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Abstract. Geometric integrators are numerical methods for differential equations that
preserve geometric properties. In this article we investigate the questions of construct-
ing such methods for the well-known Lotka–Volterra predator–prey system by using
the operator splitting method. We use different numerical methods combined with the
operator splitting method and analyse if they preserve the geometric properties of the
original system.
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1 Preliminary

By modelling different phenomena in the nature, it is one of the most important factors to
preserve their qualitative properties. These properties are derived from certain fundamental
(biological, physical, etc) laws. Such attributes include the preservation of the energy, phase
space volume, symmetry and symplectic structure. In several cases the standard numerical
methods ignore all these laws, models. Therefore it is important to use numerical methods
that preserve such properties.

1.1 Mathematical background

First, we investigate the attributes of the continuous problem, the Hamiltonian and Poisson
systems and their geometric properties. These notations are the first integral, the simplecticity,
the volume preservation and the Poisson map.
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Definition 1.1. Let D ⊂ Rd be a given domain and f : D → Rd some given continuous
mapping and y0 ∈ Rd a given vector. The problem

dy(t)
dt

= f (y(t)) (1.1)

y(0) = y0 (1.2)

is called initial value problem or Cauchy problem for an autonomous system.

We assume that the function f is Lipschitz continuous, then the Cauchy problem (1.1)–(1.2)
has a unique solution.

Definition 1.2. A differentiable map G : R2d → R2d is called symplectic if its Jacobian matrix
is everywhere symplectic i.e.,

(G ′(y))T JG ′(y) = J, ∀y ∈ dom(G), (1.3)

where

J =
(

0 I
−I 0

)
(1.4)

and I ∈ Rd×d denotes the identity matrix .

Definition 1.3. A map G : D → Rd is called an area-preserving transformation if for any
bounded Σ ∈ dom(G) domain, Σ and G(Σ) have the same area.

Proposition 1.4 ([4]). If G : D → Rd is a symplectic map, then it is an area-preserving transforma-
tion.

Definition 1.5. The exact flow Φt : D → Rd of the problem (1.1)–(1.2) is defined as

Φt(y0) = y(t). (1.5)

Definition 1.6. A first integral of the problem (1.1) is a non-constant continuously differen-
tiable function I : Rd → R, such that

I(y)|y=y(t) = Constant (1.6)

for any y(t) solving the equation (1.1).

This means that the function I is constant along the solutions to (1.1). Hence, some non-
constant differentiable function I(y) is a first integral of the problem (1.1) if and only if

d
dt
I(y(t)) = 0 ∀y(t) solving (1.1). (1.7)

The first integral plays important roles in theory of dynamical systems. It is particularly
studied in the theory of Hamiltonian systems.

Definition 1.7. A Hamiltonian system for the unknown functions p, q : R+
0 → Rd is a system

of the form 
dp(t)

dt
= −∂H(p(t), q(t))

∂q
dq(t)

dt
=

∂H(p(t), q(t))
∂p

(1.8)

where H : Rd ×Rd → R is a smooth function. Such a dynamical system is called a Hamilto-
nian system and H is called the Hamiltonian function of the system.
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Hamiltonian systems play an important role in the theory of dynamical systems and it
is used in numerous fields. E.g., in mechanics a Hamiltonian system describes the motion
involving constraints and forces which have a potential. Hamiltonian systems have a broad
literature, see e.g. [4, 9]. In the following, we investigate the main attributes of such systems.
The Hamilton function usually represents the total energy of the system.

Proposition 1.8. The function H(p, q) is the first integral of the system (1.8).

Proof. Using the chain rule, we have

d
dt

H(p(t), q(t)) =
d

∑
i=1

∂H
∂pi
· dpi

dt
+

∂H
∂qi
· dqi

dt

=
d

∑
i=1

∂H
∂pi
·
(
−∂H

∂qi

)T

+
∂H
∂qi
·
(

∂H
∂pi

)T

= 0,

which proves the statement.

One of the most important properties of Hamiltonian systems is the symplecticity of their
flow.

Theorem 1.9 ([4]). Let H(p, q) be a twice continuously differentiable function. Then for each fixed t
the flow of the Hamiltonian system (1.8) is a symplectic transformation wherever it is defined.

In the following we define the Poisson bracket, that is used in the theory of Lie algebra
and with this notation we investigate the generalized Hamiltonian systems.

Definition 1.10. The Poisson bracket {·, ·} of two functions F(p, q), G(p, q) : C1(Rd×Rd)→ R

is defined as

{F, G} =
d

∑
i=1

(
∂F
∂qi

∂G
∂pi
− ∂F

∂pi

∂G
∂qi

)
, (1.9)

or in a more compact form {F, G} (y) = ∇F(y)T J−1∇G(y), where y = (p, q) and J is the
matrix in (1.4).

