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1 Introduction

The present note deals with parametrisation techniques for constructive investigation of
boundary value problems and its purpose is to provide a justification of the polynomial version
of the method suggested in [14].

We consider the non-local boundary value problem

u′(t) = f (t, u(t)), t ∈ [a, b], (1.1)

φ(u) = γ, (1.2)

where φ : C([a, b], Rn) → Rn is a non-linear vector functional, f : [a, b]× Rn → Rn is continu-
ous in a certain bounded set, and γ ∈ Rn is a given vector.

By a solution of the problem (1.1), (1.2) we understand a continuously differentiable vector
function with property (1.2) satisfying (1.1) everywhere on [a, b].
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The idea of our approach (see, e. g., [14, 16, 17]) is based on the reduction (1.1), (1.2) to a
family of simpler auxiliary problems with two-point linear separated conditions at a and b:

u(a) = ξ, u(b) = η, (1.3)

where ξ and η are unknown parameters. By doing so, one can use in the non-local case the
techniques adopted to two-point problems [14].

2 Notation and preliminary results

In order to use the reduction to two-point problems (1.1), (1.3), we need some results from
[14]. The study of problems (1.1), (1.3) in [14] is based on properties of the iteration sequence
{um(·, ξ, η) : m ≥ 0} defined as follows:

u0 (t, ξ, η) :=
(

1− t− a
b− a

)
ξ +

t− a
b− a

η, (2.1)

um (t, ξ, η) := u0(t, ξ, η) +
∫ t

a
f (s, um−1 (s, ξ, η)) ds

− t− a
b− a

∫ b

a
f (s, um−1 (s, ξ, η)) ds, t ∈ [a, b], m = 1, 2, . . . (2.2)

Fix certain closed bounded sets D0, D1 in Rn and assume that we are looking for solutions
u of problem (1.1), (1.3) with u(a) ∈ D0 and u(b) ∈ D1. Put

Ω := {(1− θ)ξ + θη : ξ ∈ D0, η ∈ D1, θ ∈ [0, 1]} (2.3)

and, for any $ ∈ Rn
+, define the set

Ω$ := O$(Ω), (2.4)

where O$(Ω) :=
⋃

z∈Ω O$(z) and O$(ξ) := {ξ ∈ Rn : |ξ − z| ≤ $} for any ξ. Here and be-
low, the operations ≤ and |·| are understood componentwise. Set (2.4) is a componentwise
$-neighbourhood of Ω.

Introduce some notation. Given a domain D ⊂ Rn, we write f ∈ LipK(D) if K is an n× n
matrix with non-negative entries and the inequality

| f (t, u)− f (t, v)| ≤ K |u− v| (2.5)

holds for all {u, v} ⊂ D and t ∈ [a, b] . We also put

δ[a,b],D( f ) := sup
(t,x)∈[a,b]×D

f (t, x)− inf
(t,x)∈[a,b]×D

f (t, x). (2.6)

The computation of the greatest and least lower bounds for vector functions is understood in
the componentwise sense.

The following statement is a combination of Proposition 1 and Theorem 3 from [14].

Theorem 2.1 ([14]). Let there exist a non-negative vector $ satisfying the inequality

$ ≥ b− a
4

δ[a,b],Ω$
( f ). (2.7)

Assume, furthermore, that there exists a non-negative matrix K such that

r(K) <
10

3(b− a)
(2.8)

and f ∈ LipK(Ω$). Then, for all fixed (ξ, η) ∈ D0 × D1:
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1. For every m, the function um(·, ξ, η) satisfies the two-point separated boundary conditions (1.3)
and

{um(t, ξ, η) : t ∈ [a, b]} ⊂ Ω$.

2. The limit
u∞ (t, ξ, η) = lim

m→∞
um(t, ξ, η) (2.9)

exists uniformly in t ∈ [a, b]. The function u∞(·, ξ, η) satisfies the two-point conditions (1.3).

3. The function u∞ (·, ξ, η) is a unique solution of the integral equation

u(t) = ξ +
∫ t

a
f (s, u(s))ds− t− a

b− a

∫ b

a
f (s, u(s))ds +

t− a
b− a

(η − ξ) , t ∈ [a, b], (2.10)

or, equivalently, of the Cauchy problem

u′(t) = f (t, u(t)) +
1

b− a
∆(ξ, η), t ∈ [a, b],

u (a) = ξ,
(2.11)

where ∆ : D0 × D1 → Rn is a mapping given by the formula

∆(ξ, η) := η − ξ −
∫ b

a
f (s, u∞ (s, ξ, η))ds. (2.12)

4. The following error estimate holds:

|u∞ (t, ξ, η)− um (t, ξ, η)| ≤ 10
9

α1(t)Km
∗ (1n − K∗)

−1 δ[a,b],Ω$
( f ), (2.13)

for any t ∈ [a, b] and m ≥ 0, where

K∗ :=
3
10

(b− a)K (2.14)

and

α1(t) := 2 (t− a)
(

1− t− a
b− a

)
, t ∈ [a, b]. (2.15)

In (2.13) and everywhere below, the symbol 1n stands for the unit matrix of dimension n.

Theorem 2.2 ([14, Proposition 8]). Under the assumption of Theorem 2.1, the function u∞ (·, ξ, η) :
[a, b]× D0 × D1 → Rn defined by (2.9) is a solution of problem (1.1), (1.2) if and only if the pair of
vectors (ξ, η) satisfies the system of 2n equations

∆(ξ, η) = 0, (2.16)

φ(u∞ (·, ξ, η)) = γ, (2.17)

where ∆ is given by (2.12).

