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Abstract. This paper is concerned with the internal exact controllability of the following
model of dynamical elasticity equations for incompressible materials with a pressure
term,

φ′′ − ∆φ = −∇p,

and it is also devoted to the study of the uniform decay rates of the energy associated
with the same model subject to a locally distributed nonlinear damping,

φ′′ − ∆φ + a(x)g(φ′) = −∇p,

where Ω is a bounded connected open set of Rn (n ≥ 2) with regular boundary Γ,
φ = (φ1(x, t), . . . , φn(x, t)), x = (x1, . . . , xn) are n-dimensional vectors and p denotes a
pressure term. The function a(x) is assumed to be nonnegative and essentially bounded
and, in addition, a(x) ≥ a0 > 0 a.e. in ω ⊂ Ω, where ω satisfies the geometric control
condition. The first result is obtained by applying HUM (Hilbert Uniqueness Method)
due to J. L. Lions while the second one is obtained by employing ideas first introduced
in the literature by Lasiecka and Tataru.

Keywords: internal exact controllability, incompressible materials, non linear damping,
uniform decay rates.
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1 Introduction

1.1 Description of the problem.

Let Ω be a bounded connected open set of Rn (n ≥ 2) with regular boundary Γ. Let Q =

Ω×]0, T[ be a cylinder whose lateral boundary is given by Σ = Γ×]0, T[.
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Consider the following problem
φ′′ − ∆φ = −∇p in Q,

div φ = 0 in Q,

φ = ψ on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω.

(1.1)

System (1.1) was studied by J. L. Lions [26], motivated by dynamical elasticity equations
for incompressible materials. Assuming that Ω is strictly star-sharped with respect to the
origin, that is, there exists γ > 0 such that

m · ν ≥ γ > 0 on Γ, (1.2)

(where m(x) = x = (x1, . . . , xn) and ν is the exterior unitary normal) J.L. Lions [26] proved that
the normal derivative of the solution φ of the (1.1) belongs to (L2(Σ))n while A. R. Santos [35]
established the boundary exact controllability for problem (1.1). In this direction it is worth
mentioning the work due to Cavalcanti et al. [10], in which boundary exact controllability of
the viscoelastic equation

φ′′ − ∆φ−
∫ t

0
g(t− s)∆φ(s) ds = −∇p,

has been studied.
System (1.1) may be obtained from Newton’s second law considering small deflections

of Ω, where Ω is a solid body composed of elastic, isotropic, incompressible materials (like
some rubber types). For more information on the physical interpretation of this model see
A. R. Santos [34] and Cavalcanti et al. [10].

Inspired by the above mentioned works we study, in natural way, in Section 2, the internal
exact controllability of the system

φ′′ − ∆φ = −∇p + hχω in Q,

div φ = 0 in Q,

φ = 0 on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω,

(1.3)

where ∆φ = (∆φ1, . . . , ∆φn), φ′′ = (φ′′1 , . . . , φ′′n ), div φ = ∑n
i=1

∂φi
∂xi

and p = p(x, t) is the pressure
term. In addition, ω ⊂ Ω and χω is the characteristic function of ω where ω is a neighbour-
hood of the boundary Γ satisfying the well-known geometric control conditions.

The exact controllability problem for system (1.3) is formulated as follows: given T > 0
large enough, for every initial date {φ0, φ1} in a suitable space, it is possible to find a control
h such that the solution of (1.3) satisfies

φ(x, T) = φ′(x, T) = 0.

Next, in Section 3, we are going to investigate the uniform decay rates of the energy
associated with problem (1.1) subject to a locally distributed nonlinear damping as follows

φ′′ − ∆φ + a(x)g(φ′) = −∇p in Ω× (0, ∞),

div φ = 0 in Ω× (0, ∞),

φ = 0 on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω,

(1.4)
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where a ∈ L∞(Ω) is a nonnegative function such that

a(x) ≥ a0 > 0 in ω ⊂ Ω (1.5)

and

g : Rn −→ Rn

s 7−→ g(s) = [gi(si)]i=1,...,n
(1.6)

where, for all i = 1, . . . , n, gi : R −→ R is a function such that
gi is continuous monotonic increasing and gi(0) = 0,

gi(si)si > 0 ∀ si 6= 0,

k|si|2 ≤ gi(si)si ≤ K|si|2 ∀ |si| ≥ 1, for some positive constants k and K.

(1.7)

1.2 Main goal, methodology and previous results.

The main goal of this paper is twofold: First, to obtain the exact internal controllability of
the system (1.3) and then use this result to prove that the solutions of problem (1.4) decay
exponentially to zero.

System (1.1) was first introduced by J. L. Lions [26]. In his work, J. L. Lions proved the
hidden regularity property holds for this linear system, under the condition that the domain is
star-shaped. Taking advantage of this property and an inverse inequality due to Cavalcanti et
al. [10], we are able to obtain the direct and inverse inequalities needed to obtain the internal
controllability.

In order to obtain the stabilization result, we use an approach first introduced by Lasiecka
and Tataru in [20] which allows us not to impose any growth condition of the function g near
the origin and show that the energy decays as fast as the solution of an associated differential
equation. Indeed, we are able to establish general decay rates of the energy given by

E(t) ≤ S
(

t
T0
− 1
)

, ∀t > T0

and driven by the solution S(t) of the nonlinear ODE

St + q(S(t)) = 0,

where q is a strictly increasing function in connection with the damping term g(ut). Moreover,
under some extra conditions on the class of nonlinear dissipation and assuming that the
pressure is constant, we give examples of the explicit decay rates.

A different but related approach is provided by Alabau-Boussouira and Ammari in [3],
where the authors obtained sharp, simple and quasi-optimal decay rates for nonlinearly
damped abstract infinite-dimensional systems. The method employed by the authors relies on
an observability inequality for the conservative system and some comparison properties, com-
bining optimal geometric conditions as provided by Bardos et al. [6] with an optimal-weight
convexity method of Alabau-Boussouira (see [1] and [2]).

On the other hand, although the bibliography concerning the wave equation subject to a
locally distributed damping is truly long, see, for instance, [1,2,6,12–18,21,22,27–29,31,38,40],
and a long list of references therein, it seems that there exist just few papers in connection
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with control or stabilization for the model of dynamical elasticity equations for incompress-
ible materials introduced by J. L. Lions [26]. In [33] Oliveira and Charão also studied the
decay properties of the solutions of an incompressible vector wave equation with a locally
distributed nonlinear damping. However, in order to obtain the algebraic decay rate to zero
of the solution, the authors imposed some extra technical conditions on the function g like
the fact that the partial derivative of g is positive definite which will not be necessary in our
present study. In order to get this result, the authors used multiplier methods and a lemma
due to Nakao. The exponential decay rate of the energy for the case of an incompressible
vector wave equation with localized linear dissipation was obtained by Araruna et al. [4]. In a
more general framework, a problem that is similar to (1.1), is studied in [19], where Ammari,
Feireisl and Nicaise proved exponential and polynomial decay rates for an acoustic system
with spatially distributed damping.

2 Internal exact controllability

In what follows, we consider the Hilbert spaces

V = {v ∈ (H1
0(Ω))n and div v = 0 in Ω}, (2.1)

and
H = {v ∈ (L2(Ω))n, div v = 0 and v · ν = 0 on Γ}, (2.2)

equipped with their respective inner products

((u, v)) =
n

∑
i=1

((ui, vi))H1
0 (Ω), (2.3)

(u, v) =
n

∑
i=1

(ui, vi)L2(Ω). (2.4)

We also consider
V = {ϕ ∈ (D(Ω))n, div ϕ = 0}, (2.5)

and
W = V ∩ (H2(Ω))n. (2.6)

We have that V is dense in V with topology induced by V and

H = V (L2(Ω))n

. (2.7)

We observe that throughout this paper repeated indexes indicate summation from 1 to n.

2.1 Direct and inverse inequalities

Let us consider the following problem
φ′′ − ∆φ = −∇p in Q,

div φ = 0 in Q,

φ = 0 on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω.

(2.8)
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Firstly, observe that following the arguments [37] we can show that for regular initial data
the problem (2.8) is equivalent to the problem{

φ′′ + Aφ = 0 in Q,

φ(0) = φ0, φ′(0) = φ1 in Ω,
(2.9)

where A is Stokes operator defined as follows: A : (H2(Ω))n ∩ V → H given by Au :=
P(−∆u) where P : (L2(Ω))n → H is the orthogonal projector in (L2(Ω))n onto H and ∆ :
(H2(Ω))n ∩V → (L2(Ω))n is the Laplace operator with Dirichlet boundary conditions.

In this section we are going to obtain the direct and inverse inequalities to problem (2.8)
which is enough to apply HUM (Hilbert Uniqueness Method) in order to obtain the above
mentioned exact controllability. For this end we will employ the multiplier technique. The
main results of this section are Theorem 2.1 and Theorem 2.4 below.

Theorem 2.1. Let {φ0, φ1} ∈ H ×V ′ and φ the ultra weak solution of the problem (2.8). Then, there
exists a constant C1 > 0 such that∫ T

0

∫
ω
|φ|2dxdt ≤ C1

[
|φ0|2H + ‖φ1‖2

V′

]
. (2.10)

Proof. Since φ is the ultra weak solution to problem (2.8) then making use of standard prop-
erties of ultra weak solutions for linear problems (see Cavalcanti [10, Section 5] or Lions
[25, Chap. 1, Section 4]) there exists C0 > 0 such that

‖φ‖2
L∞(0,T;H) + ‖φ

′‖2
L∞(0,T;V′) ≤ C0

[
|φ0|2H + ‖φ1‖2

V′

]
. (2.11)

From (2.11) and L∞(0, T; H) ↪→ L2(0, T; H) we have the desired result.

