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al. Powstańców Warszawy 8, 35–959 Rzeszów, Poland

Received 14 March 2018, appeared 25 September 2018

Communicated by Michal Fečkan

Abstract. The paper deals with the study of the existence of solutions of a quadratic in-
tegral equation of Volterra–Stieltjes type. We are looking for solutions in the class of real
functions continuous and bounded on the real half-axis R+ and converging to proper
limits at infinity. The quadratic integral equations considered in the paper contain, as
special cases, a lot of nonlinear integral equations such as Volterra–Chandrasekhar or
Volterra–Wiener–Hopf equations, for example. In our investigations we use the tech-
nique associated with measures of noncompactness and the Darbo fixed point theorem.
Particularly, we utilize a measure of noncompactness related to the class of functions in
which solutions of the integral equation in question are looking for.
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1 Introduction

The theory of integral equations creates an important branch of nonlinear analysis. Both
linear and nonlinear integral equations are applied in the description of several problems
encountered in natural and exact sciences. Especially, a lot of problems of physics, mathemat-
ical physics, mechanics, engineering, electrochemistry, viscoelasticity, control theory, transport
theory etc. can be modelled with help of integral equations of various types (cf. [11, 12, 14–16,
18–20], for instance).

Recently, a lot of interest has been directed to applications of the so-called fractional inte-
gral equations since those equations find a lot of applications in important real world topics
connected with kinetic theory of gases, radiative transfer, in the theory of diffraction and so
on (see [5] and references therein).
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Our goal in this paper is to consider the existence of solutions of a quadratic Volterra–
Stieltjes integral equations in the class of real functions defined and continuous on the real
half-axis and having finite limits at infinity. It is well-known that Volterra–Stieltjes integral
equations generalize a lot of integral equations considered in nonlinear analysis [4,5,7,19]. On
the other hand the so-called quadratic integral equations describe several events of the theory
of radiative transfer, queuing theory, kinetic theory of gases and some others [3, 4, 11, 15].

Thus, quadratic integral equations of Volterra–Stieltjes type link the theory of (ordinary)
Volterra–Stieltjes integral equations and the theory of quadratic integral equations and enable
us to generate results on the existence of solutions of nonlinear integral equations which
contains both types of integral equations mentioned before.

As we pointed out above, in our considerations we will look for conditions guaranteeing
the existence of solutions of quadratic integral equations in the class of functions which are
defined, continuous on the interval [0, ∞) and converging to finite limits at infinity. Similar
investigations were conducted for nonlinear Volterra–Stieltjes integral equations in [7]. Thus,
the investigations of this paper extend and generalize those carried out in [7].

Let us notice that in paper [7] we used the technique associated with compact integral
operators and the Schauder fixed point principle. It turns out that those tools are no longer
sufficient in the study conducted in this paper and this causes that we will use the technique
connected with the theory of measures of noncompactness. More precisely, we will apply a
measures of noncompactness in the space of functions continuous and bounded on the real
half-axis R+ and associated with the class of functions converging to proper limits at infinity.

The results obtained in the paper generalize a lot of ones obtained earlier in papers [4,5,7].
Particularly, these results create an essential extension of those obtained in [7].

2 Notation, definitions and auxiliary facts

In this section we establish the notation which will be used throughout this paper and we
recollect a few facts which will be utilized in our considerations.

By the symbol R we will denote the set of real numbers while R+ stands for the set of
nonnegative real numbers i.e., R+ = [0, ∞). If E is a Banach space with the norm ‖ · ‖ then
the symbol B(x, r) denotes the closed ball centered at x and with radius r. We will write Br to
denote the ball B(θ, r), where θ is the zero vector in E.

If X is an arbitrary subset of E then X stands for the closure of X and Conv X denotes
the closed convex hull of X. We use the standard notation X + Y, λX to denote the classical
algebraic operations on subset of E.

In what follows we denote by ME the family of all nonempty and bounded sets in E and
by NE its subfamily consisting of relatively compact sets.

We will accept the following axiomatic definition of the concept of a measure of noncom-
pactness [8].

Definition 2.1. A function µ : ME → R+ is called the measure of noncompactness in the space E
if it satisfies the following conditions:

1◦ The family ker µ = {X ∈ME : µ(X) = 0} is nonempty and ker µ ⊂ NE.

2◦ X ⊂ Y ⇒ µ(X) 6 µ(Y).

3◦ µ(X) = µ(X).
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4◦ µ(Conv X) = µ(X).

5◦ µ(λX + (1− λ)Y) 6 λµ(X) + (1− λ)µ(Y) for λ ∈ [0, 1].

6◦ If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, . . . and
limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1 Xn is nonempty.

The family ker µ appeared in axiom 1◦ is called the kernel of the measure µ. If ker µ = NE

then the measure of noncompactness µ is called full.
It is worthwhile mentioning that the set X∞ from axiom 6◦ is a member of the kernel ker µ.

Indeed, it is a simple consequence of the inequality µ(X∞) 6 µ(Xn) for any n = 1, 2, . . . This
yields that µ(X∞) = 0 which means that X∞ ∈ ker µ. This simple observation plays a crucial
role in applications of the technique associated with measures of noncompactness.

Let us recall (cf. [8]) that the measure of noncompactness µ is called sublinear if it satisfies
additionally the following conditions:

7◦ µ(λX) = |λ|µ(X) for λ ∈ R.

8◦ µ(X + Y) 6 µ(X) + µ(Y).