Equations (2.16), (2.17) are usually referred to as determining equations because their roots
determine solutions of the original problem. This system, in fact, determines all possible
solutions of the original boundary value problem the graphs of which are contained in the
region under consideration.
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Theorem 2.3 ([14, Theorem 9]). Let f ∈ LipK(Ω$) with a certain $ satisfying (2.7) and K such that
(2.8) holds. Then:

1. if there exists a pair of vectors (ξ, η) ∈ D0 × D1 satisfying (2.16), (2.17), then the non-local
problem (1.1), (1.2) has a solution u(·) such that

{u(t) : t ∈ [a, b]} ⊂ Ω$ (2.18)

and u(a) = ξ, u(b) = η;

2. if problem (1.1), (1.2) has a solution u(·) such that (2.18) holds and u(a) ∈ D0, u(b) ∈ D1,
then the pair (u(a), u(b)) is a solution of system (2.16), (2.17).

The solvability of the determining system (2.16), (2.17) can be analysed by using its mth
approximate version

η − ξ −
∫ b

a
f (s, um (s, ξ, η))ds = 0, (2.19)

φ(um (·, ξ, η)) = γ, (2.20)

where m is fixed, similarly to [10,12,13,15]. Equations (2.19), (2.20), in contrast to (2.16), (2.17),
involve only terms which are obtained in a finite number of steps.

The explicit computation of functions (2.2) (and, as a consequence of this, the construc-
tion of equations (2.19), (2.20)) may be difficult or impossible if the expression for f involves
complicated non-linearities with respect to the space variable, which causes problems with
symbolic integration. In order to facilitate the computation of um (·, ξ, η), m ≥ 0, one can use a
polynomial version of the iterative scheme (2.2), in which the results of iteration are replaced by
suitable interpolation polynomials before passing to the next step. This scheme is described
below.

3 Some results from interpolation theory

Recall some results of the theory of approximations [2, 3, 6]. In a similar situation, we have
used these facts in [11].

Denote by Pq a set of all polynomials of degree not higher than q, q ≥ 1, on [a, b]. For
any continuous function y : [a, b] → R, there exists a unique polynomial p∗q ∈ Pq, for which
maxt∈[a,b] |y(t)− p∗q(t)| = Eq(y), where

Eq(y) := inf
p∈Pq

max
t∈[a,b]

|y(t)− p(t)|. (3.1)

This p∗q is the polynomial of the best uniform approximation of y in Pq and the number Eq(y) is
called the error of the best uniform approximation.

For a given continuous function y :[a, b] → R and a natural number q, denote by Lqy the
Lagrange interpolation polynomial of degree q such that

(Lqy)(ti) = y(ti), i = 1, 2, . . . , q + 1, (3.2)

where

ti =
b− a

2
cos

(2i− 1)π

2 (q + 1)
+

a + b
2

, i = 1, 2, . . . , q + 1, (3.3)

are the Chebyshev nodes translated from (−1, 1) to the interval (a, b) (see, e. g., [7]).
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Proposition 3.1 ([7, p. 18]). For any q ≥ 1 and a continuous function y : [a, b]→ R, the correspond-
ing interpolation polynomial (3.2) constructed with the Chebyshev nodes (3.3) admits the estimate

∣∣y(t)− (Lqy)(t)
∣∣ ≤ ( 2

π
ln q + 1

)
Eq(y), t ∈ [a, b] . (3.4)

Recall that the modulus of continuity [5, p. 116] of a continuous function y : [a, b]→ R is the
function δ 7→ ω(y; δ), where

ω(y; δ) := sup{|y(t)− y(s)| : {t, s} ⊂ [a, b], |t− s| ≤ δ} (3.5)

for all positive δ. Note that ω(y; ·) is a continuous non-decreasing function on (0, ∞). A
function y is uniformly continuous if and only if limδ→0 ω(y; δ) = 0 [5, p. 131].

Proposition 3.2 (Jackson’s theorem; [6, p. 22]). If y ∈ C([a, b] , R), q ≥ 1, then

Eq(y) ≤ 6 ω
(

y;
b− a

2q

)
. (3.6)

A function y : [a, b] → R is said to satisfy the Dini–Lipschitz condition (see, e. g., [3, p. 50])
if its modulus of continuity has the property

lim
δ→0

ω(y; δ) ln δ = 0.

It follows from (3.6) that
lim
q→∞

Eq(y) ln q = 0 (3.7)

for any y satisfying the Dini–Lipschitz condition. In view of (3.4), equality (3.7) ensures the
uniform convergence of Lagrange interpolation polynomials at Chebyshev nodes for this class
of functions. In particular, every α-Hölder continuous function [a, b]→ R with α > 0 satisfies
the Dini–Lipschitz condition.

4 Polynomial successive approximations

Rewrite (2.2) in the form

um (t, ξ, η) = u0(t, ξ, η) + (ΛN f um−1(·, ξ, η)])(t), t ∈ [a, b], m = 1, 2, . . . , (4.1)

where Λ is the linear operator in the space of continuous functions defined by the formula

(Λy) (t) :=
∫ t

a
y(s)ds− t− a

b− a

∫ b

a
y(s)ds, t ∈ [a, b], (4.2)

and N f is the Nemytskii operator generated by the non-linearity from (1.1),

(N f y) (t) := f (t, y(t)), t ∈ [a, b], (4.3)

for any continuous y : [a, b]→ Rn.
Fix a natural number q and extend the notation Lqy to vector functions by putting

Lqy := col(Lqy1, Lqy2, . . . , Lqyn) (4.4)
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for any continuous y : [a, b]→ Rn. In (4.4), Lqyi is the qth degree interpolation polynomial for
yi at the Chebyshev nodes (3.3). By analogy to (4.4), put

Eqy = col(Eqy1, Eqy2, . . . , Eqyn). (4.5)

If D ⊂ Rn is a closed domain and f : [a, b]× D → Rn, put

lq,D( f ) :=
(

2
π

ln q + 1
)

sup
p∈Pq+1,D

Eq(N f p), (4.6)

where
Pq,D :=

{
u : u ∈ Pn

q , u([a, b]) ⊂ D
}

(4.7)

with Pn
q := Pq × · · · × Pq. The second multiplier in (4.6) is the least upper bound of errors

of best uniform approximations of the functions obtained by substitution into the right-hand
side of equation (1.1) of vector polynomials of degree ≤ q + 1 with values in D.