Remark 2.2. Arguing as in [7, Chap. 5] or [39, Chap. 2] it is possible to show the existence
of a function p ∈ H−1(0, T; L2

0(Ω)) such that (1.3) is satisfied in D′(Q). Moreover, there exists
C > 0 such that

‖p‖H−1(0,T;L2
0(Ω)) ≤ C(|φ1|H + ‖φ0‖V + ‖hχω‖L2(0,T;H)), (2.12)

where L2
0(Ω) ≈ L2(Ω)/R.

Remark 2.3. As it is stated in Lions [25, Chap. I, Lemma 3.7] if φ ∈ (H1
0(Ω) ∩ H2(Ω))n, then

∂φi

∂xk
= νk

∂φi

∂ν
on Γ; ∀i, k ∈ {1, . . . , n}. (2.13)

Moreover, if div φ = 0 in Ω, then as in Lions [25, Chap. II, section 5] we have

∂φ

∂ν
· ν = 0 on Γ (2.14)

and consequently

νi
∂φi

∂xk
= νiνk

∂φi

∂ν
on Γ. (2.15)
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Let x0 ∈ Rn, m(x) = x− x0, x ∈ Rn and R0 = max{‖m(x)‖; x ∈ Ω}.
We assume that ω ⊂ Ω is a neighborhood of Γ(x0) where

Γ0 = Γ(x0) = {x ∈ Γ; m(x) · ν(x) > 0},
Γ1 = Γ \ Γ(x0) = {x ∈ Γ; m(x) · ν(x) ≤ 0},
Σ0 = Σ(x0) = Γ0(x0)× [0, T],

Σ1 = Σ \ Σ0 = Γ1(x0)× [0, T].

(2.16)

As an example of a domain Ω satisfying the above assumption let us consider the Fig-
ure 2.1 below:
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Figure 2.1: Description of a subset ω of a domain Ω which is a neighborhood
of Γ(x0).

Theorem 2.4. Let us consider T > T0, where T0 = 2R0, as in Theorem 3.3 due to Cavalcanti et
al. [10]. Then, there exists a constant C2 > 0 such that

|φ0|2H + ‖φ1‖2
V′ ≤ C2

∫ T

0

∫
ω
|φ|2dxdt. (2.17)

Proof. Suppose that the following estimate holds

‖θ0‖2
V + |θ1|2H ≤ C2

∫ T

0

∫
ω
|θ′|2dxdt, (2.18)

where θ is solution of the problem (2.8) with initial data {θ0, θ1} ∈ V × H. Then we have the
desired result. Indeed, take {φ0, φ1} ∈ H×V ′. Since−φ1 ∈ V ′ and the operator−∆ : V −→ V ′

is an isometric isomorphism, there exists η ∈ V such that

− ∆η = −φ1. (2.19)

Let us define

ψ(t) =
∫ t

0
φ(s)ds + η, (2.20)

where η satisfies (2.19) and φ is the solution to problem
φ′′ − ∆φ = −∇( ∂

∂t p) in Q,

div φ = 0 in Q,

φ = 0 on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω.

(2.21)
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Thus we have that ψ is the solution to problem
ψ′′ − ∆ψ = −∇p in Q,

div ψ = 0 in Q,

ψ = 0 on Σ,

ψ(0) = η, ψ′(0) = φ0 in Ω.

(2.22)

From (2.18) and (2.22) we have

|φ0|2H + ‖φ1‖2
V′ ≤ C2

∫ T

0

∫
ω
|φ|2dxdt.

We will prove (2.18) in several steps.
By Theorem 3.3 due to Cavalcanti et al. [10], for T > T0 = 2R0 the following inequality

holds

Eθ(0) ≤ C
∫ T

0

∫
Γ0

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt, (2.23)

where θ is the weak solution of the problem (2.8) with the initial data {θ0, θ1} ∈ V × H.

Lemma 2.5. Let m ∈ (C1(Ω))n. Then, for all regular solutions of (2.8), the following identity holds

〈∇p, m · ∇φ〉L2(Q)n = 〈∇p, φ · ∇m〉L2(Q)n − 〈∇p, φ(div m)〉L2(Q)n .

Proof. Let us consider

X = −
∫ T

0

∫
Ω

∂p
∂xi

mk
∂φi

∂xk
dxdt.

Integrating by parts with respect to xk and using the fact that φ = 0 on Σ, we get

X =
∫ T

0

∫
Ω

∂

∂xk

(
∂p
∂xi
·mk

)
· φidxdt

=
∫ T

0

∫
Ω

∂2 p
∂xi∂xk

mkφidxdt +
∫ T

0

∫
Ω

∂p
∂xi

∂mk

∂xk
φidxdt.

(2.24)

Integrating by parts the first integral, with respect to xi, we obtain∫ T

0

∫
Ω

∂2 p
∂xi∂xk

mkφidxdt = −
∫ T

0

∫
Ω

∂p
∂xk

∂mk

∂xi
φidxdt−

∫ T

0

∫
Ω

∂p
∂xk

mk
∂φi

∂xi
dxdt.

Since div φ = 0 on Q, we conclude that∫ T

0

∫
Ω

∂2 p
∂xi∂xk

mkφidxdt = −
∫ T

0

∫
Ω

∂p
∂xk

∂mk

∂xi
φidxdt.

Therefore,

X = −
∫ T

0

∫
Ω

∂p
∂xk

∂mk

∂xi
φidxdt +

∫ T

0

∫
Ω

∂p
∂xi

∂mk

∂xk
φidxdt

and the proof is finished.

Lemma 2.6. Let T > T0 and ε > 0 be such that T − 2ε > T0. Let θ be the solution of problem (2.8)
with initial data {θ0, θ1} ∈ V × H. Then, there exists C > 0 such that

Eθ(0) ≤ C
∫ T−ε

ε

∫
Γ0

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt. (2.25)
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Proof. Since θ is the weak solution of problem (2.8), θ ∈ C([0, T], V)∩C1([0, T], H)∩C2([0, T], V ′).
In particular, 

θ′′ − ∆θ = −∇p in C([0, T − 2ε], V ′),

div θ = 0 in Ω× (0, T − 2ε),

θ = 0 on Γ× (0, T − 2ε),

θ(0) = θ0, θ′(0) = θ1 in Ω.

(2.26)

From (2.23) and (2.26) we have

Eθ(0) ≤ C
∫ T−2ε

0

∫
Γ0

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt. (2.27)

Let 0 ≤ t ≤ T − 2ε and define η(t) = θ(t + ε) and ∇q = ∇p(x, t + ε). Then,
η′′ − ∆η = −∇q in C([0, T − 2ε], V ′),

div η = 0 in Ω× (0, T − 2ε),

η = 0 on Γ× (0, T − 2ε),

η(0) = θ(ε), η′(0) = θ′(ε) in Ω,

(2.28)

analogously to what we have done in (2.27), we obtain,

Eη(0) ≤ C
∫ T−2ε

0

∫
Γ0

∣∣∣∣∂η

∂ν

∣∣∣∣2dΓdt. (2.29)

Since Eη(0) = Eθ(ε) = Eθ(0) and making the change of variable s = t + ε, we infer

Eθ(0) ≤ C
∫ T−ε

ε

∫
Γ0

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt.

Fix T > T0 and ε > 0 such that T − 2ε > T0. Let us consider h ∈ (C1(Ω))n such that
h · ν ≥ 0 for every x ∈ Γ,

h = ν on Γ0,

h = 0 in Ω \ω.

Let η ∈ C1(0, T) such that η(0) = η(T) = 0 and η(t) = 1 in ]ε, T − ε[.

Let us define r(x, t) = η(t)h(x) which belongs [W1,∞(Q)]n and satisfies
r(x, t) = ν(x), for every (x, t) ∈ Γ0×]ε, T − ε[,

r(x, t) · ν(x) ≥ 0, for every (x, t) ∈ Γ×]0, T[,

r(x, 0) = r(x, T) = 0, for every x ∈ Ω,

r(x, t) = 0, for every (x, t) ∈ (Ω \ω)×]0, T[.

(2.30)

Lemma 2.7. Let T > T0 and ε > 0 be such that T − 2ε > T0. Let θ be the solution of problem (2.8)
with initial data {θ0, θ1} ∈ V × H. Then, there exists C > 0 such that

Eθ(0) ≤ C
∫ T−ε

ε

∫
ω
|θ|2 + |θ′|2 + |∇θ|2dxdt, (2.31)
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where ∇θ means 
∂θ1
∂x1

· · · ∂θn
∂x1

...
. . .

...
∂θ1
∂xn

· · · ∂θn
∂x1

 . (2.32)

Proof. Initially considering the regular initial data, one obtains the general result using density
arguments. In equation (2.8)1, taking the inner product in (L2(Ω))n of θ′′ − ∆θ +∇p and
r · ∇θ, and integrating in [0, T], we obtain

1
2

∫ T

0

∫
γ

r · ν
∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dγdt =
1
2

∫ T

0

∫
Ω
(div r)(|θ′|2 − |∇θ|2)dxdt +

∫ T

0

∫
Ω

∂θi

∂xj

∂rk

∂xj

∂θi

∂xk
dxdt

−
∫ T

0

∫
Ω

θ′ir
′
k

∂θi

∂xk
dxdt +

∫ T

0

∫
Ω

∂p
∂xi

rk
∂θi

∂xk
dxdt.