If it satisfies the condition

9◦ µ(X ∪Y) = max{µ(X), µ(Y)}

then it is referred to as the measure with maximum property.
A full and sublinear measure of noncompactness µ which has the maximum property is

called regular [8].
One of the most important example of a measure of noncompactness is the function χ :

ME → R+ defined by the formula

χ(X) = inf {ε > 0 : X has a finite ε-net in E} .

The function χ is called the Hausdorff measure of noncompactness. It can be shown that χ is a
regular measure having some additional properties (cf. [8]).

Let us pay attention to the fact that measures of noncompactness are very useful in several
applications [1, 6, 8, 9]. Especially, the following fixed point theorem, called the fixed point
theorem of Darbo type [13] plays an essential role in applications.

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Assume
that T : Ω → Ω is a continuous operator and there exists a constant k ∈ [0, 1) such that µ(TX) 6
kµ(X) for any nonempty subset X of Ω, where µ is a measure of noncompactness in E. Then T has at
least one fixed point in the set Ω.

It can be shown that the set Fix T of fixed points of the operator T belonging to Ω is
a member of the kernel ker µ. This facts enables us to characterize solutions of considered
operator equations (cf. [8]).

As we pointed out above the Hausdorff measure χ seems to be the most convenient and
applicable measure of noncompactness. However, the use of χ requires to construct a formula
expressing χ in connection with the structure of the Banach space E. It turns out that such
formulas are only known in a few Banach spaces (cf. [1, 8, 9]). By these regards in practise we
usually apply measures of noncompactness which are not full but which are subject to axioms
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of Definition 2.1. The use of such measures of noncompactness is very fruitful since it allows
us to characterize solutions of various operator equations which are investigated with help of
the technique of measures of noncompactness.

In what follows we will use a measure of noncompactness of such a type in a Banach space
BC(R+) consisting of functions x : R+ → R which are continuous and bounded on R+. The
space BC(R+) is equipped with the classical supremum norm ‖x‖ = sup

{
|x(t)| : t ∈ R+

}
.

To construct the announced measure of noncompactness in the space BC(R+) let us fix a
nonempty and bounded subset X of the space BC(R+) i.e., take X ∈ MBC(R+). Next, choose
T > 0, ε > 0 and an arbitrary function x ∈ X. Let us define the modulus of continuity of the
function x in the interval [0, T] by putting:

ωT(x, ε) = sup
{
|x(t)− x(s)| : t, s ∈ [0, T], |t− s| 6 ε

}
.

Further, we define the following quantities (cf. [8, 10]):

ωT(X, ε) = sup
{

ωT(x, ε) : x ∈ X
}

,

ωT
0 (X) = lim

ε→0
ωT(X, ε),

ω0(X) = lim
T→∞

ωT
0 (X).

Next, we consider the quantity b(X) defined in the following way

b(X) = lim
T→∞

{
sup
x∈X

{
sup{|x(t)− x(s)| : t, s > T}

}}
.

Finally, we define the function µ = µ(X) by putting

µ(X) = ω0(X) + b(X). (2.1)

It can be shown that µ is a measure of noncompactness in the space BC(R+) which is sublinear
and has the maximum property. The measure µ is not full [10].

We can show that the kernel ker µ consists of all bounded subsets X of the space BC(R+)

such that functions from X are locally equicontinuous on R+ and tend to limits at infinity
with the same rate, that means, functions from X tend to limits at infinity uniformly with
respect to the set X.

In the sequel of this section we present a few facts concerning the concept of the variation of
a function (cf. [2]). Thus, let us assume that x is a real function defined on a fixed interval [a, b].
Then the symbol

∨b
a x will denote the variation of the function x on the interval [a, b]. If

∨b
a x is

finite we say that x is of bounded variation on the interval [a, b]. Similarly, if we have a function
u(t, s) = u : [a, b] × [c, d] → R, then by

∨q
t=p u(t, s) we denote the variation of the function

t 7→ u(t, s) on the interval [p, q] ⊂ [a, b], where s is a fixed number in [c, d]. Analogously, we
define the quantity

∨q
s=p u(t, s).

Now, let us assume that x and ϕ are real functions defined on the interval [a, b]. Then, we
can define the Stieltjes integral (in the Riemann–Stieltjes sense)∫ b

a
x(t)dϕ(t) (2.2)

of the function x with respect to the function ϕ, under appropriate assumptions on the func-
tions x and ϕ (cf. [2,17]). If integral (2.2) does exists we say that x is Stieltjes integrable on the
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interval [a, b] with respect to ϕ. For example, if we assume that x is continuous and ϕ is of
bounded variation on [a, b] then x is Stieltjes integrable on [a, b] with respect to ϕ.

For other conditions guaranteeing the Stieltjes integrability we refer to [2, 17].
The below quoted lemmas present the properties of the Stieltjes integral which will be

utilized in our further considerations [2].

Lemma 2.3. If x is Stieltjes integrable on the interval [a, b] with respect to a function ϕ of bounded
variation, then ∣∣∣∣∫ b

a
x(t)dϕ(t)

∣∣∣∣ 6 ∫ b

a
|x(t)| d

(
t∨
a

ϕ

)
.

Lemma 2.4. Let x1, x2 be Stieltjes integrable on the interval [a, b] with respect to a nondecreasing
function ϕ such that x1(t) 6 x2(t) for t ∈ [a, b]. Then∫ b

a
x1(t)dϕ(t) 6

∫ b

a
x2(t)dϕ(t).