We note that p and q usually denote the generalized coordinates and in certain sense the
Poisson bracket yields the analogue of the commutator.
The Poisson bracket satisfies the Lie bracket axioms, i.e. it has the bi-linearity, Jacobi identity,
Leinbniz’s rule and anti-commutativity properties. It is easy to see that the first integral of a
Hamiltonian system can be characterized with the help of the Poisson bracket as follows.

Proposition 1.11 ([4]). A function I(p, q) is a first integral of the problem (1.8) if and only if

{I , H} = 0. (1.10)

Let us define the generalization of the Hamiltonian system, which also has many applica-
tions.
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Definition 1.12. Let B(y) be a skew-symmetric matrix with the property

n

∑
l=1

(
∂bij(y)

∂yl
blk(y) +

∂bjk(y)
∂yl

bli(y) +
∂bki(y)

∂yl
bl j(y)

)
= 0, (1.11)

for all i, j, k.
Then the formula

{F, G}B (y) =
n

∑
i,j=1

(
∂F(y)

∂yi
bij(y)

∂G(y)
∂yj

)
(1.12)

is said to represent a general Poisson bracket. The corresponding differential system

ẏ = B(y)∇H(y) (1.13)

is called a Poisson system.

Clearly, when B(y) = J−1, than the Poisson system turns into the Hamiltonian system.

Definition 1.13. A continuously differentiable function C is called a Casimir function of the
Poisson system (1.13) if

C(y(t)) = Constant (1.14)

for any y(t) solving the problem (1.13).

A Casimir function is a first integral of a Poisson system with structure matrix B(y), what-
ever the Hamiltonian H(y) is. Clearly, for the Casimir function C(y) of the system (1.13), we
have

{C, H}B (y(t)) = 0 (1.15)

for all y(t) solving (1.13). Obviously, the function H(y) is a Casimir function of system (1.13).
The flow of the Poisson system (1.13) satisfies a property closely related to symplecticity.

Definition 1.14. A transformation G : U → Rd, U ⊂ Rd is called a Poisson map if its Jacobian
matrix satisfies

(G ′(y))TB(y)G ′(y) = B(G(y)). (1.16)

Theorem 1.15 ([4]). If B(y) is the structure matrix of a Poisson bracket, then the flow Φt of the
Poisson system (1.13) is a Poisson map.

1.2 An important application: the Lotka–Volterra system

We analyze the above properties on the well-known population dynamical model, namely on
the Lotka–Volterra system. This system is a pair of first-order, nonlinear differential equations
used to describe the dynamics of biological systems, in which two species interact. The model
is a basis model in population dynamics and it has various extensions [2,6,8]. If N(t) denotes
the prey population and P(t) is the predator population at time t, respectively, then the system
has the form 

dN
dt

= aN − bNP,

dP
dt

= cNP− dP,
(1.17)
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where a, b, c and d are positive constants.
In this model, it is assumed that the prey population has an unlimited food, and it grows

exponentially without predators. This exponential growth is represented in the equation by
the term aN. We assume that the rate of the predation depends on the rate at which the
predators and prey meet, this is represented by bNP. In the equation for the predators, cNP
represents the growth rate of the population. The term dP is the loss of the predators, which
leads to the exponential decay in the absence of prey. Hence the equation of the predators
expresses the change of the population as growth rate minus natural death.

If we introduce the function V : R×R→ R, defined as

V(N, P) = cN − d ln N + bP− a ln P, (1.18)

the Lotka–Volterra system can be rewritten in the form
dN
dt

= −NP
∂V
∂P

dP
dt

= NP
∂V
∂N

,
(1.19)

i.e., with the choice

B(N, P) =
(

0 −NP
NP 0

)
(1.20)

it is a Poisson system. However, using the logarithmic transformations

Ñ = ln N, P̃ = ln P, (1.21)

which transforms V(N, P) to H(Ñ, P̃) = ceÑ + beP̃ − aP̃ − dÑ, the Lotka–Volterra system
becomes a Hamiltonian system of the form

dÑ
dt

=
1
N

dN
dt

= −∂H
∂P̃

,

dP̃
dt

=
1
P

dP
dt

=
∂H
∂Ñ

.
(1.22)

There are other variations of the Lotka–Volterra models and they also have a Poisson
structure. (E.g., in [5] a three dimensional Lotka–Volterra model has been investigated.) We
note that the Lotka–Volterra models can be successfully applied to the description of the
human-resource interactions. This model can be considered to be an advanced Malthusian
model of population growth. The predator–prey systems can be considered as follows: the
human population is the predator and the resource is the prey. Based on this approach, several
special ecological problems can be analysed, like the Easter Island collapse [10].