(2.33)

Indeed, note that∫ T

0
(θ′′, r · ∇θ)dt−

∫ T

0
(∆θ, r · ∇θ)dt = −

∫ T

0
(∇p, r · ∇θ)dt. (2.34)

Introduce the notations

J1 :=
∫ T

0
(θ′′, r · ∇θ)dt,

J2 := −
∫ T

0
(∆θ, r · ∇θ)dt,

J3 := −
∫ T

0
(∇p, r · ∇θ)dt.

Next, we are going to estimate these terms.
Using integration by parts and the properties of the function r(x, t) defined in (2.30), we

deduce J1, satisfies

J1 =
∫ T

0
(θ′′, r · ∇θ)dt = −

∫ T

0

∫
Ω

θ′ir
′
k

∂θi

∂xk
dxdt−

∫ T

0

∫
Ω

θ′irk
∂θ′i
∂xk

dxdt︸ ︷︷ ︸
J̃1

.

Then Gauss’s Formula yields∫
Ω

∂

∂xk

(
θ
′2
i rk

)
dx =

∫
Γ

θ
′2
i rkνkdΓ,

and since θ
′
i(x, t) = 0 on Σ, we deduce that

J̃1 = −1
2

∫ T

0

∫
Ω

θ
′2
i

∂rk

∂xk
dxdt.

Thus

J1 = −
∫ T

0

∫
Ω

r′k
∂θi

∂xk
θ′i dxdt +

1
2

∫ T

0

∫
Ω

θ
′2
i

∂rk

∂xk
dxdt

= −
∫ T

0
(θ′, r′ · ∇θ)dt +

1
2

∫ T

0

∫
Ω
|θ′|2 div r dxdt.

(2.35)
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Furthermore, we have for the term J2

J2 := −
∫ T

0
(∆θ, r · ∇θ)dt = −

∫ T

0

∫
Ω

∂2θi

∂x2
j

rk
∂θi

∂xk
dxdt.

From Gauss’s formula and (2.13), we have

J2 =
∫ T

0

∫
Ω

∂θi

∂xj

∂

∂xj

(
rk

∂θi

∂xk

)
dxdt︸ ︷︷ ︸

J̃2

−
∫ T

0

∫
Γ

rk
∂θi

∂xk

∂θi

∂ν
dΓdt. (2.36)

Notice that

J̃2 =
∫ T

0

∫
Ω

∂θi

∂xj

∂rk

∂xj

∂θi

xk
dxdt +

1
2

∫ T

0

∫
Ω

rk
∂

∂xk

[(
∂θi

∂xj

)2]
dxdt︸ ︷︷ ︸˜̃J2

. (2.37)

From Gauss’s formula and (2.13), we deduce that

˜̃J2 =
1
2

∫ T

0

∫
Γ

rkνk

(
∂θi

∂ν

)2

dΓdt− 1
2

∫ T

0

∫
Ω

∂rk

∂xk

(
∂θi

∂xj

)2

dxdt. (2.38)

Thus from (2.36), (2.37), (2.38) and (2.13), we have

J2 =
∫ T

0

∫
Ω

∂θi

∂xj

∂rk

∂xj

∂θi

xk
dxdt− 1

2

∫ T

0

∫
Ω

div r(|∇θ|2)dxdt− 1
2

∫ T

0

∫
Γ
(r · ν)

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt. (2.39)

For the term J3 we have

J3 = −
∫ T

0
(∇p, r · ∇θ)dt = −

∫ T

0

∫
Ω

∂p
∂xi

rk
∂θi

∂xk
dxdt. (2.40)

Therefore, from (2.34), (2.35), (2.39) and (2.40) we infer

1
2

∫ T

0

∫
Γ
(r · ν)

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt =
1
2

∫ T

0

∫
Ω
(div r)(|θ′|2 − |∇θ|2)dxdt−

∫ T

0
(θ′, r′ · ∇θ)dt

+
∫ T

0

∫
Ω

∂θi

∂xj

∂rk

∂xj

∂θi

∂xk
dxdt +

∫ T

0

∫
Ω

∂p
∂xi

rk
∂θi

∂xk
dxdt.

(2.41)

Note that by Lemma 2.5 we have that∫ T

0

∫
Ω

∂p
∂xi

rk
∂θi

∂xk
dxdt = 〈∇p,−θ · ∇r + θ(div r)〉H−1(Q)n,H1

0 (Q)n . (2.42)

Therefore∣∣∣∣ ∫ T

0

∫
Ω

∂p
∂xi

rk
∂θi

∂xk
dxdt

∣∣∣∣ ≤ δ‖∇p‖2
H−1(Q)n + Cδ

∫ T

0

∫
ω
|θ|2 + |θ′|2 + |∇θ|2dxdt.

Using the properties of r(x, t) and estimating others term on the right side of equality
(2.41), we obtain that

1
2

∫ T

0

∫
Γ
(r · ν)

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt ≤ δ‖∇p‖2
H−1(Q)n + C

∫ T

0

∫
ω
|θ|2 + |θ′|2 + |∇θ|2dxdt. (2.43)
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Therefore, by Lemma 2.6 and (2.43) we have

Eθ(0) ≤
1
2

∫ T−ε

ε

∫
Γ0

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt =
1
2

∫ T−ε

ε

∫
Γ0

(r · ν)
∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt

≤ 1
2

∫ T

0

∫
Γ
(r · ν)

∣∣∣∣ ∂θ

∂ν

∣∣∣∣2dΓdt

≤ δ‖∇p‖2
H−1(Q)n + C

∫ T

0

∫
ω
|θ|2 + |θ′|2 + |∇θ|2dxdt.

(2.44)

Using the fact ‖∇p‖2
H−1(Q)n ≤ CEθ(0), by (2.44) and choosing δ small enough we have

Eθ(0) ≤ C
∫ T

0

∫
ω
|θ|2 + |θ′|2 + |∇θ|2dxdt.

Since the inequality above is valid for all T > T0, in particular for T− 2ε, proceeding as in
the demonstration of Lemma 2.6 we have the desired result.

Remark 2.8. According to the proof of Lemma 2.3 in J. L. Lions [25] we can construct a
neighbourhood ω̂ of Γ0 such that Ω ∩ ω̂ ⊂ ω and we can to build a vector field r̂ for ŵ. Then,
we get analogously, that

Eθ(0) ≤ C
∫ T−ε

ε

∫
ω̂
|θ|2 + |θ′|2 + |∇θ|2dxdt.

Now, let us consider a function r = r(x, t) ∈W1,∞(Q) that satisfies

r(x, t) ≥ 0, for every (x, t) ∈ Ω×]0, T[,

r(x, t) = 1, for every (x, t) ∈ ω̂×]ε, T − ε[,

r(x, t) = 0, for every (x, t) ∈ (Ω \ω)×]0, T[,

0 < r(x, t) < 1, for every (x, t) ∈ (ω \ ω̂)×]0, T[ and ω̂× (]0, ε] ∪ [T − ε, T[),

r(x, 0) = r(x, T) = 0, for every x ∈ Ω,
|∇r|2

r ∈ L∞(ω×]0, T[ ).

(2.45)

The function r can be chosen as follows r(x, t) = ρ2(x)η(t) where η ∈ C1(0, T) and it
satisfies 

η(0) = η(T) = 0,

η(t) = 1, in ]ε, T − ε[,

0 < η(t) < 1, in ]0, ε[ ∪ ]T − ε, T[,

and ρ ∈ C1(Ω) satisfies 
ρ(x) = 1, for every x ∈ ω̂,

ρ(x) = 0, for every x ∈ Ω \ω,

0 < ρ(x) < 1, for every x ∈ ω \ ω̂.

Proposition 2.9. Let us consider T > T0 and ε > 0 such that T − 2ε > T0 and θ the solution of
problem (2.8) with initial data {θ0, θ1} ∈ V × H. Then, there exists a constant C > 0 such that

Eθ(0) ≤ C
∫ T

0

∫
ω
|θ|2 + |θ′|2dxdt. (2.46)
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Proof. Initially we consider regular initial data and one obtains the general result using density
arguments. In equation (2.8)1, taking the inner product in (L2(Ω))n of θ′′ − ∆θ +∇p and rθ

and integrating in [0, T], we obtain∫ T

0

∫
Ω

θ′′i rθidxdt−
∫ T

0

∫
Ω

∆θirθidxdt = −
∫ T

0

∫
Ω

∂p
∂xi

rθidxdt. (2.47)

Next, we are going to estimate the terms in (2.47).
Denote by

I1 :=
∫ T

0

∫
Ω

θ′′i rθidxdt.

I2 := −
∫ T

0

∫
Ω

∆θirθidxdt,

I3 := −
∫ T

0

∫
Ω

∂p
∂xi

rθidxdt.

