such that I (λ∗u(t)) = 0 which implies

d ≤ J (λ∗u(t)) =
(

1
p
− 1

γ

)
‖∇ (λ∗u(t))‖p

p +
1

γ2 ‖λ∗u(t)‖
γ
γ

≤ λ
γ
∗

((
1
p
− 1

γ

)
‖∇u(t)‖p

p +
1

γ2 ‖u(t)‖
γ
γ

)
. (5.5)

While I (u(t)) > 0 also implies(
1
p
− 1

γ

)
‖∇u(t)‖p

p +
1

γ2 ‖u(t)‖
γ
γ ≤ J(u(t)) ≤ J(u0) < d. (5.6)

Combining (5.5) and (5.6), we obtain λ
γ
∗ ≥ d/J(u0) > 1. By this fact and the following identity

λ
p
∗ I (u(t)) = I (λ∗u(t)) +

(
λ

γ
∗ − λ

p
∗
)
‖∇u(t)‖p

p +
(
m′ − 1

)
λ

γ
∗ log λ∗ ‖u(t)‖γ

γ

=
(
λ

γ
∗ − λ

p
∗
)
‖∇u(t)‖p

p +
(
m′ − 1

)
λ

γ
∗ log λ∗ ‖u(t)‖γ

γ ,

we get

I (u(t)) ≥
(

λ
γ−p
∗ − 1

)
‖∇u(t)‖p

p +
(
m′ − 1

)
λ

γ−p
∗ log λ∗ ‖u(t)‖γ

γ

≥
[(

d
J(u0)

) γ−p
γ

− 1

]
‖∇u(t)‖p

p +
(
m′ − 1

) ( d
J(u0)

) γ−p
γ

log
(

d
J(u0)

) 1
γ

‖u(t)‖γ
γ . (5.7)

On the other hand, by virtue of parametric form of logarithmic Gagliardo–Nirenberg inequal-
ity, we obtain

I (u(t)) ≥
[

1− (m′ − 1)
µr
γp

]
‖∇u(t)‖p

p

− m′ − 1
γ
‖u(t)‖γ

γ

[
µ

p− r
p

(
‖u(t)‖γ

γ

) r(γ−p)
γ(p−r)

+ Cr
m,p,γ,µ + log

(
‖u(t)‖γ

γ

)]
, (5.8)

with noting that γ ≥ p since (m′ − 1)(q− 1) ≥ p− 1. By choosing µ = γp/2r(m′ − 1) and
r = p/2, we derive from (5.6) and (5.8) that

I(u(t)) ≥ 1
2
‖∇u(t)‖p

p −
m′ − 1

γ
C1 ‖u(t)‖γ

γ . (5.9)

It follows from (5.7) and (5.9) that there is a positive constant C such that

I(u(t)) ≥ C
(
‖∇u(t)‖p

p + ‖u(t)‖
γ
γ

)
. (5.10)

From the energy identity ∫ T

t
I (u(τ)) dτ = ‖u(t)‖m′

m′ − ‖u(T)‖
m′
m′ ,

and Poincaré’s inequality, we deduce from (5.10) that∫ T

t
‖∇u(τ)‖p

p dτ ≤ 1
ω
‖∇u0‖p−m′

p ‖∇u(t)‖m′
p for 0 ≤ t ≤ T,
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where ω = CS−m′
p,m′ ‖∇u0‖p−m′

p > 0. Let T → +∞ and apply the Lemma 5.1 with

σ = (p−m′)/m′ and f (t) = ‖∇u(t)‖m′
p , we get

f (t) ≤ f (0)
(

p
m′ + ω(p−m′)t

) m′
p−m′

for t ≥ 0.

The proof is complete.

6 Proof of Theorem 3.5

First, we need the following lemma which its proof is similar to [15, 26, 27, 31]. So we omit it.

Lemma 6.1. Let m, p and q satisfy conditions in Theorem 3.5 and u0 ∈ U , then weak solution u(t) to
problem (1.7) satisfies

u(t) ∈ U , for t ∈ [0, Tmax) .

