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Abstract. We are concerned with a class of n-dimensional non-autonomous delay dif-
ferential equations obtained by adding a non-monotone delayed perturbation to a linear
homogeneous cooperative system of delay differential equations. Sufficient conditions
for the exponential asymptotic stability of the linear system are established. By using
this stability, the permanence of the perturbed nonlinear system is studied. Under more
restrictive constraints on the coefficients, the system has a cooperative type behaviour,
in which case explicit uniform lower and upper bounds for the solutions are obtained.
As an illustration, the asymptotic behaviour of a non-autonomous Nicholson system
with distributed delays is analysed.
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1 Introduction

This paper concerns the study of permanence for some families of non-autonomous delay
differential equations (DDEs) which have significant applications in population dynamics.

For τ ≥ 0, consider the Banach space C := C([−τ, 0]; Rn) endowed with the norm ‖φ‖ =
maxθ∈[−τ,0] |φ(θ)|, where | · | is a fixed norm in Rn. We consider DDEs expressed in a general
abstract form as

x′(t) = L(t)xt + F(t, xt), t ≥ 0, (1.1)

where xt ∈ C denotes the segment of the solution x(t) given by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0,
L(t) : C → Rn is linear bounded and continuous on t and the nonlinearities are given by
continuous functions F : [0, ∞) × C → Rn. As usual in mathematical biology models, we

BEmail: teresa.faria@fc.ul.pt

https://doi.org/10.14232/ejqtde.2018.1.49
https://www.math.u-szeged.hu/ejqtde/


2 T. Faria

assume the existence of a linear instantaneous negative feedback term in each equation of
(1.1). To be more precise, writing L = (L1, . . . , Ln) and F = (F1, . . . , Fn), we further assume:

Li(t)φ =
n

∑
j=1

Lij(t)φj, t ≥ 0, φ = (φ1, . . . , φn) ∈ C

Lii(t)φi = −di(t)φi(0) + Lii,0(t)φi, i = 1, . . . , n,

(1.2)

where di(t) > 0 and Lii,0(t) is non-atomic at zero (see [10] for a definition); each component
Fi of the nonlinearity F depends only on t and on the ith component of the solution, so that

F(t, φ) = (F1(t, φ1), . . . , Fn(t, φn)) for t ≥ 0, φ = (φ1, . . . , φn) ∈ C. (1.3)

This family encompasses a significant number of delayed systems of differential equations
used in structured population dynamics, epidemiology and other fields. For the last decade,
systems of differential equations with time delays and patch structure have been extensively
studied, since they have been proposed as quite realistic models to account for situations
where several populations or variables are distributed over n different classes or patches,
according to a variety of relevant aspects for the model, with transitions among the patches.

As a subfamily, we may restrict our attention to non-autonomous differential equations
with multiple time-varying delays of the form

x′i(t) = − di(t)xi(t) +
n

∑
j=1

aij(t)xj(t− σij(t))

− gi(t, xi(t)) + fi(t, xi(t− τi1(t)), . . . , xi(t− τim(t))),

(1.4)

for i = 1, . . . , n, where all the coefficients and delay functions are continuous and nonnegative.
Here, we pursue the investigation in [8], where the stability and permanence of systems

x′i(t) = − di(t)xi(t) +
n

∑
j=1,j 6=i

aij(t)xj(t)

+
m

∑
k=1

βik(t)hik(t, xi(t− τik(t))), i = 1, . . . , n, t ≥ 0,

(1.5)

was studied. Note that (1.5) is a particular case of (1.4). Moreover, (1.5) is obtained by adding
a delayed nonlinear perturbation to a linear ordinary differential equations (ODEs) of type
x′(t) = A(t)x(t), while in (1.4) delays are included in the linear terms.

The purpose of this paper is twofold. First, in Section 2 we generalize the setting in (1.5),
by considering systems (1.1) with distributed delays in both the linear and nonlinear terms.
Then, extending some ideas in [8], we give conditions for the global exponential stability of
linear systems x′(t) = L(t)xt. This stability and the monotone character of the linear system
is exploited to further establish sufficient conditions for the permanence of (1.1). Secondly,
by restricting the type of dependence on time in the nonlinearities F(t, xt) in (1.3), and taking
advantage of the permanence previously established, explicit estimates for uniform lower and
upper bounds of all solutions are obtained. This is the subject of Section 3. The results will be
illustrated with applications to systems inspired in well-known population dynamics models.
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2 Stability and permanence

In this section, we give some results on stability and permanence. We start by introducing
some notation.

By C+ we denote the cone of nonnegative functions in C, C+ = C([−τ, 0]; [0, ∞)n), and
by int C+ its interior. Let ≤ be the usual partial order generated by C+: φ ≤ ψ if and only if
ψ− φ ∈ C+; by φ � ψ, we mean that ψ− φ ∈ int C+. The relations ≥ and � are defined in
the obvious way; thus, we write ψ ≥ 0 for ψ ∈ C+ and ψ� 0 for ψ ∈ int C+. A vector v ∈ Rn

is identified in C with the constant function ψ(s) = v for −τ ≤ s ≤ 0. For τ = 0, we take
C = Rn, C+ = [0, ∞)n, and the induced order ≤ is the usual partial order in Rn.

Unless otherwise stated, we consider the maximum norm in Rn. For a positive vector
v = (v1, . . . , vn) we denote by v−1 the vector v−1 = (v−1

1 , . . . , v−1
n ) and by | · |v the norm

defined by |x|v = max1≤i≤n(vi|xi|) for x = (x1, . . . , xn) ∈ Rn; the associated norm for φ ∈ C is
‖φ‖v = maxθ∈[−τ,0] |φ(θ)|v. Hereafter, we use 1 = (1, . . . , 1).