Using the properties of the function r(x, t) defined in (2.45) and making use of the equality
(θ′i , rθi)

′ = (θ′′i , rθi) + (θ′i , r′θi) + (θ′i , rθ′i), we have that I1 can be estimated as follows

I1 =
∫ T

0

∫
Ω

θ′′i rθidxdt = −
∫ T

0

∫
Ω

θ′ir
′θidxdt−

∫ T

0

∫
Ω

θ′irθ′i dxdt. (2.48)

Notice that using Gauss’s formula and taking θ = 0 on Σ into account, we infer that I2

verifies

I2 = −
∫ T

0

∫
Ω

∆θirθidxdt =
∫ T

0

∫
Ω
∇θi(∇r)θi + r|∇θi|2dxdt. (2.49)

Replacing (2.48), (2.49) in (2.47), we obtain∫ T

0

∫
Ω

r|∇θi|2dxdt =
∫ T

0

∫
Ω

r|θ′i |2dxdt +
∫ T

0

∫
Ω

r′θ′i θidxdt

−
∫ T

0

∫
Ω
∇θi(∇r)θidxdt−

∫ T

0

∫
Ω

∂p
∂xi

rθidxdt.
(2.50)

By Young’s inequality we obtain that∫ T

0

∫
Ω

r′θ′i θidxdt ≤ C
∫ T

0

∫
Ω
(|θ′i |2 + |θi|2)dxdt. (2.51)

Making use of the inequality ab ≤ 1
2 a2 + 1

2 b2, we can write∣∣∣∣ ∫ T

0

∫
Ω
∇θi(∇r)θidxdt

∣∣∣∣ = ∣∣∣∣ ∫ T

0

∫
Ω

r
1
2∇θi

∇r

r
1
2

θidxdt
∣∣∣∣

≤ 1
2

∫ T

0

∫
Ω

r|∇θi|2 +
1
2

∫ T

0

∫
Ω

|∇r|2
r
|θi|2dxdt.

(2.52)

By the Cauchy–Schwarz inequality and by Young’s inequality we have that∫ T

0

∫
Ω

∂p
∂xi

rθidxdt ≤ δ‖p‖2
H−1(0,T;L2(Ω)n) + Cδ‖rθ‖H1

0 (0,T;L2(Ω)n) (2.53)

for any δ > 0.
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Combining (2.51), (2.52) and (2.53) we obtain∫ T

0

∫
ω

r|∇θ|2dxdt ≤ C
∫ T

0

∫
ω
|θ′|2 + |θ|2dxdt + δ‖p‖2

H−1(0,T;L2(Ω)n). (2.54)

However, ∫ T−ε

ε

∫
ω̂
|∇θi|2dxdt =

∫ T−ε

ε

∫
ω̂

r|∇θi|2dxdt ≤
∫ T

0

∫
ω

r|∇θi|2dxdt. (2.55)

From (2.54) and 2.55, we obtain∫ T−ε

ε

∫
ω̂
|∇θi|2dxdt ≤ C

∫ T

0

∫
ω
|θ′i |2 + |θi|2dxdt + δ‖p‖2

H−1(0,T;L2(Ω)n). (2.56)

From Remark 2.8 and (2.56) we obtain

Eθ(0) ≤ C
∫ T

0

∫
ω
|θ′|2 + |θ|2dxdt + δ‖p‖2

H−1(0,T;L2(Ω)n). (2.57)

By (2.57) and choosing δ small enough we have

Eθ(0) ≤ C
∫ T

0

∫
ω
|θ′|2 + |θ|2dxdt. (2.58)

Proposition 2.10. Let T > T0 and ε > 0 be such that T− 2ε > T0, ω a neighborhood of Γ0 previously
cited and θ the solution of the (2.8) with {θ0, θ1} ∈ V × H. Then, there exists a constant C > 0 such
that ∫ T

0

∫
ω
|θ|2dxdt ≤ C

∫ T

0

∫
ω
|θ′|2dxdt. (2.59)

Proof. We argue by contradiction. Let us suppose that (2.59) is not verified, then for every
m ∈ N let {θ0

m, θ1
m} ∈ V × H be a sequence of initial data where the corresponding solutions

{θm} of the problem (2.8) verify

lim
m→∞

∫ T
0

∫
ω |θm|2dxdt∫ T

0

∫
ω |θ′m|2dxdt

= +∞, (2.60)

or, equivalently,

lim
m→∞

∫ T
0

∫
ω |θ

′
m|2dxdt∫ T

0

∫
ω |θm|2dxdt

= 0. (2.61)

Defining

αm =
√
‖θm‖L2(0,T,Hω) and ψm =

θm

αm
, (2.62)

where Hω = {u; u ∈ (L2(ω))n; div u = 0 and u · ν = 0 on Γ}, then we obtain

‖ψm‖L2(0,T,Hω) = 1. (2.63)



14 A. F. Almeida, M. Astudillo, M. M. Cavalcanti and J. P. Zanchetta

It is easy to see that

Eψm =
1

α2
m

Eθm (2.64)

From Proposition 2.9 we have

Eψm(0) ≤
∫ T

0

∫
ω
|ψ′m|2 + |ψm|2dxdt.

then, by (2.61), (2.62) and (2.63)
Eψm(0) ≤ L. (2.65)

Therefore, there exist subsequences of the {ψ0
m}, {ψ1

m}, denoted in the same way, such that

ψ0
m ⇀ ψ0 in V,

ψ1
m ⇀ ψ1 in H.

Since Eψm(t) = Eψm(0) ≤ L we conclude that there exist subsequences of {ψm}, denoted in
the same way, such that

{ψm} is bounded in L∞(0, T; V), (2.66)

{ψ′m} is bounded in L∞(0, T; H). (2.67)

From (2.66) and (2.67), we infer that there exist subsequences, denoted in the same way,
such that

ψm
∗
⇀ ψ (weak star) in L∞(0, T; V), (2.68)

ψ′m
∗
⇀ ψ′ (weak star) in L∞(0, T; H). (2.69)

Since V ↪→ H is compact, then from Theorem 5.1 due to J. L. Lions [24], we have

ψm → ψ in L2(0, T, H). (2.70)

From (2.61) and (2.69) we have that

ψ′(x, t) = 0 in ω× (0, T) (2.71)

and ψ is independent of t in ω.
From the above convergence results, we have that ψ is solution of problem (2.9) with initial

data {ψ0, ψ1} ∈ V×H. In order to achieve a contradiction it is enough to prove that Eψ(0) = 0.
Indeed, since Eψ(t) = Eψ(0), we have that |ψ′|2H + ‖ψ‖2

V = 0 hence ψ = 0 in Q contradicting
(2.63) and (2.70). In order to prove this, we consider the following system{

ξ ′′ + Aξ = 0 in Q,

ξ(0) = −ψ1, ξ ′(0) = Aψ0 in Ω,
(2.72)

with {−ψ1, Aψ0} ∈ H ×V ′, where A is the Stokes operator.
Taking v(x, t) = ψ0(x) −

∫ T
0 ξ(x, s)ds, then v solves (2.9) with initial dates {ψ0, ψ1} ∈

V × H.
Therefore, from the uniqueness of solutions of (2.9) , we have that

v = ψ (2.73)
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and by (2.71) we have that
ξ ≡ 0 in ω× (0, T). (2.74)

Let us show that ξ ≡ 0 in Ω× (0, T). Indeed, applying the curl operator in (2.72), we that
u = curl ξ satisfies {

u′′ − ∆u = 0 in Q,

u = 0 in ω× (0, T).
(2.75)

Then by Holmgren’s uniqueness theorem, see [25, p.62] we deduce that u = 0 in Ω× (0, T),
that is, curl ξ = 0, therefore there exists a functional ϕ = ϕ(x, t) such that

ξ = ∇ϕ in Q. (2.76)

Hence by (2.72)2, we have
∆ϕ = 0 in Q. (2.77)

By (2.74) and (2.76) we have that

ϕ = f (t) in ω× (0, T). (2.78)

Then, by (2.77), (2.78) and unique continuation for the Laplace equation we infer that

ϕ = f (t) in Q.

Therefore
ξ = ∇ϕ = 0 in Q.

Hence, we have that ψ0 = ψ1 = 0. Then, Eψ(0) = 0 as we desired to prove.

Remark 2.11. From Proposition 2.9 and Proposition 2.10 we obtain the inequality

Eθ(0) ≤ C
∫ T

0

∫
ω
|θ′|2dxdt

which proves (2.18) and finishes the proof of Theorem 2.4.

3 Uniform decay rate

3.1 Wellposedness

Let us consider the following problem
u′′ − ∆u + a(x)g(u′) = −∇p in Ω× (0, ∞),

div u = 0 in Ω× (0, ∞),

u = 0 on Σ,

u(0) = u0, u′(0) = u1 in Ω.

(3.1)

Theorem 3.1. Let u0 ∈ W = V ∩ (H2(Ω))n, u1 ∈ V and assume that hypotheses (1.5), (1.6) and
(1.7) hold. Then, there exists a unique function u : Q→ Rn such that

u ∈ L∞(0, ∞; W), u′ ∈ L∞(0, ∞; V) and u′′ ∈ L∞(0, ∞; H);

u′′ − ∆u + a(x)g(u′) = −∇p in (D′(Q))n;

div u = 0;

u(0) = u0, u′(0) = u1 in Ω.
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Proof. Let P be the orthogonal projector in (L2(Ω))n onto H and consider the problem{
u′′ + Au + Bu′ = 0,

u(0) = u0, u′(0) = u1,
(3.2)

where the operator A is the Stokes operator, that is,

A : D(A) ⊂ V −→ V ′

u 7−→ Au = P(−∆u)

is defined by

〈Au, v〉V′,V =
∫

Ω
∇u : ∇vdx, ∀ v ∈ V

with D(A) = {v ∈ V; Av ∈ H}.
We have by [7, Proposition IV.5.9] that D(A) = V ∩ (H2(Ω))n.
Observe that since v ∈ V ⊂ H then by integration by parts∫

Ω
∇u : ∇vdx =

n

∑
i=1

∫
Ω
∇ui∇vidx =

n

∑
i=1

[ ∫
Ω
−∆uividx +

∫
Γ

∂ui

∂νi
vidΓ

]
,

however
∫

Γ
∂ui
∂νi

vidΓ = 0 because vi ∈ H1
0(Ω).