Introduce now a modified iteration process keeping formula (2.1) for u0(·, ξ, η):

vq
0 (·, ξ, η) := u0(·, ξ, η) (4.8)

and replacing (4.1) by the formula

vq
m (t, ξ, η) := u0(t, ξ, η) + (ΛLqN f vq

m−1 (·, ξ, η))(t), t ∈ [a, b], m = 1, 2, . . . (4.9)

For any q ≥ 1, formula (4.9) defines a vector polynomial vq
m (·, ξ, η) of degree ≤ q + 1 (in

particular, all these functions are continuously differentiable), which, moreover, satisfies the
two-point boundary conditions (1.3). The coefficients of the interpolation polynomials depend
on the parameters ξ and η.

Similarly to (4.1), functions (4.9) can also be used to study the auxiliary problems (1.1),
(1.3).

Let Hβ
k , where k ∈ Rn

+, ki ≥ 0, 0 < βi ≤ 1, i = 1, 2, . . . , n, be the set of vector functions
y : [a, b]→ Rn satisfying the Hölder conditions

|yi(t)− yi(s)| ≤ ki|t− s|βi (4.10)

for all {t, s} ⊂ [a, b], i = 1, 2, . . . , n. Now we can state the “polynomial” version of Theorem 2.1.

Theorem 4.1. Let there exist a non-negative vector $ such that

$ ≥ b− a
4

(
δ[a,b],Ω$

( f ) + 2lq,Ω$
( f )
)

(4.11)

and f ∈ LipK(Ω$) with a certain matrix K satisfying (2.8). Furthermore, let there exist vectors c and
β with ci ≥ 0, 0 < βi ≤ 1, i = 1, 2, . . . , n, such that

f (·, ξ) ∈ Hβ
c (4.12)

for all fixed ξ ∈ Ω$. Then, for all fixed (ξ, η) ∈ D0 × D1:

1. For any m ≥ 0, q ≥ 1, the function vq
m (·, ξ, η) is a vector polynomial of degree q + 1 having

values in Ω$ and satisfying the two-point conditions (1.3).
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2. The limits

vq
∞ (·, ξ, η) := lim

m→∞
vq

m (·, ξ, η) , v∞ (·, ξ, η) := lim
q→∞

vq
∞ (·, ξ, η) (4.13)

exist uniformly on [a, b]. Functions (4.13) satisfy conditions (1.3).

3. The estimate∣∣u∞ (t, ξ, η)− vq
m (·, ξ, η)

∣∣ ≤ 10
9

α1(t)Km
∗ (1n − K∗)

−1 (δ[a,b],Ω$
( f ) + lq,Ω$

( f )
)

(4.14)

holds for any t ∈ [a, b], m ≥ 0, q ≥ 1, where K∗ and α1 are given by (2.14), (2.15).

The proof of this theorem is given in Section 5.1. Note that v∞ coincides with u∞ appearing
in Theorems 2.1 and 2.2.

Similarly to (2.19), (2.20), in order to study the solvability of the determining system (2.16),
(2.17), one can use its mth approximate polynomial version

η − ξ =
∫ b

a
(LqN f vq

m (·, ξ, η))(s)ds, (4.15)

φ(vq
m (·, ξ, η)) = γ, (4.16)

which can be regarded as an approximate version of (2.19), (2.20). If (ξ̂, η̂) is a root of (4.15),
(4.16) in a particular region, then the function

Uq
m(t) := vq

m
(
t, ξ̂, η̂

)
, t ∈ [a, b], (4.17)

provides the mth polynomial approximation to a solution of the original problem with the corre-
sponding localisation of initial data. Of course, system (2.19), (2.20) may have multiple roots;
in such cases, these roots determine different solutions.

It should be noted that, under conditions of Theorem 4.1, the function N f vq
m−1 (·, ξ, η)) ap-

pearing in (4.9) always satisfies the Dini–Lipschitz condition and, therefore, the corresponding
interpolation polynomials at Chebyshev nodes uniformly converge to it as q grows to ∞. This
follows from Lemma 5.1 of the next section.

Condition (4.11) on $ assumed in Theorem 4.1 is stronger than (2.7) of Theorem 2.1 due to
the presence of an additional positive term on the right-hand side. A stronger version of (2.7)
is needed in order to ensure that the values of iterations do not escape from the set where
the Lipschitz condition on f is assumed, for which purpose (2.7) is sufficient in the case of
iterations (2.1), (2.2).

The value Eq(N f p), where p ∈ Pq+1, appearing in (4.6) essentially depends on the char-
acter of the non-linearity f . In particular, if f is linear, then Eq(N f p) is the error of the best
uniform approximation of a polynomial of degree ≤ q + 1 by polynomials of degree ≤ q.

In spite of the presence of an additional expression in (4.11), for which the theorem does
not provide explicit estimates, one may however say that, technically, it is (2.7) that plays the
most important role here because the extra term is due to the polynomial approximation, the
quality of which grows with q. One can treat this in a different way as follows. Instead of
assuming condition (4.11), let us suppose that there exists a non-negative vector $ such that

$ ≥ b− a
4

(
δ[a,b],Ω$

( f ) + r
)

(4.18)
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with a certain strictly positive vector r. Put

w0 (·, ξ, η) := u0(·, ξ, η), (4.19)

wm (t, ξ, η) := u0(t, ξ, η) + (ΛLqm N f wm−1 (·, ξ, η))(t), t ∈ [a, b], m = 1, 2, . . . (4.20)

where {qm : m ≥ 1} ⊂ N; the choice of this sequence will be discussed below. The condition
(2.8) on the maximal in modulus eigenvalue of the Lipschitz matrix K for f in (1.1) is left
intact.