Let D ⊂ C([−τ, 0]; Rn), and consider a general non-autonomous DDE written as

x′(t) = f (t, xt), t ∈ I, (2.1)

where I = [0, ∞) and f : I × D → Rn is continuous. Of course, any other choice of I = R or
I = [t0, ∞) with t0 ∈ R is possible. Suppose that f is sufficiently regular, so that the initial
value problem is well-posed, in the sense that for each (σ, φ) ∈ [0, ∞)×D there exists a unique
solution of the problem x′(t) = f (t, xt), xσ = φ, defined on a maximal interval of existence.
This solution will be denoted by x(t, σ, φ) in Rn or xt(σ, φ) in C.

Now, suppose that [0, ∞) is the maximal interval of existence for any solution x(t, 0, φ) of
(2.1) with initial condition x0 = φ ∈ D, and write f = ( f1, . . . , fn). The DDE (2.1) is said to be
cooperative if it satisfies Smith’s quasimonotone condition given by

(Q) for φ, ψ ∈ D, φ ≤ ψ and φi(0) = ψi(0), then fi(t, φ) ≤ fi(t, ψ), i = 1, . . . , n, t ≥ 0.

Similarly to what happens for ODEs, there is a comparison result between solutions for two
distinct DDEs x′(t) = f (t, xt) and x′(t) = g(t, xt), if f ≤ g and at least one of the functions f or
g is cooperative. See Smith’s monograph [15], for further definitions and relevant properties
of cooperative systems.

Consider a non-autonomous linear differential equation with distributed delays

x′(t) = L(t)xt (2.2)

with L(t) as in (1.2). We further write (2.2) in the form

x′i(t) = −di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t + s)dsνij(t, s), i = 1, . . . , n, t ≥ 0, (2.3)

for which the following assumptions will be imposed:

(L1) the functions di : [0, ∞) → (0, ∞) are continuous; the measurable functions νij(t, s)
are bounded, nondecreasing in s ∈ [−τ, 0], with the total variation Var[−τ,0] νij(t, ·) of
νij(t, ·) on [−τ, 0], given by

aij(t) :=
∫ 0

−τ
dsνij(t, s) = νij(t, 0)− νij(t,−τ), (2.4)

a continuous function on t ≥ 0, for i, j ∈ {1, . . . , n};
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(L2) there exist a vector v = (v1, . . . , vn) � 0 and T ≥ 0 such that di(t)vi −∑n
j=1 aij(t)vj ≥ 0

for all t ≥ T, i = 1, . . . , n.

A stronger version of (L2) will be often considered:

(L2*) there exist a vector v = (v1, . . . , vn) � 0 and T ≥ 0, δ > 0 such that di(t)vi −
∑n

j=1 aij(t)vj ≥ δ for all t ≥ T, i = 1, . . . , n.

Define the n× n matrix-valued functions

D(t) = diag(d1(t), . . . , dn(t)), A(t) = [aij(t)] for t ∈ [0, ∞).

Assumptions (L2), respectively (L2*), are thus simply written as: there exist a vector v � 0
and T ≥ 0 such that [D(t)− A(t)]v ≥ 0, respectively [D(t)− A(t)]v ≥ δ1 for some δ > 0, for
all t ≥ T.

Observe that the particular case of (2.3) with time-varying discrete delays given by

x′i(t) = −di(t)xi(t) +
n

∑
j=1

aij(t)xj(t− σij(t)), i = 1, . . . , n, (2.5)

is obtained with νij(t, s) = aij(t)H−σij(t)(s), where Ht(s) is the Heaviside function Ht(s) = 0 if
s ≤ t, Ht(s) = 1 if s > t, the delay functions σij(t) are continuous and satisfy 0 ≤ σij(t) ≤ τ.

The theorem below addresses the asymptotic behaviour of the linear DDE (2.3), as well as
the dissipativeness for systems obtained by adding a bounded perturbation f (t, xt) to (2.3).

Theorem 2.1. Consider the non-autonomous linear equation (2.3).

(i) If (L1) is satisfied, (2.3) is cooperative and the cone C+ is positively invariant.

(ii) If (L1), (L2) are satisfied, (2.3) is uniformly stable. Moreover, for v and T as in (L2),
|x(t, t0, ϕ)|v−1 ≤ ‖ϕ‖v−1 , t ≥ t0 ≥ T, ϕ ∈ C.

(iii) If (L1), (L2*) are satisfied and aij(t) are bounded functions for all i, j, (2.3) is globally exponen-
tially stable on [0, ∞); in other words, there exist k, α > 0 such that |x(t, t0, ϕ)| ≤ ke−α(t−t0)‖ϕ‖
for all t ≥ t0 ≥ 0 and ϕ ∈ C.

(iv) If (L1), (L2*) are satisfied, and f : [0, ∞)×C → Rn is continuous and bounded, f = ( f1, . . . , fn),
then all solutions of the DDE

x′i(t) = −di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t + s)dsνij(t, s) + fi(t, xt), t ≥ 0, i = 1, . . . , n, (2.6)

are defined on [0, ∞) and (2.6) is dissipative, i.e., there exists M > 0 such that
lim supt→∞ |x(t)| ≤ M for any solution x(t) of (2.6).