Therefore

〈Au, v〉V′,V =
∫

Ω
∇u : ∇vdx =

n

∑
i=1
〈−∆ui, vi〉H−1,H1

0
. (3.3)

Moreover the operator A mentioned above is linear and maximal monotone in V ×V ′.
To show that A is maximal, define

b(u, v) =
∫

Ω
∇u : ∇v + u · vdx for all u, v ∈ V.

Thus b is a form bilinear, continuous and coercive in V ×V, so we can define an operator
I + A from V to V ′ by

〈(I + A)u, v〉V′,V =
∫

Ω
∇u : ∇v + u · vdx

where I is the identity operator. From the Lax–Milgram theorem this operator is an isomor-
phism from V onto V ′. Therefore A is maximal monotone.

Since I is continuous and monotone then by [5, Corollary 1.3], we conclude that I + A is
maximal monotone in V ×V ′.

The operator B is defined by

B : V −→ V ′

u 7−→ Bu = P(a(x)g(u(x))).

Note that if v ∈ V ⊂ H, then v ∈ (L2(Ω))n. Thus ag(v) ∈ (L2(Ω))n, so P(ag(v)) ∈ H and
therefore D(B) = {v ∈ V; Bv ∈ H}.

Also note that since the projection is self-adjoint and v ∈ V ⊂ H, we have

〈Bu, v〉V′,V = (Bu, v) = (P(ag(u)), v) = (ag(u),P(v)) = (ag(u), v). (3.4)
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The operator B is monotone. Indeed, since P is linear and self-adjoint we have

〈Bu− Bv, u− v〉V′,V = (Bu− Bv, u− v)

= (P(ag(u))−P(ag(v)), u− v)

= (P(ag(u)− ag(v)), u− v)

= (ag(u)− ag(v),P(u− v))

= (ag(u)− ag(v), u− v)

=
n

∑
i=1

∫
Ω

a(x)(gi(ui(x))− gi(vi(x)))(ui(x)− vi(x))dx ≥ 0

(3.5)

because a is nonnegative and gi is monotonic by hypothesis. Then B is monotone.
We claim that B is hemicontinuous. In fact,
Take u, v ∈ D(B), tm ∈ R such that tm → 0 when m→ ∞. Note that for all w ∈ V

lim
m→∞
〈B(u + tmv), w〉V′,V = lim

m→∞
(P(ag(u + tmv)), w)

= lim
m→∞

(ag(u + tmv)), w)

=
n

∑
i=1

lim
m→∞

∫
Ω

a(x)(gi(ui(x) + tmvi(x))wi(x)dx.

(3.6)

Let fmi = a(x)gi(ui(x) + tmvi(x))wi(x). Thus if |ui(x) + tmvi(x)| ≥ 1 we have by (1.7)

| fmi(x)| = |a(x)gi(ui(x) + tmvi(x))||wi(x)|
≤ K‖a‖∞|ui(x) + tmvi(x)||wi(x)|
≤ K‖a‖∞[|ui(x)||wi(x)|+ c1|vi(x)||wi(x)|]
≤ c2|ui(x)||wi(x)|+ c3|vi(x)||wi(x)|

almost everywhere in Ω, where c1 is such that |tm| ≤ c1.
Since ui(x), vi(x), wi(x) ∈ L2(Ω), it results that fmi ∈ L1(Ω), for all m ∈N.
In the same way we obtain fmi ∈ L1(Ω), for all m ∈ N, if |ui(x) + tmvi(x)| ≤ 1 because of

the continuity of gi.
We observe that, since gi is continuous we have that

lim
m→∞

gi(ui(x) + tmvi(x))wi(x) = gi(ui(x))wi(x).

Thus, from Lebesgue’s dominated convergence theorem we conclude that that

lim
m→∞

∫
Ω

a(x)gi(ui(x) + tmvi(x))wi(x)dx =
∫

Ω
a(x)gi(ui(x))wi(x)dx.

Therefore since w ∈ V ⊂ H, we have
n

∑
i=1

lim
m→∞

∫
Ω

a(x)gi(ui(x) + tmvi(x))wi(x)dx =
n

∑
i=1

∫
Ω

a(x)gi(ui(x))wi(x)dx

=
n

∑
i=1

(a(gi(ui)), wi)L2(Ω)

= (a(g(u)), w)

= (a(g(u)),P(w))

= (P(a(g(u))), w)

= 〈Bu, w〉V′,V .

(3.7)
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Thus by (3.6) and (3.7) we obtain

lim
m→∞
〈B(u + tmv), w〉V′,V = 〈Bu, w〉V′,V

and therefore B is hemicontinuous.
Moreover, we have that I + A + B is coercive. In fact, using condition (1.7), then

〈um + Aum + Bum, um〉V′,V = 〈um, um〉V′,V + 〈Aum, um〉V′,V + 〈Bum, um〉V′,V

≥ (um, um) +
n

∑
i=1

∫
Ω
|∇umi |2dx

= |um|2 + |∇um|2

= |um|2 + ‖um‖2

≥ ‖um‖2.

(3.8)

We can reformulate the problem (3.2) to obtain

d
dt

[
u
ut

]
+

[
0 −I
A B

]
︸ ︷︷ ︸

A

[
u
ut

]
=

[
0
0

]
in V × H. (3.9)

Thus we have a matrix operator A : H → H, where H = V × H, defined by

A

(
v
h

)
=

(
−h

Av + Bh

)
whose domain is D(A) = {(v, h) ∈ H; h ∈ V and Av + Bh ∈ H}. We shall prove that A is
maximal monotone in H. Indeed, A is monotone, since

(
A

[
v1

h1

]
−A

[
v2

h2

]
,
[

v1

h1

]
−
[

v2

h2

] )
H

=

( [
−h1 + h2

A(v1 − v2) + Bh1 − Bh2)

]
,
[

v1 − v2

h1 − h2

] )
H

= −(h1 − h2, v1 − v2)V + (A(v1 − v2), h1 − h2)H + (Bh1 − Bh2, h1 − h2)H

= (Bh1 − Bh2, h1 − h2)H ≥ 0

because B is monotone.
In order to prove the maximality of A, it is sufficient to prove that R(I + A) = H, that is,

given (v0, h0) ∈ H, we have to show that there exists (v, h) ∈ D(A) such that

(I + A)

[
v
h

]
=

[
v0

h0

]
, (3.10)

that is, {
v− h = v0

h + Av + Bh = h0.

Combining the above identities we deduce

h + Ah + Bh = h0 − Av0. (3.11)
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Therefore, it is sufficient to prove that I + A + B is maximal monotone in V × V ′, that is,
we have to show that R(I + A + B) = V ′. Since B is monotone and hemicontinuous, I + A is
maximal monotone em V × V ′ and I + A + B is coercive, we conclude by [5, Corollary 1.3]
that (I + A) + B is maximal monotone. Then, (3.11) possesses a unique solution h ∈ V. Since
v = v0 + h and Av + Bh = h0 − h, we conclude that v ∈ V and Av + Bh ∈ H.

Consequently, the system (3.10) has a unique solution (v, h) ∈ D(A), and, therefore, A is
maximal monotone in H.

Finally, from the above and making use of Theorem 3.1 due to Brezis [8] and given
{u0, u1} ∈ D(A)×V there exists a unique u(t) regular solution of problem (3.2) in the class

u ∈ L∞(0, ∞; V ∩ (H2(Ω))n), u′ ∈ L∞(0, ∞; V), u′′ ∈ L∞(0, ∞; H). (3.12)

Now we are going to recover the pressure term of the regular solution. Let v ∈ V be any
time-independent test function. For any t > 0 we thus have

0 = (u′′(t) + Au(t) + Bu′(t), v) = (u′′(t), v) + 〈Au(t), v〉V′,V + 〈Bu′(t), v〉V′,V .

Since v ∈ V ⊂ H, we obtain as in (3.3)

〈Au(t), v〉V′,V =
n

∑
i=1
〈−∆ui, vi〉H−1,H1

0

and by (3.4) we have

〈Bu′(t), v〉V′,V =
n

∑
i=1
〈agi(u′i), vi〉H−1,H1

0
.

It follows

0 =
n

∑
i=1

〈
u′′i (t)− ∆ui(t) + agi(u′i(t))︸ ︷︷ ︸

Li

, vi

〉
H−1,H1

0

.

Let

L(v) =
n

∑
i=1
〈Li, vi〉H−1,H1

0
,

then L ∈ (H−1(Ω))n and in addition L(v) = 0 ∀ v ∈ V a.e. in (0, T).
This being true for any v ∈ V, by [7, Theorem IV.2.3] we obtain that there exists a unique

p(t) ∈ L2
0(Ω) such that

u′′(t)− ∆u(t) + ag(u′(t)) = −∇p,

that is,

Li = −
∂p
∂xi

a.e. in (0, T).

Therefore

Li(vi) =

〈
− ∂p

∂xi
, vi

〉
for all vi ∈ H1

0(Ω) a.e. in (0, T)

thus

〈Li(vi), θi〉 =
〈〈
− ∂p

∂xi
, vi

〉
, θi

〉
for all θi ∈ D(0, T), for all vi ∈ H1

0(Ω).

In particular,

〈〈u′′i (t)− ∆ui(t) + a(x)gi(u′i(t)), vi〉, θi〉

=

〈〈
− ∂p

∂xi
, vi

〉
, θi

〉
for all θi ∈ D(0, T), for all vi ∈ D(Ω).
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Since ψi = viθi ∈ D(Ω); θi ∈ D(0, T) is dense in D(Q) we have

u′′i − ∆ui + a(x)g(u′i) = −
∂p
∂xi

in D′(Q),

where p(t) ∈ L2(Ω) a.e. in (0, T), therefore

u′′ − ∆u + a(x)g(u′) = −∇p in (D′(Q))n.