Repeating almost word for word the argument from the proof of Theorem 4.1 (see Sec-
tion 5.1), we find that the sequence {wm(·, ξ, η) : m ≥ 0} defined according to (4.19), (4.20)
converges to the same limit as {um(·, ξ, η) : m ≥ 0} given by (4.1) provided that

sup
ξ∈D0, η∈D1

sup
m≥1

( 2
π

ln qm + 1
)

Eqm(N f wqm
m−1(·, ξ, η)) ≤ 1

2
r, (4.21)

where r is the vector appearing in (4.18). Although (4.21) involves the members of sequence
(4.19), (4.20), other assumptions on f (namely, (4.12) and the Lipschitz condition in the space
variable) and Jackson’s theorem (Proposition 3.2) guarantee that, given any value of r in (4.18),
the corresponding condition (4.21) can always be satisfied by choosing q1, q2, . . . appropriately.
This means that the following is true.

Proposition 4.2. Under conditions (2.8), (4.12), and (4.18), sequence (4.19), (4.20) uniformly con-
verges provided that qm is chosen large enough at every step m.

In that case, sequence (4.19), (4.20) will serve the same purpose as sequence (4.8), (4.9)
under the assumptions of Theorem 4.1.

The argument above relies on the knowledge of smallness of the related term appearing on
the left-hand side of (4.21). It is however natural to expect that such quantities should diminish
if the number of nodes gets larger. To see this, let us now assume conditions somewhat
stronger than those of Theorem 4.1.

Assume that, instead of (2.8), the matrix K appearing in the inclusion f ∈ LipK(Ω$) satis-
fies the condition

r(K) <
2

b− a
. (4.22)

Theorem 4.3. Let there exist a non-negative vector $ and positive vector r such that (4.18) holds and
f ∈ LipK(Ω$) with K satisfying (4.22). Assume that f (·, ξ) is Lipschitzian with some constant vector
c for all fixed ξ ∈ Ω$. Then the iteration process (4.19), (4.20) can be made convergent by choosing
qm = q, r = 1, 2, . . . , with q sufficiently large.

In other words, under conditions of Theorem 4.3, the iteration process (4.19), (4.20) reduces
to (4.8), (4.9) with q large enough.

5 Proofs

5.1 Proof of Theorem 4.1

We shall use several auxiliary statements formulated below.
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Lemma 5.1. Let D ⊂ Rn and f : [a, b]× D → Rn be a function satisfying condition (4.12) on D
with certain vectors c and β = (βi)

n
i=1, 0 < βi ≤ 1, i = 1, 2, . . . , n. Let f ∈ LipK(D) with a certain

n× n matrix K with non-negative entries. If u ∈ H β̃
c̃ with β̃ = (β̃i)

n
i=1, 0 < β̃i ≤ 1, i = 1, 2, . . . , n,

then
N f u ∈ Hµ

Kc̃+c, (5.1)

where µ := min{β, β̃}.

Proof. Assume that u ∈ H β̃
c̃ and the values of u lie in D. For the sake of brevity, introduce the

notation tβ := col(tβ1 , tβ2 , . . . , tβn) for any t ∈ [a, b]. Using (4.12) and the Lipschitz condition
for f , we obtain∣∣(N f u) (t)− (N f u)(s)

∣∣ = | f (t, u(t))− f (t, u(s)) + f (t, u(s))− f (s, u(s))|
≤ K |u(t)− u(s)|+ c |t− s|β

≤ Kc̃ |t− s|β̃ + c |t− s|β

≤ (Kc̃ + c) |t− s|µ

with µ = min{β, β̃}, i. e., the function N f u satisfies a condition of form (4.10), which proves
relation (5.1).

Let the functions αm : [a, b]→ R+, m ≥ 0, be defined by the recurrence relation

α0(t) := 1, (5.2)

αm+1(t) :=
(

1− t− a
b− a

) ∫ t

a
αm(s)ds +

t− a
b− a

∫ b

t
αm(s)ds, m = 0, 1, 2, . . . (5.3)

For m = 0, formula (5.3) reduces to (2.15).

Lemma 5.2 ([8, Lemma 3]). For any continuous function y : [a, b]→ R , the estimate∣∣∣∣∫ t

a

(
y(τ)− 1

b− a

∫ b

a
y(s)ds

)
dτ

∣∣∣∣ ≤ 1
2

α1(t)
(

max
s∈[a,b]

f (s)− min
s∈[a,b]

f (s)
)

, t ∈ [a, b], (5.4)

holds, where α1(·) is given by (2.15).

Lemma 5.3 ([9, Lemma 3.16]). The following estimates hold for all t ∈ [a, b]:

αm+1(t) ≤
10
9

(
3(b− a)

10

)m

α1(t), m ≥ 0,

αm+1(t) ≤
3

10
(b− a) αm(t), m ≥ 2.

(5.5)

Let us now turn to the proof of Theorem 4.1. Fix ξ ∈ D0, η ∈ D1, q ≥ 1, and put

yq
m := N f vq

m (·, ξ, η) (5.6)

for m ≥ 0. We need to show that

{vq
m(t, ξ, η) : t ∈ [a, b]} ⊂ Ω$ (5.7)

for any m. Obviously, (5.7) holds if m = 0.