Proof. (i) Write (2.3) in the form (2.2), where L(t) = (L1(t), . . . , Ln(t)) : C → Rn is linear
bounded for t ≥ 0. From hypothesis (L1), νij(t, s) are nondecreasing, thus aij(t) ≥ 0, and L
satisfies (Q). Clearly, the linearity of L also implies that Li(t)φ ≥ 0 for all i = 1, . . . , n, t ≥ 0
whenever φ ∈ C+ and φi(0) = 0. Thus, the set C+ is positively invariant for (2.3) [15, p. 82].

(ii) Rescaling the variables by x̂i(t) = v−1
i xi(t) (1 ≤ i ≤ n), where v = (v1, . . . , vn) � 0

is a vector as in (L2), we obtain a new linear DDE x̂′(t) = L̂(t)x̂t, where the correspond-
ing matrices D̂(t) = diag(d̂1(t), . . . , d̂n(t)) and Â(t) = [âij(t)] have entries d̂i(t) = di(t) and
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âij(t) = v−1
i aij(t)vj. In this way, and after dropping the hats for simplicity, we may consider

(2.3) where v = 1 := (1, . . . , 1) is the positive vector in (L2) and |x|v−1 = max1≤i≤n |xi|. We
now adapt some argument in [8].

Let x(t) 6= 0 be a solution of (2.3). To prove the claim, we show that ‖xt‖ ≤ ‖xt0‖ on each
fixed interval J = [t0, t1], T ≤ t0 < t1. Define uj = max[t0−τ,t1] |xj(t)|, and let ui = max1≤j≤n uj,
with ui = |xi(t∗)| for some t∗ ∈ [t0 − τ, t1]. If t∗ ∈ [t0 − τ, t0], then ‖xt‖ ≤ ‖xt0‖ for t ∈ J.
If t∗ ∈ J, it suffices to show that |xi(t)| is non-increasing on J, or, in other words, that ui =

|xi(t0)|.
We suppose that xi(t∗) > 0; the case xi(t∗) < 0 is treated in a similar way. Denoting

Di(t) =
∫ t

t0
di(s) ds, from (L2) and the definition of aij(t), we derive x′i(t) + di(t)xi(t) ≤ di(t)ui

for t ∈ J. Hence
xi(t) ≤ xi(t0)e−Di(t) + ui(1− e−Di(t)), t ∈ J.

For t = t∗ , we obtain uie−Di(t∗) ≤ xi(t0)e−Di(t∗), which implies ui = xi(t0).
(iii) Without loss of generality, take v = 1 and T, δ > 0 in (L2*), and let M > 0 be such

that ∑j aij(t) ≤ M, for all t ≥ T, i = 1, . . . , n. Effect the change of variables y(t) = eεtx(t) for a
small ε > 0 to be determined later. The linear DDE (2.3) is transformed into

y′i(t) = −d̃i(t)yi(t) +
n

∑
j=1

∫ 0

−τ
e−εsyj(t + s)dsνij(t, s), i = 1, . . . , n, t ≥ 0,

or equivalently,

y′i(t) = −d̃i(t)yi(t) +
n

∑
j=1

L̃ij(t)(yj,t), i = 1, . . . , n, t ≥ 0,

where d̃i(t) = di(t)− ε and

L̃ij(t)φj =
∫ 0

−τ
e−εsφj(s)dsνij(t, s).

We have ‖L̃ij(t)‖ ≤ eετaij(t). Next, we observe that, for ε > 0 sufficiently small, this trans-
formed system satisfies (L2):

d̃i(t)−∑
j

eετaij(t) = di(t)− ε− eετ ∑
j

aij(t)

≥ (1− eετ)∑
j

aij(t)− ε + δ

≥ (1− eετ)M− ε + δ→ δ > 0 as ε→ 0+.

From (ii), it follows that |y(t, t0, ϕ)| ≤ ‖ϕ‖ for t ≥ t0 ≥ T, thus |x(t, t0, ϕ)| ≤ e−εt‖ϕ‖ for all
t ≥ t0 ≥ T and ϕ ∈ C.

(iv) Let T(t, σ) be the solution operator and X(t, σ) the fundamental matrix solution for
(2.3). See Chapter 6 of [10] for definitions and results. From (iii), (2.3) is globally exponentially
stable on [0, ∞), and [10, Lemma 6.5.3] implies that there are positive constants k, K, α such
that ‖T(t, σ)‖ ≤ ke−α(t−σ), ‖X(t, σ)‖ ≤ Ke−α(t−σ), t ≥ σ. The solutions x(t) = x(t, σ, ϕ) of (2.6)
are given by the variation of constants formula [10, p. 173] as

xt(σ, ϕ)(θ) = T(t, σ)ϕ(θ) +
∫ t+θ

σ
X(t + θ, s) f (s, xs(σ, ϕ)) ds.

With | f | uniformly bounded by m > 0 on [0, ∞) × C, this leads to lim supt→∞ |x(t, σ, ϕ)| ≤
mK/α.
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Remark 2.2. The criterion for the exponential stability of the linear system (2.3) in Theorem
2.1(iii) does not require that the functions di(t) are either bounded above or below by positive
constants, however the coefficients aij(t) must be bounded.

Remark 2.3. In a recent paper, Hatvani [12] studied a scalar linear equation of the form

x′(t) = −a(t)x(t) + b(t)
∫ t

t−τ
λ(s)x(s) ds, t ≥ 0, (2.7)

with a, b : [0, ∞) → [0, ∞), λ : [−τ, ∞) → R piecewise continuous continuous, for which
sufficient conditions for its asymptotic stability and uniform asymptotic stability were given.
The approach used by Hatvani in [12] is quite different from our techniques, since it relies on
the method of Lyapunov functionals and the annulus argument, see also [3, 11]. Moreover,
the elaborate, powerful criteria established in [12] do not require the boundedness of the
coefficients functions a(t), b(t).