Now, let us notice that we can also consider the Stieltjes integrals of the form∫ b

a
x(s)dsg(t, s), (2.3)

where g : [a, b]× [a, b] → R and the symbol ds indicates the integration with respect to the
variable s. Details concerning the integral of form (2.3) will be provided later.

3 Main results

The main object of the study in this paper is the solvability of the quadratic Volterra–Stieltjes
integral equation having the form

x(t) = a(t) + f
(
t, x(t)

) ∫ t

0
v
(
t, s, x(s)

)
dsK(t, s), (3.1)

where t ∈ R+. We will consider Eq. (3.1) in the space BC(R+) described in the previous
section.

Our goal is to show that integral equation (3.1) has at least one solution in the space
BC(R+) which is convergent at infinity, obviously to a finite limit.

For our further purposes we denote by ∆ the triangle ∆ =
{
(t, s) : 0 6 s 6 t

}
.

Now, we formulate assumptions under which we will consider the solvability of Eq. (3.1).
Namely, we impose the following assumptions.

(i) The function a = a(t) is a member of the space BC(R+) and there exists the limit
limt→∞ a(t).

(ii) The function f (t, x) = f : R+ × R → R is continuous and there exists a function
k(r) = k : R+ → R+ which is nondecreasing and continuous on R+ with the property
k(0) = 0 and such that for each r > 0 the following inequality is satisfied∣∣ f (t, x)− f (t, y)

∣∣ 6 k(r)|x− y|

for all x, y ∈ [−r, r] and for any t ∈ R+.
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(iii) The function t 7→ f (t, x) satisfies the Cauchy condition at infinity uniformly with re-
spect to the variable x belonging to any bounded interval i.e., the following condition is
satisfied

∀r>0 ∀ε>0 ∃T>0 ∀t,s>T ∀x∈[−r,r]
∣∣ f (t, x)− f (s, x)

∣∣ 6 ε. (3.2)

(iv) The function v(t, s, x) = v : ∆×R→ R is continuous and there exists a continuous and
nondecreasing function φ : R+ → R+ such that∣∣v(t, s, x)

∣∣ ≤ φ
(
|x|
)

for (t, s) ∈ ∆ and x ∈ R.

(v) The function v is uniformly continuous on the sets of the form ∆× [−r, r], for any r > 0.

(vi) The function K(t, s) = K : ∆→ R is continuous on ∆ and K(t, 0) = 0.

(vii) For any fixed t > 0 the function s 7→ K(t, s) has a bounded variation on the interval [0, t]
and the function t 7→ ∨t

s=0 K(t, s) is bounded on R+.

(viii) For every ε > 0 there exists δ > 0 such that for all t1, t2 ∈ R+, t1 < t2, t2 − t1 6 δ, the
following inequality holds

t1∨
s=0

[
K(t2, s)− K(t1, s)

]
6 ε.

Remark 3.1. Observe that from assumption (iii), on the basis of some classical facts from
mathematical analysis, we conclude that for any fixed x ∈ R there exists a finite limit

lim
t→∞

f (t, x).

Particularly, there exists the finite limit limt→∞ f (t, 0). Hence in view of assumption (ii) we
infer that the constant F defined as

F = sup
{
| f (t, 0)| : t ∈ R+}

is finite.

Remark 3.2. Keeping in mind assumption (vii) we infer that K < ∞, where K is the constant
defined by the equality

K = sup
{ t∨

s=0

K(t, s) : t ∈ R+

}
.

Now, we formulate our further assumptions.

(ix) The following equalities hold:

lim
T→∞

{
sup

[
t∨

τ=s
K(t, τ) : T 6 s < t

]}
= 0,

lim
T→∞

{
sup

[
s∨

τ=0

[
K(t, τ)− K(s, τ)

]
: T 6 s < t

]}
= 0,

lim
T→∞

{
sup

[∣∣v(t, τ, y)− v(s, τ, y)
∣∣ : t, s > T, τ ∈ R+, τ 6 s, τ 6 t, y ∈ [−r, r]

]}
= 0,

for each fixed r > 0.
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(x) There exists a number r0 satisfying the inequality

‖a‖+ K
(
rk(r) + F

)
φ(r) 6 r,

such that Kk(r0)φ(r0) < 1.

Now we are prepared to formulate the main result of the paper concerning the solvability
of Eq. (3.1).

Theorem 3.3. Under the assumptions (i)–(x), there exists at least one solution x = x(t) of Eq. (3.1)
in the space BC(R+) converging to a finite limit at infinity.

Proof. For further purposes let us consider the operators F, V, Q defined on the space BC(R+)

in the following way:
(Fx)(t) = f

(
t, x(t)

)
,

(Vx)(t) =
∫ t

0
v
(
t, s, x(s)

)
dsK(t, s),

(Qx)(t) = a(t) + (Fx)(t)(Vx)(t),

(3.3)

for t ∈ R+. Obviously Eq. (3.1) can be written in the form x(t) = (Qx)(t).
Now, let us fix arbitrarily a function x ∈ BC(R+). We are going to show that the function

Qx is continuous on the interval R+.
To this end fix arbitrarily T > 0 and ε > 0. Choose numbers t, s ∈ [0, T] with |t− s| 6 ε.