We next give the proof of Theorem 3.5. By contradiction arguments, we assume that u(t)
is global solution, that is, Tmax = +∞. Then we define the function F : [0,+∞)→ R+ by

F(t) =
∫ t

0
‖u(τ)‖m′

m′ dτ. (6.1)

A direct computation yields

F′(t) =
∫

Ω
|u(t)|m

′
dx, and F′′(t) = m′

∫
Ω
|u(t)|m

′−2 u(t)ut(t)dx = − m′

m′ − 1
I (u(t)) . (6.2)

Since γ ≥ p and u0 ∈ U , by Lemma 6.1, we get u(t) ∈ U for all t ≥ 0 which implies u(t) 6= 0
and I (u(t)) < 0 due to Lemma 2.7. On the other hand, by virtue of Lemma 2.5, there is
λ∗ ∈ (0, 1) such that I (λ∗u(t)) = 0. As a consequence, one has

d ≤ J (λ∗u(t)) =
(

1
p
− 1

γ

)
λ

p
∗ ‖∇u(t)‖p

p +
m′ − 1

γ2 λ
γ
∗ ‖u(t)‖γ

γ

<

(
1
p
− 1

γ

)
‖∇u(t)‖p

p +
m′ − 1

γ2 ‖u(t)‖γ
γ , when γ ≥ p. (6.3)

Combining (2.5), (3.2), (6.2) and (6.3), we obtain

F′′(t) = − m′γ
m′ − 1

J (u(t)) +
m′γ

m′ − 1

[(
1
p
− 1

γ

)
‖∇u(t)‖p

p +
m′ − 1

γ2 ‖u(t)‖γ
γ

]
≥ m′γ

m′ − 1

∫ t

0
‖Uτ (τ)‖2

2 dτ +
m′γ

m′ − 1
(d− J (u0)) . (6.4)

Since J (u0) ≤ d, this implies that F′(t) is an increasing function. In addition, we have

0 ≤ F′(t)− F′(0) = ‖u(t)‖m′
Lm′ − ‖u0‖m′

Lm′ = m′
∫ t

0

∫
Ω
|u(τ)|m

′−2 u(τ)uτ(τ)dxdτ

=
m′√

m′ − 1

∫ t

0

∫
Ω
|u(τ)|

m′
2 Uτ (τ) dxdτ

≤ m′√
m′ − 1

∫ t

0
‖u(τ)‖

m′
2

m′ ‖Uτ (τ)‖2 dτ

≤ m′√
m′ − 1

(∫ t

0
‖u(τ)‖m′

m′ dτ

) 1
2
(∫ t

0
‖Uτ (τ)‖2

2 dτ

) 1
2

. (6.5)
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We deduce from (6.1), (6.4) and (6.5) that

F(t)F′′(t) ≥ γm′

m′ − 1

∫ t

0
‖Uτ(τ)‖2

2 dτ
∫ t

0
‖u(τ)‖m′

m′ dτ +
γm′

m′ − 1
(d− J (u0)) F(t)

≥ γ

m′
(

F′(t)− F′(0)
)2

+
γm′

m′ − 1
(d− J (u0)) F(t). (6.6)

In addition, it follows from (6.5) that

F(t) ≥ t ‖u0‖m′
m′ for all t ≥ 0. (6.7)

We now fix t0 > 0 and define the function

G(t) = F(t) + (T − t) ‖u0‖m′
m′ for t ∈ [0, T].

Here T is chosen sufficiently large. Then we can derive form (6.6)–(6.7) that

G(t)G′′(t)− γ

m′
(
G′(t)

)2 ≥ γm′

m′ − 1
(d− J(u0)) ‖u0‖m′

m′ t0, ∀t ∈ [t0, T] . (6.8)

Since m′ < p ≤ γ, we have γ/m′ > 1. By setting y(t) = G(t)−
γ−m′

m′ , this inequality implies y to
be a concave function on [t0, T]. Hence, y(t) reaches zero in finite time, that is, there is T∗ > 0
such that limt→T−∗ G(t) = +∞. As a consequence, we get

lim
t→T−∗

‖u(t)‖m′
m′ = +∞ and lim

t→T−∗
‖∇u(t)‖p

p = +∞.

The proof is complete.

7 Proof of Theorem 3.8

We shall need the following lemma.

Lemma 7.1. Let u0 ∈W1,p
0 (Ω) \{0} with J(u0) = d. Then weak solution u to problem (1.7) satisfies:

(i) I (u(t)) > 0 for 0 ≤ t < Tmax provides that I(u0) > 0;

(ii) I (u(t)) < 0 for 0 ≤ t < Tmax provides that I(u0) < 0.

Proof. (i) By contradiction, assume that there exists t1 ∈ (0, Tmax) such that

I (u(t)) > 0 for 0 ≤ t < t1 and I (u(t1)) = 0.

By the fact that 〈
d
dt

ϕ(u(t)), u(t)
〉

= −I ((u(t))) < 0 for 0 ≤ t < t1.

and the estimate ∣∣∣∣〈 d
dt

ϕ(u(t)), u(t)
〉∣∣∣∣ = m′

√
m′ − 1
2

∫
Ω
|Ut(t)| |u(t)|

m′
2 dx

≤ m′
√

m′ − 1
2

‖Ut(t)‖2 ‖u(t)‖
m′
2

m′ ,
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we obtain
‖u(t)‖m′ > 0 and ‖Ut(t)‖2 > 0, 0 ≤ t < t1.