There are several geometric properties of such systems. One of them is the following.
The solutions of the system lie on a closed curve [8], which means that the quantity of the
prey and predator populations has periodic oscillation. This property is very basic for these
phenomena, therefore in the construction of the discrete models to (1.17), it is important to
use discretization methods for the system, that preserves this qualitative behaviour. Let

ωτ = {tn = nτ, n = 0, 1, . . .} (1.23)
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where the mesh-size τ > 0 is some given value. In the sequel Pn and Nn denote the approxi-
mation to the exact solution of the system at time tn.

We apply some classical numerical one-step methods to the Lotka–Volterra system (1.17)
and investigate their properties. The explicit Euler method results in the discrete model

Nn+1 = Nn + τNn(a− bPn),

Pn+1 = Pn + τPn(cNn − d).
(1.24)

Figure 1.1: The numerical solution of the Lotka–Volterra system with the explicit
Euler method, with a = b = 1, c = d = 0.5, N0 = P0 = 0.5 and τ = 0.1.

The use of the implicit Euler method results in the model

Nn+1 = Nn + τNn+1(a− bPn+1),

Pn+1 = Pn + τPn+1(cNn+1 − d).
(1.25)

Figure 1.1 and 1.2 suggest that the above methods do not preserve the geometric property,
since the numerical solution spirals inwards or outwards, whereas the exact solution should
lie on a closed curve.

In the following we define the preservation property of the numerical solution. Let Φτ

represent the mapping of the one-step numerical method

Φτ : yn → yn+1 (1.26)

which, by the analogy with (1.5), we call numerical flow.

Definition 1.16. A numerical method is called symplectic if the one-step map Φτ is symplectic
whenever the method is applied to a smooth Hamiltonian system, i.e.,(

Φ′τ(Nn, Pn)
)T J

(
Φ′τ(Nn, Pn)

)
= J (1.27)

is satisfied.

Definition 1.17. A numerical method is called a Poisson integrator if the numerical flow Φτ

is a Poisson map, i.e., (1.16) holds.
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Figure 1.2: The numerical solution of the Lotka–Volterra system with the im-
plicit Euler method, with a = b = c = d = 1, N0 = P0 = 0.5 and τ = 0.1.

Hence, we have the following statements.

Theorem 1.18. The explicit Euler and implicit Euler methods are neither symplectic nor Poisson
integrators.

Proof. In the following we denote by pn and qn the approximations of the unknown functions
N(t) and P(t) at the time t = tn, i.e. Nn = pn and Pn = qn, respectively. Applying the explicit
Euler method to the Hamiltonian system, we get the following one-step discrete model:

pn+1 = pn − τ
∂H
∂q

(pn, qn)

qn+1 = qn + τ
∂H
∂p

(pn, qn).
(1.28)

Therefore, 

∂pn+1

∂pn
= 1− τ

∂2H
∂q∂p

(pn, qn)

∂pn+1

∂qn
= −τ

∂2H
∂q∂q

(pn, qn)

∂qn+1

∂pn
= τ

∂2H
∂p∂p

(pn, qn)

∂qn+1

∂qn
= 1 + τ

∂2H
∂p∂q

(pn, qn).

(1.29)

From (1.29) by a simple calculation one can check that

(Φ′τ(pn, qn))
T J(Φ′τ(pn, qn)) 6= J, (1.30)

which means that the explicit Euler method is not a symplectic integrator.
Applying the implicit Euler method to a Hamiltonian system, we get the following one-step
numerical method: 

pn+1 = pn − τ
∂H
∂q

(pn+1, qn+1)

qn+1 = qn + τ
∂H
∂p

(pn+1, qn+1).
(1.31)
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We differentiate the above relation with respect to pn and qn

∂pn+1

∂pn
= 1− τ

∂2H(pn+1, qn+1)

∂p∂q
∂pn+1

∂pn
− τ

∂2H(pn+1, qn+1)

∂q∂q
∂qn+1

∂pn

∂pn+1

∂qn
= −τ

∂2H(pn+1, qn+1)

∂p∂q
∂pn+1

∂pn
− τ

∂2H(pn+1, qn+1)

∂q∂q
∂qn+1

∂qn

∂qn+1

∂pn
= τ

∂2H(pn+1, qn+1)

∂p∂p
∂pn+1

∂pn
+ τ

∂2H(pn+1, qn+1)

∂q∂q
∂qn+1

∂pn

∂qn+1

∂qn
= 1 + τ

∂2H(pn+1, qn+1)

∂p∂p
∂pn+1

∂pn
+ τ

∂2H(pn+1, qn+1)

∂p∂q
∂qn+1

∂qn
,

(1.32)

then the we get again

(Φ′τ(pn, qn))
T J(Φ′τ(pn, qn)) 6= J, (1.33)

which means that the implicit Euler method is not a symplectic integrator.
Similarly it can be seen that the explicit and implicit Euler methods are not Poisson maps

[4, 7].