Without loss of generality we can assume that s < t. Then, taking into account Lemmas 2.3
and 2.4, we obtain:∣∣(Vx)(t)− (Vx)(s)

∣∣ 6 ∣∣∣∣∫ t

0
v
(
t, τ, x(τ)

)
dτK(t, τ)−

∫ s

0
v
(
t, τ, x(τ)

)
dτK(t, τ)

∣∣∣∣
+

∣∣∣∣∫ s

0
v
(
t, τ, x(τ)

)
dτK(t, τ)−

∫ s

0
v
(
t, τ, x(τ)

)
dτK(s, τ)

∣∣∣∣
+

∣∣∣∣∫ s

0
v
(
t, τ, x(τ)

)
dτK(s, τ)−

∫ s

0
v
(
s, τ, x(τ)

)
dτK(s, τ)

∣∣∣∣
6

∣∣∣∣∫ t

s
v
(
t, τ, x(τ)

)
dτK(t, τ)

∣∣∣∣+ ∣∣∣∣∫ s

0
v
(
t, τ, x(τ)

)
dτ

[
K(t, τ)− K(s, τ)

]∣∣∣∣
+

∣∣∣∣∫ s

0

[
v
(
t, τ, x(τ)

)
− v
(
s, τ, x(τ)

)]
dτK(s, τ)

∣∣∣∣
6
∫ t

s

∣∣v(t, τ, x(τ)
)∣∣ dτ

 τ∨
p=0

K(t, p)


+
∫ s

0

∣∣v(t, τ, x(τ)
)∣∣ dτ

 τ∨
p=0

[
K(t, p)− K(s, p)

]
+
∫ s

0

∣∣v(t, τ, x(τ)
)
− v
(
s, τ, x(τ)

)∣∣ dτ

 τ∨
p=0

K(s, p)


6 φ

(
‖x‖

) ∫ t

s
dτ

 τ∨
p=0

K(t, p)

+ φ
(
‖x‖

) ∫ s

0
dτ

 τ∨
p=0

[
K(t, p)− K(s, p)

]
+
∫ s

0
ω1,T
‖x‖(v, ε)dτ

 τ∨
p=0

K(s, p)

 (3.4)
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where we denoted

ω1,T
β (v, ε) = sup

{∣∣v(t, τ, x)− v(s, τ, x)
∣∣ : t, s, τ ∈ [0, T], |t− s| 6 ε, x ∈ [−β, β]

}
,

for an arbitrary number β > 0.
Further, from estimate (3.4) we get:

∣∣(Vx)(t)− (Vx)(s)
∣∣ 6 φ

(
‖x‖

) t∨
τ=s

K(t, τ)

+ φ
(
‖x‖

) s∨
τ=0

[
K(t, τ)− K(s, τ)

]
+ ω1,T

‖x‖(v, ε)
s∨

τ=0

K(s, τ).

(3.5)

Hence, keeping in mind that ω1,T
‖x‖(v, ε)→ 0 as ε→ 0 and taking into account assumptions

(vii), (viii) and Lemmas 2.3 and 2.4, we infer that the function Vx is continuous on the interval
[0, T]. Since T was chosen arbitrarily this yields the continuity of the function Vx on the
interval R+.

On the other hand let us observe that from assumption (ii) stems the following estimate∣∣(Fx)(t)− (Fx)(s)
∣∣ 6 ∣∣ f (t, x(t)

)
− f

(
t, x(s)

)∣∣+ ∣∣ f (t, x(s)
)
− f

(
s, x(s)

)∣∣
6 k
(
‖x‖

)
|x(t)− x(s)|+ ω1,T

‖x‖( f , ε)
(3.6)

where we denoted

ω1,T
β ( f , ε) = sup

{∣∣ f (t, x)− f (s, x)
∣∣ : t, s ∈ [0, T], |t− s| 6 ε, x ∈ [−β, β]

}
for an arbitrary β > 0.

It is obvious that ω1,T
β ( f , ε)→ 0 as ε→ 0 which is a consequence of assumption (iii). Thus,

joining this fact with estimate (3.6) we conclude that the function Fx is continuous on the
interval [0, T]. The arbitrariness of T implies the continuity of the function Fx on the interval
R+.

Finally, taking into account representation (3.3) and assumption (i) we conclude that the
function Qx is continuous on R+.

Further on, for a fixed function x ∈ BC(R+) and for arbitrary t ∈ R+, in virtue of our
assumptions and Lemmas 2.3 and 2.4, we obtain:

∣∣(Qx)(t)
∣∣ 6 ∣∣a(t)∣∣+ ∣∣∣ f (t, x(t)

)∣∣∣ ∣∣∣∣∫ t

0
v
(
t, τ, x(τ)

)
dτK(t, τ)

∣∣∣∣
6 ‖a‖+

[∣∣ f (t, x(t)
)
− f (t, 0)

∣∣+ ∣∣ f (t, 0)
∣∣] ∫ t

0

∣∣∣v(t, τ, x(τ)
)∣∣∣dτ

 τ∨
p=0

K(t, p)


6 ‖a‖+

[
k
(
‖x‖

)∣∣x(t)∣∣+ F
] ∫ t

0
φ
(
‖x‖

)
dτ

 τ∨
p=0

K(t, p)


6 ‖a‖+

[
‖x‖k

(
‖x‖

)
+ F

]
φ
(
‖x‖

) t∨
τ=0

K(t, τ)

6 ‖a‖+
[
‖x‖k

(
‖x‖

)
+ F

]
φ
(
‖x‖

)
K.