Hence,
∫ t

0 ‖Uτ(τ)‖2
2 dτ is strictly positive for 0 < t ≤ t1 and

J(u(t)) < J(u0)−
∫ t

0
‖Uτ(τ)‖2

2 dτ < d, for 0 < t ≤ t1. (7.1)

On the other hand, by analogous arguments as in the proof of Lemma 2.6, we deduce from
I (u(t1)) = 0 that ‖∇u(t1)‖p > 0, that is, u(t1) ∈ N which implies a contradiction with (7.1)

d = inf
u∈N

J(u) ≤ J(u(t1)).

(ii) Also using contradiction arguments, suppose that there exists t2 ∈ (0, Tmax) such that

I (u(t)) < 0 for 0 ≤ t < t2 and I (u(t2)) = 0.

Similar to (i), we get
∫ t

0 ‖Uτ(τ)‖2
2 dτ is strictly positive for 0 < t ≤ t2 and

J(u(t)) < J(u0)−
∫ t

0
‖Uτ(τ)‖2

2 dτ < d, for 0 < t ≤ t2.

Using again the implementation I(u(t2)) = 0 implies ‖∇u(t2)‖p > 0, we get u(t2) ∈ N and a
contradiction

d = inf
u∈N

J(u) ≤ J(u(t2)) < d.

Hence, the proof is complete.

We now prove the Theorem 3.8 by two following steps.

Step 1: Global existence and decay estimate for J(u0) = d and I(u0) > 0

Take a sequence of real numbers {λk} ⊂ (0, 1) satisfying limk→∞ λk = 1. By Lemma 2.5, there
exists λ∗ := λ∗(u0) ≥ 1 such that I (λ∗u0) = 0 and

I (λku0) > 0 and J (λku0) < J(u0) ≤ d.

So, by putting u0k = λku0 ∈W1,p
0 (Ω) \{0}, then we get u0k ∈ W . For each k, we now consider

the initial-boundary value problem
∂t ϕ(u)− ∆pu = (m′ − 1) fγ (u) , x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0k(x), x ∈ Ω.

(7.2)

By virtue of Lemma 5.2, we obtain a sequence of global weak solutions {uk} to (7.2) satisfying
uk(t) ∈ W and

d
dt
‖uk(t)‖m′

m′ = −I (uk(t)) and
∫ t

0
‖Ukτ(τ)‖2

2 dτ + J (uk(t)) ≤ J (u0k) .

As in the proof of Theorem 3.4, we obtain a global weak solution u such that u(t) ∈ W for
t ≥ 0.
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It remains to prove the decay of solution u(t). Since u0 ∈ W1,p
0 (Ω) \{0} with J(u0) = d

and I(u0) > 0, by virtue of Lemma (7.1), we get

I (u(t)) > 0, for t ≥ 0.

This implies ‖u(t)‖m′ > 0 and ‖Ut(t)‖2 > 0 for t ≥ 0. As a results,
∫ t

0 ‖Uτ(τ)‖2
2 dτ is strictly

positive for all t ≥ 0. Taking t1 > 0, then I (u(t1)) > 0 and

J (u(t1)) ≤ J(u0)−
∫ t1

0
‖Uτ(τ)‖2

2 dτ < d.

Hence, u(t1) ∈ W . If we take t = t1 as the initial time, then by analogous arguments in Step 2
in the proof of Theorem 3.4, we possess (3.7).

Step 2: Blow up for J(u0) = d and I(u0) < 0

Let u0 ∈W1,p
0 (Ω) \{0} with J(u0) = d and I(u0) < 0. Then, by virtue of Lemma 7.1, we get

I (u(t)) < 0 for 0 ≤ t < Tmax.

This implies ‖u(t)‖m′ > 0 and ‖Ut(t)‖2 > 0 for 0 ≤ t < Tmax. As a results,
∫ t

0 ‖Uτ(τ)‖2
2 dτ is

strictly positive for all 0 ≤ t < Tmax. Taking t2 ∈ (0, Tmax), then I (u(t2)) > 0 and

J (u(t2)) ≤ J(u0)−
∫ t2

0
‖Uτ(τ)‖2

2 dτ < d.

Hence, u(t2) ∈ U . If we take t = t2 as the initial time, then by using similar arguments as in
the proof of Theorem 3.5, we imply that weak solution u(t) of the probelm (1.7) blows up in
finite time.
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