In addition, since u(t) ∈ V ∩ (H2(Ω))n then ∆u(t) ∈ H ⊂ (L2(Ω))n, ag(u′) ∈ (L2(Ω))n

and u′′(t) ∈ H ⊂ (L2(Ω))n we have from Cattabriga’s lemma in [9] that p(t) ∈ H1(Ω).

Theorem 3.2. Let u0 ∈ V, u1 ∈ H and assume that hypothesis (1.5), (1.6) and (1.7) hold. Then, there
exists a unique weak solution u of problem (3.1) such that

u ∈ C([0, ∞); V) ∩ C1([0, ∞); H).

Proof. Proceeding analogously to Theorem 3.1, we prove that A is maximal monotone in
H = V × H. Thus given {u0, u1} ∈ V × H, by [8, Theorem 3.4] there exists an unique u(t)
weak solution of problem (3.2) in the class

u ∈ C([0, ∞); V) ∩ C1([0, ∞); H). (3.13)

To determine the pressure term of the weak solution, we note that u′′ ∈ L1(0, T; V ′). Then

|〈u′′(t), v〉| ≤ ‖u′′(t)‖V′‖v‖.

Let us consider {ϕm}m∈N a sequence of functions in V such that ϕm → 0 in (D(Ω))n.
Then we have |〈u′′(t), ϕm〉| → 0.

Thus, u′′(t) is a linear and continuous form in V with the norm of (D(Ω))n. Then by
the Hahn–Banach theorem u′′(t) can be continuously extended to (D(Ω))n, which will still
be denoted by u′′(t). In this sense, L = u′′(t) − ∆u(t) + a(x)g(u′(t)) is a linear and con-
tinuous form in D(Ω) a.e. in [0, T). Similar to the statement previously made, we have
L ∈ (D′(Q))n and L(ϕ) = 0 in (D′(0, T))n ∀ϕ ∈ V . From above and Rham’s theorem (cf.
J. L. Lions [24] and R. Teman [39]), we have

L = −∇p, p ∈ D′(Q)

that is,
u′′ − ∆u + a(x)g(u′) = −∇p, p ∈ D′(Q).

3.2 Stability result

The energy related to problem (3.1) is given by

E(t) =
1
2
‖u(t)‖2

V +
1
2
|u′(t)|2H. (3.14)

In addition, multiplying the regular solution of problem (3.1) by u′, performing integra-
tions by parts having in mind that div u′ = 0 in Ω× (0, T) we deduce the following identity
of the energy:

E(t2)− E(t1) = −
∫ t2

t1

∫
Ω

a(x)g(u′) · u′ dxdt, 0 ≤ t1 ≤ t2 < ∞. (3.15)
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By standard density arguments the above identity (3.15) remains valid for weak solutions
of (3.1) as well.

Before presenting our stability result, we will define some needed functions. For this
purpose, we are following ideas first introduced in the literature by Lasiecka and Tataru [20].
For the reader’s comprehension, we will repeat them briefly. Let h : R → R be a concave,
strictly increasing function with h(0) = 0, and such that

h(sigi(si)) ≥ |si|2 + |gi(si)|2 for |si| < 1, i = 1, . . . , n, (3.16)

from which we deduce having in mind that h(s · g(s)) ≥ h(sigi(si)), since h is increasing,

n h(s · g(s)) ≥ |s|2 + |g(s)|2 for |s| < 1. (3.17)

Note that such a function can be straightforwardly constructed, given the hypotheses of g
given in (1.6) and (1.7). With this function, we define

r(·) = h
(

·
meas(Q)

)
. (3.18)

As r is monotone increasing, cI + r is invertible for all c ≥ 0. For L a positive constant, we
then set, respectively,

z(x) = (cI + r)−1(Lx), L := (C meas(Q))−1, (3.19)

where C ia a positive constant that will be determined later.
The function z is easily seen to be positive, continuous, and strictly increasing with z(0)=0.

Finally, let
q(x) = x− (I + z)−1(x). (3.20)

We can now proceed to state our stability result.

Theorem 3.3 (Uniform decay rates). Assume that hypotheses (1.5)–(1.7) and (3.17) hold. Let u be
the weak solution of problem (3.1). With the energy E(t) as defined in (3.14), there exists a T0 > 0
such that

E(t) ≤ S
(

t
T0
− 1
)

∀ t > T0 (3.21)

with limt→∞ S(t) = 0, where the contraction semigroup S(t) is the solution of the differential equation

d
dt

S(t) + q(S(t)) = 0, S(0) = E(0), (3.22)

where q is given in (3.20). Here the constant c (from definition (3.19)) is c ≡ k−1+K
meas(Q)(1+‖a‖∞)

.

Proof. Writing u = v + w we have that (3.1) is equivalent to
v′′ − ∆v = −∇p in Q,

div v = 0 in Q,

v = 0 on Σ,

v(0) = u0, v′(0) = u1 in Ω,

and


w′′ − ∆w = −a(x)g(u′) in Q,

div w = 0 in Q,

w = 0 on Σ,

w(0) = 0, v′(0) = 0 in Ω.

(3.23)
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From (1.5), Remark 2.11 and from Lemma 2.2 due to Cavalcanti et al. [10], we have

Eu(T) ≤ Eu(0) = Ev(0) ≤ c1

∫ T

0

∫
ω
|v′|2dxdt

≤ c2

∫ T

0

∫
ω
|u′|2dxdt + c3

∫ T

0

∫
ω
|w′|2dxdt

≤ c̃
∫ T

0

∫
Ω

a(x)
(
|u′|2 + |g(u′)|2

)
dxdt

(3.24)

where c̃ depends on T.
Let

Σα = {(t, x) ∈ Q; |u′i| > 1 a.e.},
Σβ = Q \ Σα.

Then using hypothesis (1.7), we obtain∫
Σα

a(x)
(
|g(u′)|2 + |u′|2

)
dΣα =

n

∑
i=1

∫
Σα

a(x)
(
|gi(u′i)|2 + |u′i|2

)
dΣα

≤ (k−1 + K)
n

∑
i=1

∫
Σα

a(x)gi(u′i)u
′
idΣα

= (k−1 + K)
∫

Σα

a(x)g(u′) · u′dΣα.

(3.25)

Moreover, from (3.17) and from the fact that h is concave and increasing, having in mind
that a(x) ≤ ‖a‖∞ + 1 and a(x)

1+‖a‖∞
< a(x) we deduce that∫

Σβ

a(x)
(
|g(u′)|2 + |u′|2

)
dΣβ ≤ n

∫
Σβ

a(x)h(g(u′) · u′)dΣβ

= n
∫

Σβ

(1 + ‖a‖∞)
a(x)

1 + ‖a‖∞
h(g(u′) · u′)dΣβ

≤ n
∫

Σβ

(1 + ‖a‖∞)h
(

a(x)
1 + ‖a‖∞

(g(u′) · u′)
)

dΣβ

≤ n
∫

Σβ

(1 + ‖a‖∞)h(a(x)g(u′) · u′)dΣβ.

(3.26)

By Jensen’s inequality

n(1 + ‖a‖∞)
∫

Σβ

h(a(x)g(u′) · u′)dΣβ

≤ n(1 + ‖a‖∞)meas(Q)h
(

1
meas(Q)

∫
Q

a(x)g(u′) · u′dQ
)

= n(1 + ‖a‖∞)meas(Q)r
( ∫

Q
a(x)g(u′) · u′dQ

)
,

where r(s) = h( s
meas(Q)

) is defined in (3.18). Thus∫
Q

a(x)
(
|g(u′)|2 + |u′|2

)
dQ ≤ (k−1 + K)

∫
Σα

a(x)g(u′) · u′dΣα

+ n(1 + ‖a‖∞)meas(Q)r
( ∫

Q
a(x)g(u′) · u′dQ

)
.

(3.27)
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Splicing together (3.24) and (3.27), we have

E(T)≤ (1 + ‖a‖∞)C
[

K0

(1+‖a‖∞)

∫
Q

a(x)g(u′) · u′dQ+meas(Q)r
(∫

Q
a(x)g(u′) · u′dQ

)]
(3.28)

where K0 = K−1 + K and C = C(c̃, n). Setting

L =
1

C meas(Q)(1 + ‖a‖∞)
,

c =
K0

meas(Q)(1 + ‖a‖∞)
,

we obtain
z[E(T)] ≤

∫
Q

a(x)g(u′) · u′dQ = E(0)− E(T), (3.29)

where the function z is as defined in (3.19). We recall that the above inequality holds for a
fixed T large enough, say, for all T > T0, for some T0 > 0. To finish the proof of Theorem 3.3,
we invoke the following result due to Lasiecka and Tataru [20].

Lemma A. Let z be a positive, increasing function such that z(0) = 0. Since z is increasing,
we can define an increasing function q, q(x) = x − (I + z)−1(x). Consider a sequence sm of
positive numbers which satisfies

sm+1 + z(sm+1) ≤ sm.

Then sm ≤ S(m), where S(t) is a solution of the differential equation

d
dt

S(t) + q(S(t)) = 0, S(0) = s0.

Moreover, if z(x) > 0 for x > 0, then limt→∞ S(t) = 0.