Solvability of a quadratic Volterra–Stieltjes integral equation 9

The above estimate shows that the function Qx is bounded on the interval R+ and yields the
inequality

‖Qx‖ 6 ‖a‖+
[
‖x‖k

(
‖x‖

)
+ F

]
Kφ
(
‖x‖

)
. (3.7)

Observe that linking the continuity of the function Qx with is boundedness established above
we infer that the operator Q transforms the space BC(R+) into itself. Moreover, in view of es-
timate (3.7) and assumption (x) we deduce that there exists a number r0 > 0 such that Q maps
the ball Br0

(
in the space BC(R+)

)
into itself. Apart from this we have that Kk(r0)φ(r0) < 1.

Now, we show that the operator Q is continuous on the ball Br0 . To this end fix ε > 0
and take arbitrary functions x, y ∈ Br0 such that ‖x − y‖ 6 ε. Then, in view of imposed
assumptions, for an arbitrary number t ∈ R+, we get∣∣(Fx)(t)− (Fy)(t)

∣∣ = ∣∣ f (t, x(t)
)
− f

(
t, y(t)

)∣∣∣
6 k(r0)

∣∣x(t)− y(t)
∣∣∣.

Hence we infer that
‖Fx− Fy‖ 6 k(r0)‖x− y‖ 6 k(r0)ε. (3.8)

Thus, the operator F is continuous on the ball Br0 .
Next, keeping in mind our assumptions, we obtain:

∣∣(Vx)(t)− (Vy)(t)
∣∣ 6 ∣∣∣∣∫ t

0

[
v
(
t, τ, x(τ)

)
− v
(
t, τ, y(τ)

)]
dτK(t, τ)

∣∣∣∣
6
∫ t

0

∣∣v(t, τ, x(τ)
)
− v
(
t, τ, y(τ)

)∣∣dτ

 τ∨
p=0

K(t, p)


6
∫ t

0
ω3

r0
(v, ε)dτ

 τ∨
p=0

K(t, p)


6 ω3

r0
(v, ε)

t∨
τ=0

K(t, τ) ≤ Kω3
r0
(v, ε),

(3.9)

where we denoted

ω3
r0
(v, ε) = sup

{∣∣v(t, τ, x)− v(t, τ, y)
∣∣ : t, τ ∈ R+, x, y ∈ [−r0, r0], |x− y| 6 ε

}
.

Notice that ω3
r0
( f , ε)→ 0 as ε→ 0 which follows immediately from assumption (v).

Now, combining estimates (3.8), (3.9) and representation (3.3) we infer that the operator Q
transforms continuously the ball Br0 into itself.

In what follows let us fix an arbitrary nonempty subset X of the ball Br0 . Next, fix numbers
T > 0 and ε > 0. Further, take a function x ∈ X and choose t, s ∈ [0, T] such that |t− s| 6 ε.
Without loss of generality we can assume that s < t. Then, in view of previously obtained
estimate (3.5), we get

∣∣(Vx)(t)− (Vx)(s)
∣∣ 6 φ

(
r0
) t∨

τ=s
K(t, τ)

+ φ
(
r0
) s∨

τ=0

[
K(t, τ)− K(s, τ)

]
+ ω1,T

r0
(v, ε)

s∨
τ=0

K(s, τ).

(3.10)
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Now, let us define two auxiliary functions M(ε) and N(ε) by putting:

M(ε) = sup

{
t1∨

τ=0

[
K(t2, τ)− K(t1, τ)

]
: t1, t2 ∈ R+, t1 < t2, t2 − t1 6 ε

}
,

N(ε) = sup

{
t2∨

τ=t1

K(t2, τ) : t1, t2 ∈ R+, t1 < t2, t2 − t1 6 ε

}
.

Observe that in virtue of assumption (viii) and Lemma 2.4 we have that M(ε) → 0 and
N(ε)→ 0 as ε→ 0. Moreover, from estimate (3.10) we obtain

ωT(Vx, ε) 6 φ(r0)
(

M(ε) + N(ε)
)
+ Kω1,T

r0
(v, ε). (3.11)

Further, utilizing (3.6), we arrive at the following estimate

ωT(Fx, ε) 6 k(r0)ω
T(x, ε) + ω1,T

r0
( f , ε), (3.12)

where the symbol ω1,T
r0 ( f , ε) was introduced earlier.

Finally for x ∈ X and for t, s ∈ [0, T], s < t, t− s 6 ε, on the basis of estimates (3.11), (3.12),
representation (3.3) and earlier obtained evaluations, we get:

∣∣(Qx)(t)− (Qx)(s)
∣∣ 6 |a(t)− a(s)|+

∣∣(Fx)(t)(Vx)(t)− (Fx)(s)(Vx)(s)
∣∣

6 |a(t)− a(s)|+
∣∣(Fx)(t)

∣∣∣∣(Vx)(t)− (Vx)(s)
∣∣

+
∣∣(Vx)(s)

∣∣∣∣(Fx)(t)− (Fx)(s)
∣∣

6 ωT(a, ε) +
[∣∣ f (t, x(t)

)
− f (t, 0)

∣∣+ ∣∣ f (t, 0)
∣∣]ωT(Vx, ε)

+ φ(r0)
t∨

τ=0

K(t, τ)ωT(Fx, ε)

6 ωT(a, ε) +
(
r0k(r0) + F

)
ωT(Vx, ε) + φ(r0)KωT(Fx, ε)

6 ωT(a, ε) +
(
r0k(r0) + F

){
φ(r0)

(
M(ε) + N(ε)

)
+ Kω1,T

r0
(v, ε)

}
+ Kφ(r0)

{
k(r0)ω

T(x, ε) + ω1,T
r0

( f , ε)
}

.