We now add a perturbation F(t, xt) to (2.3), where F satisfies (1.3). In order to include a
broad class of systems, we write the new system as

x′i(t) =− di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t + s)dsνij(t, s)

− κi(t)xp
i (t) +

m

∑
k=1

βik(t)
∫ t

t−τik(t)
hik(s, xi(s)) dsηik(t, s), i = 1, . . . , n,

(2.8)

where p > 1, the delays are bounded and, without loss of generality, maxi,k supt≥0 τik(t) ≤ τ.
Assume also:

(F1) τik, κi, βik : R → [0, ∞) are continuous and bounded, the measurable functions ηik :
[0, ∞)× [−τ, 0]→ R are continuous on t, with ηik(t, ·) non-decreasing and

βi(t) :=
m

∑
k=1

βik(t)
∫ t

t−τik(t)
dsηik(t, s) > 0, t ∈ R, (2.9)

for i ∈ {1, . . . , n}, k ∈ {1, . . . , m}.

Besides the previous matrices D(t), A(t), define the n× n matrix-valued functions

B(t) = diag(β1(t), . . . , βn(t))

M(t) = B(t) + A(t)− D(t), t ≥ 0.
(2.10)

System (2.8) can be used to model the growth of n populations structured into n classes
or patches, with migration among them. For a biological interpretation of such models, see
[5, 8, 13]. Clearly, the case of multiple discrete time dependent delays of the form

x′i(t) =− di(t)xi(t) +
n

∑
j=1

m

∑
k=1

aijk(t)xj(t− σijk(t))

− κi(t)x2
i (t) +

m

∑
k=1

βik(t)hik(t, xi(t− τik(t))), i = 1, . . . , n, t ≥ 0,

(2.11)

is included in our setting.
For the definitions of persistence and permanence given below, see e.g. [13].
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Definition 2.1. Fix
C0 = {φ ∈ C : φ ≥ 0, φ(0) > 0}

as the set of admissible initial conditions. A DDE x′(t) = f (t, xt) is said to be uniformly
persistent (in C0) if all solutions x(t, 0, φ) with φ ∈ C0 are defined on [0, ∞) and there is
m > 0 such that lim inft→∞ xi(t, 0, φ) ≥ m for all 1 ≤ i ≤ n, φ ∈ C0. The system is said to be
permanent (in C0) if it is dissipative and uniformly persistent; in other words, all solutions
x(t, 0, φ), φ ∈ C0, are defined on [0, ∞) and there are positive constants m, M such that, given
any φ ∈ C0, there exists t0 = t0(φ) for which

m ≤ xi(t, 0, φ) ≤ M, 1 ≤ i ≤ n, t ≥ t0.

The following criterion for permanence of (2.8) relies on the dissipativeness of the system.

Theorem 2.4. Let aij(t), βi(t) be defined by (2.4), (2.9). Assume (L1), (L2*), (F1), and suppose that:

(F2) hik : [0, ∞) × [0, ∞) → [0, ∞) are bounded, continuous, locally Lipschitzian in the second
variable, with hik(t, 0) = 0 for t ≥ 0 and

hik(t, x) ≥ h−i (x), t ≥ 0, x ≥ 0, k = 1, . . . , m,

where h−i : [0, ∞) → [0, ∞) is continuous on [0, ∞), continuously differentiable in a right
neighbourhood of 0, with h−i (0) = 0, (h−i )

′(0) = 1 and h−i (x) > 0 for x > 0, i ∈ {1, . . . , n}.

(F3) there exist vectors u = (u1, . . . , un)� 0 and η = (η1, . . . , ηn)� 0 such that

M(t)u ≥ η for large t > 0. (2.12)

Then (2.8) is permanent.

Proof. Write (2.8) in the form (1.1) and observe that x′i(t) ≥ Li(t)xt − κi(t)xi(t)p with Li(t)φ ≥
−di(t)φi(0) for φ ∈ C+. We first compare solutions of (2.8) with solutions of the decoupled
system of ODEs

y′i(t) = −di(t)yi(t)− κi(t)yi(t)p, i = 1, . . . , n, (2.13)

which obviously satisfies (Q). We deduce that solutions x(t) = x(t, 0, φ) of (2.8) with ini-
tial conditions x0 = φ (φ ∈ C0) satisfy xi(t) ≥ yi(t) for t ≥ 0, i = 1, . . . , n, where y(t) =

(y1(t), . . . , yn(t)) is the solution of (2.13) with initial condition y(0) = (φ1(0), . . . , φn(0)) > 0.
Hence x(t) > 0 for t > 0.

On the other hand, we compare solutions of (2.8) with the solutions of the auxiliary coop-
erative system

x′i(t) = −di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t + s)dsνij(t, s) + Mi, i = 1, . . . , n, (2.14)

where Mi > 0 are such that

βi(t)max
k

sup
t,x≥0

hik(t, x) ≤ Mi, i = 1, . . . , n.