Let us use an explicit-implicit method as follows:

Nn+1 = Nn + τNn+1(a− bPn),

Pn+1 = Pn + τPn(cNn+1 − d).
(1.34)

Figure 1.3 shows the numerical solution of the Lotka–Volterra system with the scheme (1.34).
In this case the numerical result stays on a closed curve.

Figure 1.3: The numerical solution of the Lotka–Volterra system with the sym-
plectic Euler method, with a = 0.5, b = 1, c = 0.5, d = 1, N0 = P0 = 0.5
and τ = 0.1.

Theorem 1.19. The numerical method (1.34) is a symplectic integrator for the transformed Lotka–
Volterra system.
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Proof. We apply the above numerical method for the transformed Lotka–Volterra system (1.22)
in the following form:{

Nn+1 = Nn + τ(−bePn + a)

Pn+1 = Pn + τ(ceNn+1 − d) = Pn + τ(eNn+τ(−bePn+a) − d).
(1.35)

Differentiating these expressions with respect to Nn and Pn, we get

∂Nn+1

∂Nn
= 1

∂Nn+1

∂Pn
= −bePn

∂Pn+1

∂Nn
= τeNn+τ(−bePn+a)

∂Pn+1

∂Pn
= 1− bePn τeNn+τ(−bePn+a).

(1.36)

Hence, (
Φ′τ(pn, qn)

)T J
(
Φ′τ(pn, qn)

)
= J, (1.37)

that means the numerical method is a symplectic integrator for the transformed Lotka–
Volterra system. We call this method symplectic Euler method [4].

Theorem 1.20. The symplectic Euler numerical method is a Poisson integrator for the Lotka–Volterra
system (1.17).

Proof. From the numerical model (1.34) using some simple calculation, we get

(Φ′τ(Nn, Pn))
TB(Nn, Pn)(Φ′τ(Nn, Pn) = B(Nn+1, Pn+1) (1.38)

with B(Nn, Pn) given in (1.20) and therefore, the method is a Poisson integrator.

The symplectic Euler method, which was analysed in [4, 7], is a Poisson integrator and
also symplectic for the Lotka–Volterra system. This is the reason why it gives good numerical
results. In the next section we combine these methods with the operator splitting method and
investigate the geometric properties.

2 Operator splitting methods for the Lotka–Volterra system

The operator splitting method is a powerful tool to lead the time dependent problems to a
sequence of simpler sub-problems. This method separates the original equation into two or
more parts over a time step, separately computes the solution to each part, and then combines
the two or more separate solutions to form an approximation to the solution of the original
differential equation. (The generalization for more sub-operators is straightforward, see [3]).
We consider the following Cauchy problem

dw
dt

= A(w(t)) + B(w(t)), 0 < t ≤ T < ∞

w(0) = w0,
(2.1)
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where w0 ∈ Rd is a given vector and the unknown function is w : [0, T) → Rd. We de-
fine a sequence of meshes on the solution domain, with the mesh size τ = M

T . We replace
the Cauchy problem (2.1) on the above defined M sub-intervals with the following modified
Cauchy problems for each n = 1, 2, . . . , M

dwn
1

dt
(t) = A(wn

1 (t)), (n− 1)τ < t ≤ nτ

wn
1 ((n− 1)τ) = wn

sp((n− 1)τ),
(2.2)

and 
dwn

2
dt

(t) = B(wn
2 (t)), (n− 1)τ < t ≤ nτ

wn
2 ((n− 1)τ) = wn

1 (nτ).
(2.3)

Here w0
sp(0) = w0, and the function wM

sp(nτ) = wM
2 (nτ), defined at the points tn = nτ,

(n = 0, 1, . . . , M) is called splitting solution of the Cauchy problem (2.1). We apply the
operator splitting method to the Lotka–Volterra system (1.17) in the following way. Let