The above estimate yields the following one:

ωT(QX, ε) 6 ωT(a, ε) +
(
r0k(r0) + F

){
φ(r0)

(
M(ε) + N(ε)

)
+ Kω1,T

r0
(v, ε)

}
+ Kφ(r0)

{
k(r0)ω

T(X, ε) + ω1,T
r0

( f , ε)
}

.
(3.13)

Hence, keeping in mind earlier established properties of the quantities ω1,T
r0 (v, ε), ω1,T

r0 ( f , ε),
M(ε), N(ε) and taking into account the fact that ωT(a, ε) → 0 as ε → 0, from estimate (3.13)
we obtain

ωT
0 (QX) 6 Kφ(r0)k(r0)ω

T
0 (X).

Consequently, we get
ω0(QX) 6 Kφ(r0)k(r0)ω0(X). (3.14)

In what follows let us assume that x is an arbitrary function from the set X, X ⊂ Br0 , and
t, s ∈ R+ are such that t, s > T. Similarly as previously we may assume that s < t.
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For further purposes let us define the following auxiliary functions:

U(T) = sup

{
t∨

τ=s
K(t, τ) : T 6 s < t

}
,

W(T) = sup

{
s∨

τ=0

[
K(t, τ)− K(s, τ)

]
: T 6 s < t

}
.

Moreover, for an arbitrary fixed R > 0 let us put:

YR(T) = sup
{∣∣ f (t, x

)
− f

(
s, x
)∣∣ : T 6 s < t, x ∈ [−R, R]

}
,

ZR(T) = sup
{∣∣v(t, τ, x

)
− v
(
s, τ, x

)∣∣ : t, s > T, τ ∈ R+, τ 6 s, τ 6 t, x ∈ [−R, R]
}

.

Notice that in view of assumption (ix) we have that U(T) → 0 and W(T) → 0 as T → ∞.
Moreover, ZR(T)→ 0 as T → ∞ for any fixed R > 0. Finally, YR(T)→ 0 as T → ∞ which is a
consequence of assumption (iii).

Next, arguing similarly as in (3.5) and (3.6), for T 6 s < t and for x ∈ X we obtain∣∣(Qx)(t)− (Qx)(s)
∣∣

6 |a(t)− a(s)|+
[∣∣ f (t, x(t)

)
− f

(
t, 0
)∣∣+ ∣∣ f (t, 0

)∣∣]∣∣(Vx)(t)− (Vx)(s)
∣∣

+ φ(r0)
s∨

τ=0

K(s, τ)
∣∣(Fx)(t)− (Fx)(s)

∣∣
6 |a(t)− a(s)|+

(
r0k(r0) + F

){
φ(r0)

t∨
τ=s

K(t, τ) + φ(r0)
s∨

τ=0

[
K(t, τ)− K(s, τ)

]
+ sup

[∣∣v(t, τ, x
)
− v
(
s, τ, x

)∣∣ : τ ∈ R+, T 6 s < t, x ∈ [−r0, r0]
] s∨

τ=0

K(s, τ)
}

+ φ(r0)
s∨

τ=0

K(s, τ)
{

k(r0)
∣∣x(t)− x(s)

∣∣+sup
[∣∣ f (t, x

)
− f

(
s, x
)∣∣ : T 6 s < t, x ∈ [−r0, r0]

]}
6 sup

{
|a(t)− a(s)| : T 6 s < t

}
+
(
r0k(r0) + F

){
φ(r0)U(T) + φ(r0)W(T) + KZr0(T)

}
+ φ(r0)K

{
k(r0) sup

[∣∣x(t)− x(s)
∣∣ : T 6 s < t

]
+ Yr0(T)

}
.

Now, passing with T → ∞ and utilizing the above indicated properties of the quantities U(T),
W(T), Yr0(T) and Zr0(T), from the above estimate and assumption (i) we derive the following
inequality

b(QX) 6 Kφ(r0)k(r0)b(X), (3.15)

where the quantity b(X) was defined in Section 2.
Finally, combining inequalities (3.14) and (3.15) we deduce the following estimate

µ(QX) 6 Kφ(r0)k(r0)µ(X), (3.16)

where µ is the measure of noncompactness in the space BC(R+) defined by formula (2.1).
Now taking into account estimate (3.16), the second part of assumption (x) and applying

Theorem 2.2 we complete the proof.
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Let us observe that taking in Eq. (3.1) f (t, x) ≡ 1 we obtain the Volterra–Stieltjes integral
equation of the form

x(t) = a(t) +
∫ t

0
v
(
t, s, x(s)

)
dsK(t, s), (3.17)

for t ∈ R+. Thus, Eq. (3.17) is a special case of Eq. (3.1).
Let us notice that Eq. (3.17) was investigated in details in [7]. By these regards the results

obtained in this paper create the generalizations of those form [7].
It is also worthwhile mentioning that in [7] there were discussed a lot of other special cases

of Eq. (3.17).

4 Final remarks and an example

At the beginning of this section we recall a few remarks from paper [7] which can be also
adapted to Eq. (3.1) considered in this paper.

First of all let us indicate a condition being convenient in applications and guaranteeing
that the function K = K(t, s) appearing in Eq. (3.1) satisfies assumption (viii) of Theorem 3.3.
That assumption is crucial in our considerations (cf. also [5]).

To this end assume, similarly as before, that K : ∆ → R. Then, the mentioned condition
can be formulated in the following way.