10 A. Rontó, M. Rontó, and N. Shchobak

For m ≥ 1, in view of (2.6), (4.2) and (5.6), Lemma 5.2 yields the componentwise estimates

|(Λyq
m)(t)| ≤

1
2

α1(t)
(

max
s∈[a,b]

yq
m(s)− min

s∈[a,b]
yq

m(s)
)

=
1
2

α1(t)
(

max
s∈[a,b]

f (s, vq
m (s, ξ, η))− min

s∈[a,b]
f (s, vq

m (·, ξ, η))
)

≤ 1
2

α1(t)δ[a,b],Ω$
( f )

≤ 1
4
(b− a)δ[a,b],Ω$

( f ) (5.8)

for all t ∈ [a, b]. In (5.8), we have used the equality

max
t∈[a,b]

α1(t) =
1
2
(b− a) (5.9)

which follows directly from (2.15). Furthermore, using relations (5.4), (5.9) and estimate (3.4)
of Proposition 3.1, we obtain

|(Λ(Lqyq
m−1 − yq

m−1))(t)| ≤
1
2

α1(t)
(

max
s∈[a,b]

(Lqyq
m−1(s)− yq

m−1(s))−min
s∈[a,b]

(Lqyq
m−1(s)− yq

m−1(s))
)

≤ α1(t) max
s∈[a,b]

|Lqyq
m−1(s)− yq

m−1(s)|

≤ 1
2
(b− a)

(
2
π

ln q + 1
)

Eq(y
q
m−1). (5.10)

Combining (5.8) with (5.10) and recalling (4.9), we find∣∣vq
m (t, ξ, η)− vq

0 (t, ξ, η)
∣∣ = (ΛLqyq

m−1)(t)

= (Λyq
m−1)(t) + (Λ(Lqyq

m−1 − yq
m−1))(t)

≤ 1
4
(b− a)

(
δ[a,b],Ω$

( f ) + 2
(

2
π

ln q + 1
)

Eq(y
q
m−1)

)
. (5.11)

For m = 1, (5.11) and condition (4.11) yield

∣∣vq
1 (t, ξ, η)− vq

0 (t, ξ, η)
∣∣ ≤ 1

4
(b− a)

(
δ[a,b],Ω$

( f ) + 2
(

2
π

ln q + 1
)

Eq(N f u0(·, ξ, η))

)
≤ 1

4
(b− a)

(
δ[a,b],Ω$

( f ) + 2lq,Ω$
( f )
)

≤ $,

which, by virtue of (2.4), shows that (5.7) holds with m = 1. Arguing by induction, we show
that (5.7) holds for any m. The values of every function of sequence (4.9) are thus contained
in Ω$. Using the Lipschitz condition on f and Proposition 3.1, we get

|(N f um (·, ξ, η))(t)− (LqN f vq
m (·, ξ, η))(t)|

≤ |(N f um (·, ξ, η))(t)− (N f vq
m (·, ξ, η))(t)|+ |(N f vq

m (·, ξ, η))(t)− (LqN f vq
m (·, ξ, η))(t)|

≤ K|um (t, ξ, η)− vq
m (t, ξ, η) |+

(
2
π

ln q + 1
)

Eq(N f vq
m (·, ξ, η)) (5.12)

for all t and m.
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Let us put

(My) (t) :=
(

1− t− a
b− a

) ∫ t

a
y(s)ds +

t− a
b− a

∫ b

t
y(s)ds, t ∈ [a, b], (5.13)

for any continuous vector function y. Then, according to (4.1), (4.9), (4.6), and (5.12), we obtain

|um (t, ξ, η)− vq
m (t, ξ, η) | = |(Λ[N f um−1 (·, ξ, η)− LqN f vq

m−1 (·, ξ, η)])(t)|
≤ (M |N f um−1 (·, ξ, η)− LqN f vq

m−1 (·, ξ, η) |)(t)
≤ (M K|um−1 (·, ξ, η)− vq

m−1 (·, ξ, η) |)(t)

+

(
2
π

ln q + 1
)

Eq(N f vq
m (·, ξ, η))(Me)(t)

≤ (M K|um−1 (·, ξ, η)− vq
m−1 (·, ξ, η) |)(t) + lq,Ω$

( f ) (Me)(t)

for t ∈ [a, b], m ≥ 1, where e = col(1, 1, . . . , 1). In particular,

|u1 (t, ξ, η)− vq
1 (t, ξ, η) | ≤ lq,Ω$

( f ) (Me)(t)

= lq,Ω$
( f )α1(t),

|u2 (t, ξ, η)− vq
1 (t, ξ, η) | ≤ (M K|u1 (·, ξ, η)− vq

1 (·, ξ, η) |)(t) + lq,Ω$
( f ) (Me)(t)

≤ K(Mlq,Ω$
α1e)(t) + lq,Ω$

( f )α1(t)

= (Kα2(t) + 1nα1(t)) lq,Ω$
( f ).

Arguing by induction, we obtain∣∣um(t, ξ, η)− vq
m (t, ξ, η)

∣∣ ≤ (αm(t)Km−1 + αm−1(t)Km−2 + · · ·+ 1nα1(t)) lq,Ω$
( f ),

where αk, k = 1, 2, . . . , are given by (5.2), (5.3). Estimate (5.5) of Lemma 5.3 now yields

∣∣um(t, ξ, η)− vq
m (t, ξ, η)

∣∣ ≤ 10
9
[1n + K∗ + K2

∗ + . . . Km−1
∗ ] α1(t) lq,Ω$

( f )

with K∗ as in (2.14), whence, due to assumption (2.8),

∣∣um(t, ξ, η)− vq
m (t, ξ, η)

∣∣ ≤ 10
9
(1n − K∗)−1α1(t) lq,Ω$

( f ). (5.14)

Using (5.14) and estimate (2.13) of Theorem 2.1, we get∣∣u∞(t, ξ, η)− vq
m (t, ξ, η)

∣∣ ≤ |(u∞(t, ξ, η)− um(t, ξ, η))|+ |(um(t, ξ, η)− vq
m (t, ξ, η))|

≤ 10
9

α1(t)Km
∗ (1n − K∗)

−1 δ[a,b],Ω$
( f )

+
10
9
(1n − K∗)

−1 α1(t) lq,Ω$
( f )

=
10
9

α1(t)Km
∗ (1n − K∗)−1(δ[a,b],Ω$

( f ) + lq,Ω$
( f )), (5.15)

where u∞(·, ξ, η) is a limit function (2.9) of sequence (2.2) (the limit exists by Theorem 2.1). In
view of (2.8) and (2.14), estimate (5.15) shows that sequence (4.8), (4.9) converges to the same
limit.
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5.2 Proof of Theorem 4.3

We shall use the following Ostrowski inequality [4] for Lipschitz continuous functions [1].