With this result in mind, we replace T (resp. 0) in (3.29) with m(T + 1) (resp. mT) to obtain

E(m(T + 1)) + z(E(m(T + 1))) ≤ E(mT) for m = 0, 1, . . . (3.30)

Applying Lemma A with sm = E(mT), thus results in

E(mT) ≤ S(m), for m = 0, 1, . . . (3.31)

Finally, using the dissipativity of E(t), we have for t = mT + τ, 0 ≤ τ ≤ T,

E(t) ≤ E(mT) ≤ S(m) = S
(

t− τ

T

)
≤ S

(
t
T
− 1
)

for t > T, (3.32)

where we have used above the fact that S(·) is dissipative. The proof of Theorem 3.3 is now
complete.

We shall give, for illustration, several examples of explicit decay rate estimates.

Example 3.4. Initially assuming that k |si| ≤ |gi(si)| ≤ K |si| for all si ∈ R and some positive
constants k and K or if gi(si) = c si the exponential decay holds. Indeed, from (3.24) we deduce
that

E(T) ≤ c
∫ T

0

∫
Ω

a(x)|u′|2 dxdt, for all T > T0,
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with jointly with the identity of the energy

E(t2)− E(t1) = −
∫ t2

t1

∫
Ω

a(x)|u′|2 dxdt,

allows to conclude that E(T) ≤
( c

1+c

)
E(0) for all T > T0, and, therefore, since we are dealing

with an autonomous system, E(2T) ≤
( c

1+c

)
E(T) ≤

( c
1+c

)2 E(0), and, by iteration, E(nT) ≤( c
1+c

)n E(0) for all n ∈N and T > T0 which allows to conclude the desired exponential decay.

If p is constant everywhere, we can give a wide assortment of examples which we bor-
rowed from [11, Section 8, Corollary 8.1 and Corollary 8.2] by following ideas firstly intro-
duced in [1, 2]. Indeed, in this specific case denoting

Ei(t) :=
1
2

(
‖ui(t)‖2

H1
0 (Ω)

+ ‖u′i(t)‖2
L2(Ω)

)
, i = 1, . . . , n

each portion of the full energy verifies the identity of the energy

Ei(t2)− Ei(t1) = −
∫ t2

t1

∫
Ω

a(x)gi(u′i)u
′
i dxdt, i = 1, . . . , n,

and, furthermore, for each i = 1, . . . , n the wave equation is in place, namely
u′′i − ∆ui + a(x)gi(u′i) = ∇p = 0, in Ω× (0, ∞),

ui = 0 on Γ× (0, ∞),

ui(0) = u0
i , u′i(0) = u1

i .

(3.33)

As a consequence, we deduce, for the purely wave equation, as before that

Ei(T) ≤ c
∫ T

0

∫
Ω
(|u′i|2 + |gi(u′i)|2) dxdt,

which implies that decay of each Ei(T) is driven by the Corollary 8.1 and Corollary 8.2 due to
[11] and the decay associate with the full energy is given by

E(t) :=
n

∑
i=1

Ei(t) ≤
n

∑
i=1

Si

(
t

T0
− 1
)

, ∀t > T0. (3.34)

Let us see some examples:

Example 3.5. We consider gi(si) = sp
i , p > 1 at the origin. Since the function s

p+1
2

i is convex for
p ≥ 1 we will be solving

Si,t + S
p+1

2
i = 0. (3.35)

This equation can be integrated directly, of course. However, for sake of illustration of the
general formula we find

G(s, S0) =
∫ √s

√
S0

u−pdu =
1

1− p

[
s
−p+1

2 − S
−p+1

2
0

]
.

From here G−1(t) =
[
S
−p+1

2
0 − t(1− p)

] 2
−p+1 . Thus

Ei(t) ≤ C(Ei(0))
[

Ei(0)
−p+1

2 + t(p− 1)
] 2
−p+1

.

If gi(si) = sp
i for all i = 1, . . . , n, the decay of E(t) would be the sum of decays of the same

type. However, if gi(si) = spi
i the decay would be the worst one given by the largest pi.
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Example 3.6. We take gi(si) = s3
i e
− 1

s2
i for si at the origin. Since the function s2

i e−
1
si is convex in

the neighbourhood of the origin we solve

Si,t + S2
i e−

1
Si = 0. (3.36)

In this case G(S, S0) = −1/2
[
e−

1
S − e−

1
S0
]

and G−1(t, S0)) =
[

ln(e
1

S0 − 2t)
]−1. Hence

Ei(t) ≤ C(Ei(0))
[

ln
(

e
1

Ei(0) + t
)]−1

.

Example 3.7. We consider gi(si) = si|si|e
− 1
|si | for si near zero . Since the function s3/2

i e−
1√
si is

convex on [0, s0] for some small s0 we are led to differential equation

Si,t + S3/2
i e−

1√
Si = 0. (3.37)

Function G(S, S0) is given by G(S, S0) = −
[
e

1√
S − e

1√
S0
]
. Hence

G−1(t, S0) =
1

ln2
[
e

1√
S0 − t

]
and

Ei(t) ≤ C(Ei(0))
1

ln2
[
e

1√
Ei(0) + 1

2 t
] .

Example 3.8. We take gi(si) = |si|θ−1si, 0 < θ < 1. In this case the analysis is identical to the

case of example 1 since g−1(si) = s
1
θ
i , si > 0 and 1

θ > 1. Thus the decay rates in that case
become

Ei(t) ≤ C(Ei(0))
[

Ei(0)
−1+θ

2θ + t
1− θ

θ

] 2θ
θ−1

.

Summarizing we can choose gi(si) as the above examples so that for each one we have a
decay Ei(t) but the total one E(t) := ∑n

i=1 Ei(t) will be driven by the worst one.

Acknowledgements

The second and the fourth authors are partially supported by CAPES. The third author is
partially supported by the CNPq grant 300631/2003-0.

References

[1] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay
rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51(2005), No. 1,
61–105. https://doi.org/10.1007/s00245; MR2101382

[2] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates
of finite and infinite dimensional vibrating damped systems with applications to semi-
discretized vibrating damped systems, J. Differential Equations 248(2010), No. 6, 1473–
1517. https://doi.org/10.1016/j.jde.2009.12.005; MR2593051

https://doi.org/10.1007/s00245
https://www.ams.org/mathscinet-getitem?mr=2101382
https://doi.org/10.1016/j.jde.2009.12.005
https://www.ams.org/mathscinet-getitem?mr=2593051


26 A. F. Almeida, M. Astudillo, M. M. Cavalcanti and J. P. Zanchetta

[3] F. Alabau-Boussouira, K. Ammari, Sharp energy estimates for nonlinearly locally
damped PDEs via observability for the associated undamped system, J. Funct. Anal.
260(2011), No. 8, 2424–2450. https://doi.org/10.1016/j.jfa.2011.01.003; MR2772377

[4] F. D. Araruna, G. O. Antunes, H. R. Crippa, Hyperbolic equation with a resistance
term and locally distributed damping, in: Proceedings of the 57th SBA (Brazilian Conference
of Analysis), No. 1, 2003, pp. 539–546.

[5] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura
Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publish-
ing, Leiden, 1976. MR0390843

[6] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control,
and stabilization of waves from the boundary, SIAM J. Control Optim. 30(1992), No. 5,
1024–1065. https://doi.org/10.1137/0330055; MR1178650

[7] F. Boyer, P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equa-
tions and related models, Applied Mathematical Sciences, Vol. 183, Springer, New York,
2013. https://doi.org/10.1007/978-1-4614-5975-0; MR2986590

[8] H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de
Hilbert (in French), North-Holland Mathematics Studies, Vol. 5, Elsevier, North Holland,
Amsterdam, 1973. MR0348562

[9] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes (in
Italian), Rend. Sem. Mat. Univ. Padova 31(1961), 308–340. MR0138894

[10] M. M. Cavalcanti, V, N. Domingos Cavalcanti, A. Rocha, J. A. Soriano, Exact con-
trollability of a second order integro-differential equation with a pressure term, Electron. J.
Qual. Theory Differ. Equ. 1998, No. 9, 1–18. https://doi.org/10.14232/ejqtde.1998.1.9;
MR1662928

[11] M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka, Well-posedness and opti-
mal decay rates for the wave equation with nonlinear boundary damping-source interac-
tion, J. Differential Equations 236(2007), No. 2, 407–459. https://doi.org/10.1016/j.jde.
2007.02.004; MR2322019

[12] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, J. A. Soriano, Asymp-
totic stability of the wave equation on compact surfaces and locally distributed damping-
a sharp result, Trans. Amer. Math. Soc. 361(2009), No. 9, 4561–4580. https://doi.org/10.
1090/S0002-9947-09-04763-1; MR2506419

[13] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, J. A. Soriano, Asymp-
totic stability of the wave equation on compact manifolds and locally distributed damp-
ing: a sharp result, Arch. Ration. Mech. Anal. 197(2010), No. 3, 925–964. https://doi.org/
10.1007/s00205-009-0284-z; MR2679361

[14] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, D. Toundykov, Unified
approach to stabilization of waves on compact surfaces by simultaneous interior and
boundary feedbacks of unrestricted growth, Appl. Math. Optim. 69(2014), No. 1, 83–122.
https://doi.org/10.1007/s00245-013-9218-0; MR3162496

https://doi.org/10.1016/j.jfa.2011.01.003
https://www.ams.org/mathscinet-getitem?mr=2772377
https://www.ams.org/mathscinet-getitem?mr=0390843
https://doi.org/10.1137/0330055
https://www.ams.org/mathscinet-getitem?mr=1178650
https://doi.org/10.1007/978-1-4614-5975-0
https://www.ams.org/mathscinet-getitem?mr=2986590
https://www.ams.org/mathscinet-getitem?mr=0348562
https://www.ams.org/mathscinet-getitem?mr=0138894
https://doi.org/10.14232/ejqtde.1998.1.9
https://www.ams.org/mathscinet-getitem?mr=1662928
https://doi.org/10.1016/j.jde.2007.02.004
https://doi.org/10.1016/j.jde.2007.02.004
https://www.ams.org/mathscinet-getitem?mr=2322019
https://doi.org/10.1090/S0002-9947-09-04763-1
https://doi.org/10.1090/S0002-9947-09-04763-1
https://www.ams.org/mathscinet-getitem?mr=2506419
https://doi.org/10.1007/s00205-009-0284-z
https://doi.org/10.1007/s00205-009-0284-z
https://www.ams.org/mathscinet-getitem?mr=2679361
https://doi.org/10.1007/s00245-013-9218-0
https://www.ams.org/mathscinet-getitem?mr=3162496