(viii′) For arbitrary t1, t2 ∈ R+ with t1 < t2 the function s 7→ K(t2, s)− K(t1, s) is nondecreas-
ing (nonincreasing) on the interval [0, t1].

It can be shown [5] that if the function K(t, s) satisfies assumptions (viii′) and (vi) then for
arbitrarily fixed s ∈ R+ the function t 7→ K(t, s) is nondecreasing (nonincreasing) on the in-
terval [s, ∞]. Moreover, under assumptions (viii′) and (vi) the function K satisfies assumption
(viii).

Remark 4.1. It is worthwhile noticing [7] that under assumptions (vi) and (viii′) the second
equality in assumption (ix) can be replaced by the following requirement:

(xi1) lim
T→∞

{
sup

[
K(t, s)− K(s, s) : T 6 s < t

]}
= 0

in the case when we assume in (viii′) that the function s 7→ K(t2, s)−K(t1, s) is nondecreasing.
In the case when we assume that the mentioned function is nonincreasing then the second
equality in (ix) can be replaced by the following requirement:

(xi2) lim
T→∞

{
sup

[
K(s, s)− K(t, s) : T ≤ s < t

]}
= 0.

Now, we are going to illustrate our existence result contained in Theorem 3.3 by an exam-
ple.

Example 4.2. We consider the quadratic integral equation of Volterra–Hammerstain type hav-
ing the form

x(t) =
αt

t + 1
+ β sin

(
t2 + x2(t)

t2 + 1

) ∫ t

0

ste−t + s
t2+1 x2(s)

1 + s2 + t2 ds, (4.1)
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for t ∈ R+, where α > 0 and β > 0 are some constants. Observe that Eq. (4.1) can be written
in the form of the quadratic integral equation of Volterra–Stieltjes type

x(t) =
αt

t + 1
+ β sin

(
t2 + x2(t)

t2 + 1

) ∫ t

0

(
ste−t +

s
t2 + 1

x2(s)
)

dsK(t, s), (4.2)

where the function K(t, s) has the form

K(t, s) =
1√

1 + t2
arctan

s√
1 + t2

(4.3)

for (t, s) ∈ ∆ =
{
(t, s) : 0 6 s 6 t

}
.

Indeed, it is easy to check that for function (4.3) we have

dsK(t, s) =
∂K(t, s)

∂s
ds =

1
1 + s2 + t2 ds.

Let us notice that Eq. (4.2) is a particular case of Eq. (3.1) if we put

a(t) =
αt

t + 1
,

f (t, x) = β sin
(

t2 + x2

t2 + 1

)
,

v(t, s, x) = ste−t +
s

t2 + 1
x2

and if the function K has the form (4.3).
In what follows we show that the above indicated functions being the components of Eq.

(4.1) satisfy assumptions of Theorem 3.3.
At the beginning let us note that the function function a = a(t) satisfies assumption (i) and

‖a‖ = α.
In order to show that the function f = f (t, x) satisfies assumption (ii) observe that f is

continuous on the set R+ ×R. Next, fix arbitrary r > 0 and take t ∈ R+ and x, y ∈ [−r, r].
Then we have

∣∣ f (t, x)− f (t, y)
∣∣ 6 β

∣∣∣∣ t2 + x2

t2 + 1
− t2 + y2

t2 + 1

∣∣∣∣ = β

∣∣x2 − y2
∣∣

t2 + 1

6 β |x + y| |x− y| 6 2βr |x− y| .

Hence we see that the function f satisfies assumption (ii) if we put k(r) = 2βr.
Further on let us notice that for x ∈ R arbitrarily fixed we get

lim
t→∞

f (t, x) = lim
t→∞

β sin
(

t2

t2 + 1
+

x2

t2 + 1

)
= β sin 1,

and the above limit is uniform with respect to x belonging to an arbitrary interval of the form
[−r, r], where r > 0. This means that assumption (iii) is satisfied.

The above statement can be proved also immediately. Indeed, fix arbitrarily r > 0 and



14 J. Banaś and A. Dubiel

assume that x ∈ [−r, r]. Then for arbitrary fixed T > 0 and for t, s > T we obtain

∣∣ f (t, x)− f (s, x)
∣∣ 6 β

∣∣∣∣ t2 + x2

t2 + 1
− s2 + x2

s2 + 1

∣∣∣∣ 6 β

(
x2 + 1

) ∣∣t2 − s2
∣∣

(t2 + 1) (s2 + 1)

6 β
(
r2 + 1

) ∣∣∣∣ t2

(t2 + 1) (s2 + 1)
− s2

(t2 + 1) (s2 + 1)

∣∣∣∣
6 β

(
r2 + 1

) ( t2

(t2 + 1) (s2 + 1)
+

s2

(t2 + 1) (s2 + 1)

)
6 β

(
r2 + 1

) ( 1
s2 + 1

+
1

t2 + 1

)
6 2β

(
r2 + 1

) 1
T2 + 1

.

Hence we infer that inequality (3.2) from assumption (iii) is satisfied if we choose T > 0 big
enough.

Subsequently, let us note that the function v = v(t, s, x) is continuous on the set ∆ ×R.
Moreover, taking arbitrary (t, s) ∈ ∆ and x ∈ R we get∣∣v(t, s, x)

∣∣ 6 t2e−t +
t

t2 + 1
|x|2 6 4

e2 +
1
2
|x|2.

Thus the function v satisfies the inequality from assumption (iv) if we take φ(r) = 4
e2 +

1
2 r2.