Lemma 5.4 ([1]). If y : [a, b]→ R, y ∈ H1
c , then∣∣∣∣y(t)− 1

b− a

∫ b

a
y(s)ds

∣∣∣∣ ≤ (1
4
+

(
t− 1

2 (a + b)
b− a

)2)
c(b− a) (5.16)

for all t ∈ [a, b].

If y ∈ H1
c , y : [a, b] → Rn, then c in (5.16) is a vector and the inequality is understood

componentwise. Recall that H1
c is the class of functions y satisfying (4.10) with ki = 1, i =

1, 2, . . . , n, i. e., y is Lipschitzian with the vector c.
In view of the observation made after the formulation of Theorem 4.3, we shall consider

sequence (4.8), (4.9).
Fix ξ ∈ D0 and η ∈ D1 and write vq

m(t) = vq
m(t, ξ, η) for the sake of brevity. Let us put

cq
m := max

t∈[a,b]
|v̇q

m(t)|, m ≥ 0, q ≥ 1, (5.17)

where ˙ = d/dt. In other words, cq
m is the Lipschitz constant of the polynomial vq

m (we know
from (4.9) that vq

m is a polynomial of degree ≤ q + 1, i. e., vq
m ∈ Pq+1). Thus,

vq
m ∈ H1

cq
m

. (5.18)

According to (4.2), (4.9), we have

v̇q
m−1(t) = u̇0(t) + (LqN f vq

m−2)(t)−
1

b− a

∫ b

a
(LqN f vq

m−2)(s)ds. (5.19)

Since, by (2.1),

u̇0(t) =
1

b− a
(η − ξ), (5.20)

it follows from (5.19) and Lemma 5.4 that

|v̇q
m−1(t)| ≤

1
b− a

|η − ξ|+
(

1
4
+

(
t− 1

2 (a + b)
b− a

)2
)
(b− a)λq

m−2, (5.21)

where λ
q
m−2 is the Lipschitz constant (actually, vector) of the vector function N f vq

m−2.
By assumption, f satisfies condition (4.12) with β = 1. Therefore, by virtue of equality

(5.17) and Lemma 5.1,
N f vq

m−2 ∈ H1
Kcq

m−2+c (5.22)

and, hence,
λ

q
m−2 ≤ Kcq

m−2 + c. (5.23)

It is easy to check that
max
t∈[a,b]

(2t− a− b)2 = (b− a)2
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and, therefore, combining (5.21) and (5.23), we obtain

|v̇q
m−1(t)| ≤

1
b− a

|η − ξ|+ 1
4

(
1 +

(
2t− a− b)

b− a

)2
)
(b− a)λq

m−2

≤ 1
b− a

|η − ξ|+ 1
2
(b− a)λq

m−2

≤ 1
b− a

|η − ξ|+ 1
2
(b− a)(Kcq

m−2 + c), (5.24)

whence, due to (5.17),

cq
m−1 ≤

1
b− a

|η − ξ|+ 1
2
(b− a)(Kcq

m−2 + c). (5.25)

Using (5.25) and arguing by induction, we get

cq
m−1 ≤ h +

1
2
(b− a)Kh +

1
4
(b− a)2K2h +

1
8
(b− a)3K3h

+ · · ·+ 1
2m−2 (b− a)m−2Km−2h +

1
2m−1 (b− a)m−1Km−1cq

0, (5.26)

where
h :=

1
b− a

|η − ξ|+ 1
2
(b− a)c. (5.27)

By (5.20), we have

cq
0 =

1
2
|η − ξ|

and, therefore, (5.26) implies that

cq
m−1 ≤ (1− K0)

−1
(

1
b− a

|η − ξ|+ 1
2
(b− a)c

)
+

1
b− a

Km−1
0 |η − ξ|

≤ (1− K0)
−1
(

1
b− a

d +
1
2
(b− a)c

)
+

1
b− a

Km−1
0 d

≤ (1− K0)
−1
(

1
b− a

d +
1
2
(b− a)c

)
+

1
b− a

d, (5.28)

where
K0 :=

1
2
(b− a)K

and d is the vector defined componentwise as follows:

d := col
(

sup
ξ∈D0, η∈D1

|η1 − ξ1|, sup
ξ∈D0, η∈D1

|η2 − ξ2|, . . . , sup
ξ∈D0, η∈D1

|ηn − ξn|
)

.

Note that the term at the right-hand side of (5.28) depends neither on m nor on q.
Since λ

q
m−1 denotes the Lipschitz constant of N f vq

m−1, it follows from Jackson’s theorem
(see [6, Corollary 1.4.2]) and inequality (5.23) that

Eq(N f vq
m−1) ≤

6
q

λ
q
m−1(b− a)

≤ 6
q
(Kcq

m−1 + c)(b− a), (5.29)
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whence, using (5.28), we obtain

Eq(N f vq
m−1) ≤

6
q

(
K(1− K0)

−1
( 1

b− a
d +

1
2
(b− a)c

)
+

1
b− a

d
)
(b− a)

=
6
q

(
K(1− K0)

−1
(

d +
1
2
(b− a)2c

)
+ d
)

. (5.30)

Recall that we use notation (4.5) for vector functions and the inequalities in (5.29), (5.30) are
componentwise.