Elasticity equations 27

[15] M. M. Cavalcanti, F. R. Dias Silva, V. N. Domingos Cavalcanti, Uniform decay rates
for the wave equation with nonlinear damping locally distributed in unbounded domains
with finite measure, SIAM J. Control Optim. 52(2014), No. 1, 545–580. https://doi.org/
10.1137/120862545; MR3164554

[16] M. Daoulatli, I. Lasiecka, D. Toundykov, Uniform energy decay for a wave equation
with partially supported nonlinear boundary dissipation without growth restrictions,
Discrete Contin. Dyn. Syst. Ser. S 2(2009), No. 1, 67–94. https://doi.org/10.3934/dcdss.
2009.2.67; MR2481581

[17] B. Dehman, G. Lebeau, E. Zuazua, Stabilization and control for the subcritical semilinear
wave equation, Anna. Sci. Ec. Norm. Super. 36(2003), No. 4, 525–551. https://doi.org/10.
1016/S0012-9593(03)00021-1; MR2013925

[18] R. Joly, C. Laurent, Stabilization for the semilinear wave equation with geometric con-
trol, Anal. PDE 6(2013), No. 5, 1089–1119. https://doi.org/10.2140/apde.2013.6.1089;
MR3125551

[19] A. Kais, E. Feireisl, N. Serge, Polynomial stabilization of some dissipative hyperbolic
systems, Discrete Contin. Dyn. Syst. 34(2014), No. 11, 4371–4388. https://doi.org/10.
3934/dcds.2014.34.4371; MR3223811

[20] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equation
with nonlinear boundary damping, Differential Integral Equations 6(1993), No. 3, 507–533.
MR1202555

[21] I. Lasiecka, D. Toundykov, Energy decay rates for the semilinear wave equation with
nonlinear localized damping and source terms, Nonlinear Anal. 64(2006), No. 8, 1757–
1797. https://doi.org/10.1016/j.na.2005.07.024; MR2197360

[22] I. Lasiecka, D. Toundykov, Regularity of higher energies of wave equation with nonlin-
ear localized damping and a nonlinear source, Nonlinear Anal. 69(2008), No. 3, 898–910.
https://doi.org/10.1016/j.na.2008.02.069; MR2428762

[23] J. L. Lions, Problèmes aux limites dans les équations aux derivées partielles (in French), Les
Presses de l’Université de Montréal, Montreal, Que. Montreal, Canada, 1965. MR0251372

[24] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (in French),
Dunod, Gauthier-Villars, Paris, 1969. MR0259693

[25] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1,
Recherches en Mathématiques Appliquées, Vol. 8, Masson, Paris, 1988. MR953547

[26] J. L. Lions, On some hyperbolic equations with a pressure term, in: Partial differential
equations and related subjects (Trento, 1990), Pitman Res. Notes Math. Ser., Vol. 269, Long-
man Sci. Tech., Harlow, pp. 196–208. MR1190941

[27] P. Martinez, Decay of solutions of the wave equation with a local highly degenerate
dissipation, Asymptot. Anal. 19(1999), No. 19, 1–17. MR1674586

[28] P. Martinez, A new method to obtain decay rate estimates for dissipative systems with
localized damping, Rev. Mat. Complut. 12(1999), No. 1, 251–283. https://doi.org/10.
5209/rev_REMA.1999.v12.n1.17227; MR1698906

https://doi.org/10.1137/120862545
https://doi.org/10.1137/120862545
https://www.ams.org/mathscinet-getitem?mr=3164554
https://doi.org/10.3934/dcdss.2009.2.67
https://doi.org/10.3934/dcdss.2009.2.67
https://www.ams.org/mathscinet-getitem?mr=2481581
https://doi.org/10.1016/S0012-9593(03)00021-1
https://doi.org/10.1016/S0012-9593(03)00021-1
https://www.ams.org/mathscinet-getitem?mr=2013925
https://doi.org/10.2140/apde.2013.6.1089
https://www.ams.org/mathscinet-getitem?mr=3125551
https://doi.org/10.3934/dcds.2014.34.4371
https://doi.org/10.3934/dcds.2014.34.4371
https://www.ams.org/mathscinet-getitem?mr=3223811
https://www.ams.org/mathscinet-getitem?mr=1202555
https://doi.org/10.1016/j.na.2005.07.024
https://www.ams.org/mathscinet-getitem?mr=2197360
https://doi.org/10.1016/j.na.2008.02.069
https://www.ams.org/mathscinet-getitem?mr=2428762
https://www.ams.org/mathscinet-getitem?mr=0251372
https://www.ams.org/mathscinet-getitem?mr=0259693
https://www.ams.org/mathscinet-getitem?mr=953547
https://www.ams.org/mathscinet-getitem?mr=1190941
https://www.ams.org/mathscinet-getitem?mr=1674586
https://doi.org/10.5209/rev_REMA.1999.v12.n1.17227
https://doi.org/10.5209/rev_REMA.1999.v12.n1.17227
https://www.ams.org/mathscinet-getitem?mr=1698906


28 A. F. Almeida, M. Astudillo, M. M. Cavalcanti and J. P. Zanchetta

[29] P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel
J. Math. 119(2000), 191–324. https://doi.org/10.1007/BF02810672; MR1802658

[30] L. Miller, Escape function conditions for the observation, control, and stabilization of
the wave equation, SIAM J. Control Optim. 41(2002), No. 5, 1554–1566. https://doi.org/
10.1137/S036301290139107X; MR1971962

[31] M. Nakao, Energy decay for the linear and semilinear wave equations in exterior do-
mains with some localized dissipations, Math. Z. 238(2001), No. 4, 781–797. https:
//doi.org/10.1007/s002090100275; MR1872573

[32] L. Tartar, Topics in nonlinear analysis, Publications Mathématiques d’Orsay 78, Vol. 13,
Université de Paris-Sud, Département de Mathématique, Orsay, 1978. MR532371

[33] J. C. Oliveira, R. C. Charão, Stabilization of a locally damped incompressible wave
equation, J. Math. Anal. Appl. 303(2005), No. 2, 699–725. https://doi.org/10.1016/j.
jmaa.2004.08.059; MR2122572

[34] A. R. Santos, Exact controlability in dynamic incompressible materials, PhD thesis, Instituto
de Matemática-UFRJ, Rio de Janeiro, Brasil, 1996.

[35] A. R. Santos, Exact controllability for a hyperbolic system with a pressure term, preprint,
Instituto de Matemática-UFRJ, Rio de Janeiro, Brasil, 1997.

[36] R. Showalter, Monotone operators in Banach spaces an nonlinear partial differential equations,
AMS, Vol. 49 Providence, RI, 1997.

[37] J. Simon, On the existence of pressure for solutions of the variational Navier–Stokes
equations, J. Math. Fluid Mech 1(1999), No. 3, 225–234. https://doi.org/10.1007/
s000210050010; MR1738751

[38] L. Tebou, Stabilization of some elastodynamic systems with localized Kelvin–Voigt
damping, Discrete Contin. Dyn. Syst. 36(2016), No. 12, 7117–7136. https://doi.org/10.
3934/dcds.2016110; MR3567835

[39] R. Temam, Navier–Stokes equations, theory and numerical analysis, Studies in Mathemat-
ics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam–New York–
Oxford, 1977. MR0609732

[40] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed
damping, Comm. Partial Differential Equations 15(1990), No. 2, 205–235. https://doi.org/
10.1080/03605309908820684; MR1032629

https://doi.org/10.1007/BF02810672
https://www.ams.org/mathscinet-getitem?mr=1802658
https://doi.org/10.1137/S036301290139107X
https://doi.org/10.1137/S036301290139107X
https://www.ams.org/mathscinet-getitem?mr=1971962
https://doi.org/10.1007/s002090100275
https://doi.org/10.1007/s002090100275
https://www.ams.org/mathscinet-getitem?mr=1872573
https://www.ams.org/mathscinet-getitem?mr=532371
https://doi.org/10.1016/j.jmaa.2004.08.059
https://doi.org/10.1016/j.jmaa.2004.08.059
https://www.ams.org/mathscinet-getitem?mr=2122572
https://doi.org/10.1007/s000210050010
https://doi.org/10.1007/s000210050010
https://www.ams.org/mathscinet-getitem?mr=1738751
https://doi.org/10.3934/dcds.2016110
https://doi.org/10.3934/dcds.2016110
https://www.ams.org/mathscinet-getitem?mr=3567835
https://www.ams.org/mathscinet-getitem?mr=0609732
https://doi.org/10.1080/03605309908820684
https://doi.org/10.1080/03605309908820684
https://www.ams.org/mathscinet-getitem?mr=1032629

	Introduction
	Description of the problem.
	Main goal, methodology and previous results.

	Internal exact controllability
	Direct and inverse inequalities

	Uniform decay rate
	Wellposedness
	Stability result