Summing up we see that the function v satisfies assumption (iv).
It is also easily seen that function v = v(t, s, x) is uniformly continuous on each set of the

form ∆× [−r, r] for r > 0. This allows us to infer that v satisfies assumption (v).
Obviously it is easy to notice that the function K = K(t, s) defined by (4.3) satisfies as-

sumption (vi).
To show that the function K(t, s) satisfies assumption (vii) let us note that in view of the

inequality
∂K(t, s)

∂s
=

1
1 + s2 + t2 > 0

we infer that the function s 7→ K(t, s) is increasing on every interval of the form [0, t]. Since
K(t, s) is bounded on the triangle ∆ this implies that the function s 7→ K(t, s) is of bounded
variation on the interval [0, t].

Moreover, we have

t∨
s=0

K(t, s) = K(t, t)− K(t, 0) =
1√

1 + t2
arctan

t√
1 + t2

6
π

4
√

1 + t2
6

π

4
.

This shows that there is satisfied assumption (vii) and we have that K 6 π
4 . In what follows

we will accept that K = π
4 .

In order to verify assumption (viii) it is sufficient to show that the function K(t, s) satisfies
assumption (viii′). Thus, fix arbitrarily t1, t2 ∈ R+ with t1 < t2. Consider the function
s 7→ K(t2, s)− K(t1, s). In view of the equality

K(t2, s)− K(t1, s) =
1√

1 + t2
2

arctan
s√

1 + t2
2

− 1√
1 + t2

1

arctan
s√

1 + t2
1

we derive the following assertion

∂

∂s
(
K(t2, s)− K(t1, s)

)
=

t2
1 − t2

2(
1 + s2 + t2

1

) (
1 + s2 + t2

2

) < 0.
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This yields that the function s 7→ K(t2, s)− K(t1, s) is nonincreasing on R+. Particularly, it is
nonincreasing on the interval [0, t1]. This means that the function K(t, s) satisfies assumption
(viii′). Taking into account the fact that K satisfies assumption (vi), we conclude that the
function K = K(t, s) satisfies assumption (viii).

Now, keeping in mind that the function s 7→ K(t, s) is increasing on the interval [0, t], we
get

t∨
τ=s

K(t, τ) = K(t, t)− K(t, s)

=
1√

1 + t2
arctan

t√
1 + t2

− 1√
1 + t2

arctan
s√

1 + t2

6
1√

1 + t2
arctan

t√
1 + t2

.

Obviously the above estimate implies that the function K satisfies the first equality from as-
sumption (ix).

In order to verify the second equality from assumption (ix) let us notice that in view of the
above established facts and Remark 4.1 it is sufficient to show that there is satisfied assumption
(xi2). Thus, taking T 6 s < t, we get

K(s, s)− K(t, s) =
1√

1 + s2
arctan

s√
1 + s2

− 1√
1 + t2

arctan
s√

1 + t2

6
1√

1 + s2
arctan

s√
1 + s2

6
π

4
1√

1 + s2
6

π

4
1√

1 + T2
.

Obviously the above estimate implies that for the function K = K(t, s) the second equality
from assumption (ix) holds.

Now, we intend to check the last equality from assumption (ix).
To this end fix r > 0, T > 0 and take t, s, τ ∈ R+ such that s, t > T, τ 6 s, τ 6 t and

y ∈ [−r, r]. Without loss of generality we may assume that T > 2.
Then, we derive the following estimate:∣∣v(t, τ, y)− v(s, τ, y)

∣∣ = ∣∣∣∣τte−t +
τ

t2 + 1
x2 − τse−s − τ

s2 + 1
x2
∣∣∣∣

6 τ
∣∣te−t − se−s∣∣+ τ

∣∣∣∣ 1
t2 + 1

− 1
s2 + 1

∣∣∣∣ |x|2
6 τ

(
te−t + se−s)+ τ

(
1

t2 + 1
+

1
s2 + 1

)
r2

= τte−t + τse−s +

(
τ

t2 + 1
+

τ

s2 + 1

)
r2

6 t2e−t + s2e−s +

(
t

t2 + 1
+

s
s2 + 1

)
r2

6 2T2e−T +
2T

T2 + 1
r2.

From the above estimate we conclude that the third equality from assumption (ix) is satisfied.
In order to proceed to assumption (x) let us first observe that f (t, 0) = β sin t2

t2+1 . Hence,
we have

F = sup {| f (t, 0)| : t ∈ R+} = β sin 1.
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Now, let us consider the first inequality from assumption (x). Taking into account the above
established facts we can write that inequality in the form

α +
π

4
(
2βr2 + β sin 1

) ( 4
e2 +

1
2

r2
)
6 r. (4.4)

Putting, for example, r = 1 and assuming that α < 1, we can rewrite inequality (4.4) in the
form

π

4
β (2 + sin 1)

(
4
e2 +

1
2

)
6 1− α.

Hence, we get

β 6
4(1− α)

π (2 + sin 1)
( 4

e2 +
1
2

) . (4.5)

Thus assumption (x) will be satisfied if we choose α < 1, r0 = 1 and if we take β such that in-
equality (4.5) holds. Obviously, inequality (4.5) yields the second inequality from assumption
(x) which has the following form in our situation

β <
2

π
( 4

e2 +
1
2

) .

Thus, on the basis of Theorem 3.3 we conclude that under suitable constraints concerning
the constants α and β integral equation (4.1)

(
or (4.2)

)
has a solution in the space BC(R+)

which converges to a finite limit at infinity.
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