Theorem 2.1 implies that system (2.14) is dissipative. By comparison, each solution x(t, σ, ϕ)

of (2.8) is bounded from above by the solution of (2.14) with the same initial condition ϕ ∈ C0,
thus (2.8) is dissipative as well.
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Once the dissipativeness is observed, the result of uniform persistence follows by compar-
ison of solutions with solutions of a second auxiliary system, which here is taken as

x′i(t) =− di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t + s)dsνij(t, s)

− κi(t)xp
i (t) +

m

∑
k=1

βik(t)
∫ t

t−τik(t)
Hi(xi(s)) dsηik(t, s), i = 1, . . . , n,

(2.15)

where Hi(x) = h−i (x) for 0 ≤ x ≤ ε, Hi(x) = h−i (ε), and ε is chosen sufficiently small
so that Hi is non-decreasing (in this way (2.15) is cooperative) and hik(t, x) ≥ Hi(x) for all
t ≥ 0, x ≥ 0. One can check that the arguments for the proof of Theorem 3.3 in [8] can be
carefully adapted to the present situation, in order to deal with the distributed delays, thus
as in [8] one concludes that (2.15) is uniformly persistent. Details are omitted. Since solutions
of (2.8) are bounded from below by solutions of (2.15), it follows that it is also uniformly
persistent. This ends the proof.

Remark 2.5. The arguments above show that in (2.8) the terms−κi(t)xp
i (t) (p > 1) can actually

be replaced by instantaneous nonlinearities of the form −κi(t)gi(xi(t)), with ki(t) as above and
gi : [0, ∞)→ [0, ∞) continuous and gi(x) = o(x) as x → 0+.

Hypothesis (F2) depends solely on the type of nonlinearity added to (2.3), while (F3)
depends also on the linear coefficients. To test whether there are positive vectors satisfying
hypotheses (L2*) and (F3), the following lemma is useful.

Lemma 2.6. Suppose that lim inft→∞ βi(t) > 0, i = 1, . . . , n, and that there exist a vector v =

(v1, . . . , vn)� 0, T0 ≥ 0 and positive constants αi, γi such that

1 < αi ≤
βi(t)vi

di(t)vi −∑n
j=1 aij(t)vj

≤ γi for t ≥ T0, i = 1, . . . , n. (2.16)

Then assumptions (L2*) and (F3) are satisfied.

Proof. Let βi(t) ≥ β−i > 0 for t ≥ T1, with T1 ≥ T0. From (2.16), we have di(t)vi −
∑n

j=1 aij(t)vj ≥ γ−1
i β−i vi and βi(t)vi− di(t)vi +∑n

j=1 aij(t)vj ≥ (αi− 1)
(
di(t)vi−∑n

j=1 aij(t)vj
)
≥

(αi − 1)γ−1
i β−i vi for all t ≥ 0 and i ∈ {1, . . . , n}, thus (L2*) and (F3) hold for a common vector

v = u as in (2.16).

Example 2.7. Consider the system:

x′i(t) =
mi

∑
k=1

βik(t)xi(t− τik(t))
1 + cik(t)xα

i (t− τik(t))
+

n

∑
j=1

aij(t)xj(t− σij(t))

− di(t)xi(t)− κi(t)x2
i (t), t ≥ 0, i = 1, . . . , n,

(2.17)

where α ≥ 1, all the coefficients βik(t), cik(t), aij(t), di(t), κi(t) and delays τik(t), σij(t) are non-
negative, continuous and bounded functions in t ∈ [0, ∞), k = 1, . . . , mi, i, j = 1, . . . , n; the
functions cik(t) are assumed to be bounded below from zero.

System (2.17) can be interpreted as a model for n populations of one or multiple species,
distributed over n different classes with dispersal terms among them, with Beverton–Holt
nonlinearities hik(t, x) = x

1+cik(t)xα (α ≥ 1). The coefficients aij(t) stand for the migration rates
of populations moving from class j to class i, and σij(t) for the time-delays during dispersion.
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The instantaneous loss term −di(t)xi(t) incorporates the death rate for the ith-population, as
we all as the terms −dji(t)xi(t), to account for the individuals that leave class i to move to
different classes j 6= i. (It is thus natural to consider dii(t) ≡ 0 for each i ∈ {1, . . . , n}, but this
assumption is not relevant here).

With α = 1, (2.17) can be seen as a modified delayed logistic equation for n populations
of one or multiple species, distributed over n different classes with dispersal terms among
them. See [1] for the deduction of the model in the case n = 1 as well as for a biological
interpretation, and [2, 7] for more results. With κi ≡ 0, we obtain a generalization of Mackey–
Glass equation for n populations with patch structure and migration among the patches.

System (2.17) has the form (2.11) with hik(t, x) = x
1+cik(t)xα for t, x ≥ 0. If α = 1, hik(t, x) are

increasing in the second variable, hence (2.17) is cooperative. Since cik(t) are bounded above
and below by positive constants, let 0 < ci ≤ cik(t) ≤ ci. One obtains h−i (x) ≤ hik(t, x) ≤ ci

−1,
with h−i (x) = x

1+cix
. If α > 1, the functions x 7→ hik(t, x) are not monotone, but they are

bounded, unimodal and satisfy hik(t, x) ≥ x
1+cixα for t, x ≥ 0. Hence, (F1), (F2) are satisfied. As

an application of Theorem 2.4, we deduce that if there exist δ > 0, T > 0 and positive vectors
v, u such that

[D(t)− A(t)]v ≥ δ1, M(t)u ≥ δ1, for t ≥ T, (2.18)

then (2.17) is permanent (in the set of solutions with initial conditions in C0).