Estimate (5.30) implies that, by choosing qm = q, m ≥ 1, with q large enough, we guarantee
the fulfilment of condition (4.21), which, as have already been said, ensures the converegence
of sequence (4.19), (4.20), or, which is the same in this case, of sequence (4.8), (4.9).

6 A numerical example

Let us apply the approach described above to the system of differential equations with tran-
scendental non-linearities

u′1 (t) = u1(t)u2(t),

u′2 (t) = − ln (2u1(t)) , t ∈ [0, π/4] ,
(6.1)

considered under the non-linear two-point boundary conditions

(u1(a))2 + (u2(b))2 =
3
8

, u1(a)u2(b) =
√

2
8

. (6.2)

We have a = 0, b = π/4, f = col( f1, f2),

f1(t, u1, u2) = u1u2, f2(t, u1, u2) = − ln(2u1) (6.3)

and φ(u) = col((u1(a))2 + (u2(b))2 − 3/8, u1(a)u2(b)−
√

2/8) in this case.
Introduce the vectors of parameters ξ = col(ξ1, ξ2), η = col(η1, η2) and, instead of problem

(6.1), (6.2), consider (6.1) under the parametrised boundary conditions (1.3).
Let us choose the sets D0 and D1, where one looks the values u(a) and u(b), e. g., as

follows:

D0 = {(u1, u2) : 0.35 ≤ u1 ≤ 0.75, 0.35 ≤ u2 ≤ 0.55} , D1 = D0. (6.4)

Note that this choice of sets is motivated by the results of computation (it is always useful
to start the computation before trying to check the conditions in order to avoid unnecessary
computations, see Section 6.1).

According to (2.3), it follows from (6.4) that Ω = D0. For $ = col($1, $2), we choose the
value

$ = col(0.2, 0.4). (6.5)

Then, in view of (6.4), (6.5), set (2.4) has the form

Ω$ = {(u1, u2) : 0.15 ≤ u1 ≤ 0.95, −0.05 ≤ u2 ≤ 0.95} . (6.6)
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According to (2.6), (6.3), and (6.6),

b− a
4

δ[a,b],Ω$
( f ) =

π

8

(
max

(t,u)∈[a,b]×Ω$

f (t, u)− inf
(t,u)∈[a,b]×Ω$

f (t, u)
)

≈ π

8

(
0.95

1.845826690

)
≈
(

0.1865320638
0.3624272230

)
<

(
0.2
0.4

)
= $, (6.7)

which means that, for $ given by (6.5), condition (4.18) holds with r1 < 0.013, r2 < 0.037.
Then, by Proposition 4.2, the scheme (4.19), (4.20) is applicable for sufficiently large numbers
of nodes if f is Lipschitzian on Ω$ with a matrix K satisfying condition (2.8). However, a
direct computation shows that f ∈ LipK(Ω$) with

K =

(
0.95 0.95
6.7 0

)
, (6.8)

whence, after determining the eigenvalues, we find that (2.8) is satisfied:

r(K) ≈ 3.04222 < 4.24413 ≈ 40
3π

=
10

3(b− a)
.

We can now proceed to the construction of approximations. The question on choosing a
suitable value of q we will treat in a heuristic manner and select a certain value according
to the practical experience; for larger, “guaranteed” values of q, the quality of results still
increases.

We thus use the iteration process {vq
m(·, ξ, η) : m ≥ 0} defined according to equalities (4.8),

(4.9). Using Maple 17, we carry out computations for several values of m at different numbers
of Chebyshev nodes on the interval [a, b].

6.1 Approximations of the first solution

It is easy to verify by substitution that

u∗1(t) =
1
2

exp
(1

2
sin t

)
, u∗2(t) =

1
2

cos t (6.9)

is a solution of problem (6.1), (6.2). Let us show how the corresponding approximate solutions
are constructed according to the method indicated above.

Putting, e. g., q = 4, we get the corresponding five Chebyshev nodes (3.3) transformed
from (−1, 1) into interval (a, b):

t1 = 0.7661781024, t2 = 0.6235218106, t3 = 0.3926990817,

t4 = 0.1618763528, t5 = 0.0192200611.

The approximate determining system (4.15), (4.16), by solving which the numerical values
of the parameters determining the approximate solutions are obtained, for this example is
constituted by four scalar non-linear equations with respect to ξ1, ξ2, η1, η2. For m = 0, it has
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the form

η1 − ξ1 = 0.2617993878 η1η2 + 0.1308996940 η1ξ2 + 0.1308996940 ξ1η2

+ 0.2617993878 ξ1ξ2,

η2 − ξ2 = − 0.20638381 ln (0.4122147477 η1 + 1.587785252 ξ1)

− 0.20638383 ln (1.587785252 η1 + 0.4122147477 ξ1)

− 0.065887535 ln (0.0489434837 η1 + 1.951056516 ξ1)

− 0.065887536 ln (1.951056516 η1 + 0.0489434837 ξ1)

− 0.24085543 ln (ξ1 + η1) ,

ξ1η2 = 0.1767766952,

η2
2 + ξ2

1 = 0.375.

(6.10)

Solving (6.10) for ξ1 ∈ (0.45, 0.55), we get the root

ξ1 = 0.5000000003, ξ2 = 0.4910030682, η1 = 0.6966729228, η2 = 0.3535533902, (6.11)

by substituting which into formula (4.8) the zeroth approximation U0 = col(U01, U02) (i. e., func-
tion (4.17) for m = 0) is obtained:

U01(t) = 0.5000000003 + 0.2504117432t, U02(t) = 0.4910030705− 0.1750063683t. (6.12)

This initial approximation is obtained before any iteration is carried out and is useful as a
source of preliminary information on the localisation of solutions (in particular, the graph of
function (6.12) is a motivation to choose D0, D1 in form (6.4)).

In order to construct higher approximations, we use the frozen parameters simplification
[14], i. e., before passing from step m to step m + 1, we substitute the roots of the mth approxi-
mate determining equation into the formula obtained on step m. In this way, at the expense of
some extra error which tends to zero as m grows, the construction of determining equations
is considerably simplified. Note also that, at every step of iteration carried out according to
(4.8), (4.9), we obtain a polynomial of degree ≤ q + 1.

Constructing the functions v4
m(·, ξ, η) for several values of m and solving the corresponding

approximate determining systems (4.15), (4.16), we obtain the numerical values of the param-
eters presented in Table 6.1. The last row of the table contains the exact values corresponding
to solution (6.9). Since q = 4, all these approximations are polynomials of degree 5; e. g., for
m = 7, it has the form

U4
71(t) ≈ 0.00456 t5 − 0.02668 t4 − 0.02838 t3 + 0.06195 t2 + 0.24987 t + 0.5, (6.13)

U4
72(t) ≈ 0.49982− 0.0017 t5 + 0.02231 t4 − 0.00062 t3 − 0.24956 t2 + 0.49982. (6.14)

The graphs of the seventh approximation (6.13), (6.14) and of the exact solution (6.9) are
shown on Figure 6.1.
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(a) (b)

Figure 6.1: First solution: q = 4, m = 0, 1, 2, 5, 7, 10.

m ξ1 ξ2 η1 η2

0 0.5000000003 0.4910030682 0.6966729228 0.3535533902
1 0.5000000003 0.4910030705 0.6966729234 0.3535533902
2 0.5000000003 0.4909073352 0.7067944705 0.3535533902
5 0.5000000003 0.4990243859 0.7110836712 0.3535533902
7 0.5000000003 0.4997040346 0.7117894333 0.3535533902
10 0.5000000003 0.4999499916 0.7120202126 0.3535533902
16 0.5000000003 0.4999983385 0.7120583725 0.3535533902
20 0.5000000003 0.4999993608 0.7120592079 0.3535533902

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∞ 1

2
1
2 0.7120595095 0.3535533905

Table 6.1: First solution: values of parameters for q = 4.
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m ξ1 ξ2 η1 η2

0 0.5000000003 0.4910340532 0.696681237 0.3535533902
1 0.5000000003 0.4909136731 0.7068092824 0.3535533902
2 0.5000000003 0.4969678528 0.7084223215, 0.3535533902
3 0.5000000003 0.4975642896 0.7104804038 0.3535533902
4 0.5000000003 0.4990270554 0.7110851380 0..3535533902
5 0.50000000039 0.4993503524 0.711592909 0.3535533902
6 0.5000000003 0.4997051246 0.7117900289 0.3535533902
7 0.5000000003 0.4998223937 0.7119239307 0.3535533902

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∞ 1

2
1
2 0.7120595095 0.3535533905

Table 6.2: First solution: values of parameters for q = 11.

m ξ1 ξ2 η1 η2

11 0.4999999999 0.4999103564 0.7120195453 0.3535533905
12 0.4999999999 0.4999501433 0.7120195453 0.3535533905

Table 6.3: First solution: values of parameters for q = 17.

For q = 11, the Chebyshev nodes (3.3) on (a, b) have the form

t1 = 0.7820385685, t2 = 0.7555057258, t3 = 0.70424821007, t4 = 0.6317591359,

t5 = 0.5429785144, t6 = 0.4439565976, t7 = 0.3414415658, t8 = 0.242419649,

t9 = 0.1536390274, t10 = 0.0811499534, t11 = 0.0298924377, t12 = 0.0033595951.

Computing several approximations, we get from (4.15), (4.16) the numerical values for the
parameters presented in Table 6.2. Table 6.3 contains the approximate values of parameters
for q = 17 and m ∈ {11, 12}.

6.2 Approximations of the second solution

Choosing different constraints when solving the approximate determining system (4.15), (4.16),
we find that, along with the root from Table 6.1, it has also another root presented in Table 6.4.
It is quite evident from the results of computation that this indicates the existence of another
solution of the boundary value problem (6.1), (6.2), which is different from (6.9).

On Figure 6.2, one can see the graph of approximations to the second solution, while
Figure 6.3 shows the residuals obtained by substituting these approximations into the given
differential system (i. e., the functions t 7→ U′mk(t)− fk(t, Um(t)), k = 1, 2). We see that, e. g.,
at m = 10, we get a residual of order about 10−5. The computation of 20 approximations
with q = 4 on a standard portable computer with Intel® Core i3-2310M CPU @ 2.10 GHz takes
about 130 seconds.
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(a) (b)

(c) (d)

Figure 6.2: Second solution: q = 4, m = 0, 1, 2, 5, 7, 10, 16, 20.
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(a) (b)

(c) (d)

Figure 6.3: The residuals of approximations to the second solution: q = 4,
m = 1, 2, 5, 7, 10, 16, 20.
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m ξ1 ξ2 η1 η2

0 0.3535533902 0.372879209 0.5012944951 0.5000000003
1 0.3535533902 0.372879209 0.5012944951 0.5000000003
2 0.3535533902 0.3583701009 0.5060832907 0.5000000003
5 0.3535533902 0.360895369 0.5049836277 0.5000000002
7 0.3535533902 0.3606070436 0.5049746944 0.5000000003
10 0.3535533902 0.3605371997 0.504964082 0.5000000003
16 0.3535533902 0.3605333927 0.5049600567 0.5000000003
20 0.3535533902 0.3605332714 0.5049599787 0.5000000003

Table 6.4: Second solution: values of parameters for q = 4.
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