Example 2.8. Consider the following non-autonomous Nicholson system with patch structure
and multiple time-dependent discrete delays (see e.g. [8, 9, 14]):

x′i(t) = − di(t)xi(t) +
n

∑
j=1,j 6=i

aij(t)xj(t)

+
m

∑
k=1

βik(t)xi(t− τik(t))e−ci(t)xi(t−τik(t)), i = 1, . . . , n,

(2.19)

which has the form (2.11) with nonlinearities hik = hi given by hi(t, x) = xe−ci(t)x for all i, k.
Here, the coefficient and delay functions are supposed to satisfy (L1), (F1), with ci(t) > 0
continuous and bounded. Clearly, (F2) is satisfied, hence if conditions (2.18) hold the system
is permanent.

Generalizations of (2.19) will be presented in Example 3.2. Other useful population models
can be written in the form (2.8) (see e.g. [5]). Among them, instead of the Ricker-type terms
as in (2.19), one could consider modified exponentials hik(t, x) = xe−cik(t)xα

(α > 0).

3 Uniform lower and upper bounds for models with cooperative
behaviour

If κi ≡ 0 and the nonlinearities hik are autonomous and identical in each equation i, system
(2.8) becomes

x′i(t) = − di(t)xi(t) +
n

∑
j=1

∫ 0

−τ
xj(t− s)dsνij(t, s)

+
m

∑
k=1

βik(t)
∫ t

t−τik(t)
hi(xi(s)) dsηik(t, s), i = 1, . . . , n,

(3.1)

and (F2) simply reads as
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(F2*) hi : [0, ∞) → [0, ∞) are locally Lipschitz continuous, bounded, and differentiable on a
vicinity of 0+, with hi(0) = 0, h′i(0) = 1, hi(x) > 0 for x > 0, i ∈ {1, . . . , n}.

In some concrete applications, the a priori knowledge of permanence of (2.8) can be used
to deduce explicit upper and lower bounds for the asymptotic behaviour of solutions. This
technique was used in [2,6] for cooperative scalar equations, and in [7] for multi-dimensional
cooperative DDEs. Although in general (2.8) is non-monotone, here the method is illustrated
with the situation of autonomous functions hi(x) as in (3.1), if constraints are imposed in order
to force (3.1) to have a cooperative type behaviour.

For functions hi satisfying hi(0) = 0, h′i(0) = 1 as in (F2*), we may write hi(x) = xgi(x),
where gi is continuous and gi(0) = 1. We now impose an additional hypothesis:

(F4) there exists maxx≥0 hi(x) = hi(c∗i ); with c∗i the first point of absolute maximum of hi(x),
hi(x) is increasing on [0, c∗i ] and hi(x)/x is decreasing on (0, c∗i ], where , i = 1, . . . , n.

Theorem 3.1. Assume (L1), (F1), (F2*) and (F4). In addition, suppose that:

(i) lim inft→∞ βi(t) > 0, i = 1, . . . , n;

(ii) there exists v = (v1, . . . , vn)� 0 such that

lim inf
t→∞

βi(t)vi

di(t)vi −∑j aij(t)vj
> 1,

lim sup
t→∞

βi(t)vi

di(t)vi −∑j aij(t)vj
< (hi(c∗i ))

−1vi min
1≤j≤n

(v−1
j c∗j ), i = 1, . . . , n.

(3.2)

Then all solutions x(t) = x(t, 0, φ) of (3.1) with φ ∈ C0 satisfy the estimates

lim sup
t→∞

xi(t) < c∗i , i = 1, . . . , n

and
m ≤ lim inf

t→∞
(xi(t)/vi) ≤ lim sup

t→∞
(xi(t)/vi) ≤ M, i = 1, . . . , n, (3.3)

with explicit uniform lower and upper bounds

M = max
1≤i≤n

1
vi

g−1
i

(
lim inf

t→∞

di(t)vi −∑j aij(t)vj

βi(t)vi

)

m = min
1≤i≤n

1
vi

g−1
i

(
lim sup

t→∞

di(t)vi −∑j aij(t)vj

βi(t)vi

)
,

(3.4)

where the functions gi are defined by gi(x) = hi(x)/x for x > 0 and i = 1, . . . , n.

Proof. From (3.2), there exist T0 ≥ 0 and constants αi, γi such that

αi ≤
βi(t)vi

di(t)vi −∑j aij(t)vj
≤ γi, t ≥ T0, i = 1, . . . , n, (3.5)

with
αi > 1 and γi < (hi(c∗i ))

−1vi min
1≤j≤n

(v−1
j c∗j ), i = 1, . . . , n.
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Since βi(t) are bounded, the above estimates also imply that di(t), aij(t) are bounded on [0, ∞),
for all i, j. From Theorem 2.4 and Lemma 2.6, the imposed assumptions imply that (3.1) is
permanent.

Rescaling the variables as yj(t) = xj(t)/vj, (3.1) is transformed into

y′i(t) = − di(t)yi(t) +
n

∑
j=1

v−1
i vj

∫ 0

−τ
yj(t− s)dsνij(t, s)

+
m

∑
k=1

βik(t)
∫ t

t−τik(t)
ĥi(yi(s)) dsηik(t, s), i = 1, . . . , n, t ≥ 0,

(3.6)

where ĥi(x) := v−1
i hi(vix), x ≥ 0. For (3.6), âij(t) := v−1

i aij(t)vj replaces aij(t) in formula (2.4),
for all i, j. In what follows, we keep the hats in (3.6) in order to avoid misinterpretations.
System (3.6) satisfies the hypotheses (L1), (F1), (F2*) and (3.2) with v = 1.

For any solution x(t) := x(t, 0, φ) of (3.1), set xj := lim inft→∞ xj(t), xj := lim supt→∞ xj(t),
1 ≤ j ≤ n. From Theorem 2.4, 0 < xj ≤ xj < ∞ for all j. Next, consider the corresponding so-
lution y(t) of (3.6), and y

j
:= lim inft→∞ yj(t), yj := lim supt→∞ yj(t), 1 ≤ j ≤ n, not forgetting

however that yj = xj/vj and yj = xj/vj, so the weights vj must be taken into consideration in
the final estimates.

For (3.6), each one of the functions ĥi attains its absolute maximum at v−1
i c∗i and ĥi(x) <

ĥi(v−1
i c∗i ) = v−1

i hi(c∗i ) for 0 ≤ x < v−1
i c∗i . Together with (3.6), we consider the auxiliary system

u′i(t) = − di(t)ui(t) +
n

∑
j=1

v−1
i vj

∫ 0

−τ
uj(t− s)dsνij(t, s)

+
m

∑
k=1

βik(t)
∫ t

t−τik(t)
Ĥi(ui(s)) dsηik(t, s), i = 1, . . . , n, t ≥ 0,

(3.7)

where Ĥi(x) = ĥi(x) if 0 ≤ x ≤ v−1
i c∗i , Ĥi(x) = v−1

i hi(c∗i ) if x ≥ v−1
i c∗i . It is apparent that (3.7)

satisfies the quasimonotone condition (Q).
From Theorem 2.1, all the positive solutions u(t) of (3.7) are bounded, thus uj :=

lim supt→∞ uj(t) are finite, 1 ≤ j ≤ n. Consider an i such that ui = max1≤j≤n uj.
By the fluctuation lemma, take a sequence (tk) with tk → ∞, u′i(tk) → 0 and ui(tk) → ui.

For any ε > 0 small and k sufficiently large, we have 0 < uj(s) ≤ ui + ε for s ≥ tk − τ and all j.
Recalling that all the coefficient functions are bounded on [0, ∞), for sufficiently large k, from
(3.5) and (2.9) we derive

u′i(tk) ≤ − di(tk)(ui − ε) + (ui + ε)
(

∑
j

âij(tk)
)
+ βi(tk)v−1

i hi(c∗i )

=
(

di(tk)−∑
j

âij(tk)
) [
−ui +

βi(tk)

di(tk)−∑j âij(tk)
v−1

i hi(c∗i )

]
+ O(ε)

≤
(

di(tk)−∑
j

âij(tk)
) [
−ui + γi v−1

i hi(c∗i )
]
+ O(ε).

Taking limits k → ∞, ε → 0+, this leads to 0 ≤ di[−ui + γi v−1
i hi(c∗i )], where di = supt≥0 di(t).

Thus,
ui ≤ γi v−1

i hi(c∗i ) < min
1≤j≤n

(v−1
j c∗j ) ≤ v−1

i c∗i

and, for any other j,
uj ≤ ui < min

1≤`≤n
(v−1

` c∗` ) ≤ v−1
j c∗j .
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Since (3.7) is cooperative and ĥj(x) ≤ Ĥj(x) for all j, we derive that y(t) ≤ u(t) for
solutions y(t), u(t) of (3.6), (3.7), respectively, with the same initial conditions [15]. This yields
that yj ≤ uj < v−1

j c∗j for all j ∈ {1, . . . , n}, and hence, for t > 0 sufficiently large, y(t) is also a
solution of (3.7).

Returning to the original (after scaling) system (3.6), in a similar way we fix i such that
yi = max1≤j≤n yj, and choose a sequence (tk) with tk → ∞, y′i(tk) → 0 and yi(tk) → yi. For
any ε > 0 such that yi + ε < v−1

i c∗i and k sufficiently large, we have

y′i(tk) ≤ − di(tk)(yi − ε) + (yi + ε)
(

∑
j

âij(tk)
)
+ βi(tk)ĥi(yi + ε)

=
(

di(tk)−∑
j

âij(tk)
) [
−yi +

βi(tk)

di(tk)−∑j âij(tk)
ĥi(yi + ε)

]
+ O(ε)

=
(

di(tk)−∑
j

âij(tk)
)

yi

[
−1 +

βi(tk)

di(tk)−∑j âij(tk)

hi(vi(yi + ε))

viyi

]
+ O(ε).

Taking limits k→ ∞, ε→ 0+, this estimate yields

1 ≤ lim sup
t→∞

[
βi(t)

di(t)−∑j âij(t)

]
gi(viyi).

In other words,

gi(viyi) ≥ lim inf
t→∞

di(t)−∑j âij(t)
βi(t)

,

or equivalently

yi ≤
1
vi

g−1
i

(
lim inf

t→∞

di(t)−∑j âij(t)
βi(t)

)
from which we derive xj/vj ≤ xi/vi ≤ M, j = 1, . . . , n, for M as in (3.4).

For the lower estimate we use arguments similar to the ones above, by considering y
i
=

min1≤j≤n y
j

and a sequence (tk) with tk → ∞, y′i(tk) → 0 and yi(tk) → y
i
, so details are

omitted. It is however important to notice that di(t)vi − ∑j aij(t)vj ≥ γ−1
i βi(t)vi where γi is

as in (3.5), thus from (i) we deduce that di(t)vi − ∑j aij(t)vj is bounded away from zero by a
positive constant.

Example 3.2. Consider a Nicholson system with distributed delays

x′i(t) = − di(t)xi(t) +
n

∑
j=1,j 6=i

αij(t)
∫ t

t−σij(t)
λij(s)xj(s) ds

+
m

∑
k=1

βik(t)
∫ t

t−τik(t)
γik(s)xi(s)e−cixi(s) ds, i = 1, . . . , n,

(3.8)

where ci > 0, di(t) > 0, αij(t), λij(t), βik(t), γik(t), σij(t), τik(t) are continuous, bounded and
nonnegative for t ≥ 0, for all i, j, k. According to the biological explanation of the model, αij(t)
are the dispersal rates of the population in class j moving to class i, so one may incorporate a
delay in the migration terms, to account for the time the species take to move among different
patches (see e.g. [16]). Clearly the nonlinearities hi(x) = xe−cix, x ≥ 0, satisfy (F2*), (F4),
with c∗i = c−1

i , hi(x) = xgi(x) where gi(x) = e−cix and hi(c∗i )
−1 = cie. Thus (3.8) has a
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cooperative type behaviour when each component xi(t) of any positive solutions x(t) has
values in the interval (0, c−1

i ) where hi is strictly increasing. As an immediate consequence of
the Theorem 3.1, we get the explicit uniform lower and upper bounds given in the following
theorem:

Theorem 3.3. Consider (3.8), define

aij(t) := αij(t)
∫ t

t−σij(t)
λij(s) ds, βi(t) :=

m

∑
k=1

βik(t)
∫ t

t−τik(t)
γik(s) ds

for 1 ≤ i, j ≤ n, i 6= j, t ≥ 0, and suppose that:

(i) lim inft→∞ βi(t) > 0, 1, . . . , n;

(ii) there exist v = (v1, . . . , vn)� 0, T0 ≥ 0 and constants αi, γi such that (3.5) is satisfied with

αi > 1 and γi < e
vici

max
1≤j≤n

(vjcj)
, i = 1, . . . , n.

Then, all the solutions x(t) = x(t, 0, φ) with φ ∈ C0 satisfy the estimates (3.3) with explicit uniform
lower and upper bounds m, M given by

M = max
1≤i≤n

1
vici

log

(
lim sup

t→∞

βi(t)vi

di(t)vi −∑j 6=i aij(t)vj

)

m = min
1≤i≤n

1
vici

log

(
lim inf

t→∞

βi(t)vi

di(t)vi −∑j 6=i aij(t)vj

)
.

(3.9)

If (3.2) holds with v = 1 and ci = c for all i, a better criterion is obtained. This is illustrated
here with a situation with discrete delays.

Corollary 3.4. Consider the system

x′i(t) = −di(t)xi(t) +
n

∑
j=1,j 6=i

aij(t)xj(t− σij(t)) +
m

∑
k=1

βik(t)xi(t− τik(t))e−cxi(t−τik(t)), (3.10)

where all the coefficients and delays are continuous and bounded, c > 0, di(t) > 0 and aij(t)
(j 6= i), βik(t), σij(t), τik(t) are nonnegative, with βi(t) := ∑m

k=1 βik(t) ≥ δ > 0, for t ≥ 0 and
all i, j, k. Assume that

αi := lim inf
t→∞

βi(t)
di(t)−∑j aij(t)

> 1, γi := lim sup
t→∞

βi(t)
di(t)−∑j aij(t)

< e, i = 1, . . . , n.

Then, all positive solutions x(t) = (x1(t), . . . , xn(t)) of (3.10) satisfy the estimates

c−1 min
1≤i≤n

log(αi) ≤ lim inf
t→∞

xj(t) ≤ lim sup
t→∞

xj(t) ≤ c−1 max
1≤i≤n

log(γi), 1 ≤ j ≤ n. (3.11)

For the scalar case of (3.8), we obtain the next corollary:
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Corollary 3.5. Consider the non-autonomous Nicholson’s equation given by

x′(t) = −d(t)x(t) +
m

∑
k=1

β̃k(t)
∫ t

t−τk(t)
γk(s)x(s)e−cx(s) ds (3.12)

where c > 0, d(t) > 0, β̃k(t), γk(t) ≥ 0, τk(t) > 0 are continuous and bounded functions on [0, ∞).
Suppose that lim inft→∞ ∑m

k=1 βk(t) > 0, where βk(t) = β̃k(t)
∫ t

t−τk(t)
γk(s) ds > 0, and

1 < lim inf
t→∞

(
1

d(t)

m

∑
k=1

βk(t)

)
, lim sup

t→∞

(
1

d(t)

m

∑
k=1

βk(t)

)
< e. (3.13)

Then, all the solutions x(t) = x(t, 0, φ) with φ ∈ C0 satisfy the estimates

lim inf
t→∞

log

(
1

d(t)

m

∑
k=1

βk(t)

)
≤ lim inf

t→∞
x(t) ≤ lim sup

t→∞
x(t)

≤ lim sup
t→∞

log

(
1

d(t)

m

∑
k=1

βk(t)

)
.

(3.14)

In particular, for the non-autonomous Nicholson’s equation with time-varying discrete delays given by

x′(t) = −d(t)x(t) +
m

∑
k=1

βk(t)x(t− τk(t))e−cx(t−τk(t)), t ≥ 0, (3.15)

condition (3.13) implies that all solutions x(t) = x(t, 0, φ) with φ ∈ C0 satisfy (3.14).

Remark 3.6. For the case (3.15), the above corollary recovers Theorem 3.3 in [6] under slightly
weaker hypotheses. See also [4] and references therein, for the stability and global attrac-
tivity of a positive equilibrium analyses for n-dimensional Nicholson systems with constant
coefficients and multiple time-varying delays of the form

x′i(t) = −dixi(t) +
n

∑
j=1,j 6=i

aijxj(t) +
m

∑
k=1

βikxi(t− τik(t))e−cixi(t−τik(t)), i = 1, . . . , n.
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