V1(N1, P1) = −a ln P1 − d ln N1,

V2(N2, P2) = bP2 + cN2
(2.4)

a resolution of the function V. In this case the splitting method leads to the following problems
on the interval (n− 1)τ < t ≤ nτ for each n = 1, 2, . . . , M :

dNn
1 (t)
dt

= aNn
1 (t), Nn

1 (tn−1) = Nn−1
sp

dPn
1 (t)
dt

= −dPn
1 (t), Pn

1 (tn−1) = Pn−1
sp

(2.5)

and 
dNn

2 (t)
dt

= −bNn
2 (t)Pn

2 (t), Nn
2 (tn−1) = Nn

1 (tn)

dPn
2 (t)
dt

= cNn
2 (t)Pn

2 (t), Pn
2 (tn−1) = Pn

1 (tn).
(2.6)

(Here the upper index n refers to the time interval where the sub-problems are defined.) The
above problems can be solved analytically. The first system consists of two separable equations
with the exact solution

Nn
1 (t) = Nn−1

sp eat and Pn
1 (t) = Pn−1

sp e−dt. (2.7)

From the second differential equation, we get

d
dt
(cNn

2 + bPn
2 ) = 0. (2.8)

Therefore cNn
2 + bPn

2 = K0 is constant, that leads to a Bernoulli-type differential equation.
Hence,

Nn
sp =

eaτ Nn−1
sp K0

eK0t
[
K0 − ceat · Nn−1

sp

]
+ ceatNn−1

sp

(2.9)

Pn
sp =

1
b

[
K0 − cNn

sp

]
, (2.10)
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where K0 has the form

K0 = ceatNn−1
sp + be−dtPn−1

sp . (2.11)

The flow of the system is the following:

Φt =

[
Φ1

t (Nn−1
sp , Pn−1

sp )

Φ2
t (Nn−1

sp , Pn−1
sp )

]
, (2.12)

where

Φ1
t (Nn−1

sp , Pn−1
sp ) := Nn

sp and Φ2
t (Nn−1

sp , Pn−1
sp ) := Pn

sp. (2.13)

With some simple calculation we arrive at the relation

(Φ′t(Nn−1
sp , Pn−1

sp ))TB(Nn−1
sp , Pn−1

sp )Φ′t(Nn−1
sp , Pn−1

sp ) 6= B(Nn
sp, Pn

sp), (2.14)

which means the method is not a Poisson integrator.

Figure 2.1: The exact solution of system (2.5)–(2.6).

Figure 2.1 shows the exact solutions (2.9) of the systems (2.5)–(2.6). The results show that the
solution of the discrete model does not preserve the cyclicity. This is the reason why we use
numerical methods to solve both split sub-systems.

We have seen that the explicit Euler and implicit Euler methods in themselves do not
preserve the above geometric property. In the sequel, we use the operator splitting method to
solve the Lotka–Volterra system (1.17) and using numerical method to the sub-systems. Our
expectations for this combined numerical method is that it preserves the geometric properties,
namely the symplectic and Poisson structure. In the next sections we will investigate this
problem.
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2.1 Operator splitting method for a Hamiltonian system

We describe the numerical solution of a Hamiltonian system by using the operator splitting
method with given initial conditions. First, we assume that H(p, q) = H1(p, q) + H2(p, q) is
some resolution of the Hamiltonian function. Then on each sub-interval [tn, tn+1] the sequen-
tial splitting leads to two sub-problems as follows.

dp1

dt
= −∂H1

∂q
(p1(t), q1(t))

dq1

dt
=

∂H1

∂p
(p1(t), q1(t)),

(2.15)

with p1(tn) = pn
spl and q1(tn) = qn

spl , and


dp2

dt
= −∂H2

∂q
(p2(t), q2(t))

dq2

dt
=

∂H2

∂p
(p2(t), q2(t))

(2.16)

with p2(tn) = p1(tn+1) and q2(tn) = q1(tn+1). Then we set pn+1
spl = p2(tn+1) and qn+1

spl =

q2(tn+1)

We note that although both sub-systems (2.15) and (2.16) are Hamiltonian systems separe-
taly, but together they will not Hamiltonian systems anymore in general case.

We apply numerical methods with the step-size equal to the splitting step to these prob-
lems and investigate the symplecticity of their flow. We will use the notations pn

i and qn
i for the

approximation of the functions pi(t) and qi(t) at the mesh-point t = tn, respectively (i = 1, 2).
We also use the following notations

A =
∂2H1

∂p2 (pn
1 , qn

1), B =
∂2H1

∂q∂p
(pn

1 , qn
1), C =

∂2H1

∂q2 (pn
1 , qn

1),

D =
∂2H2

∂p2 (pn
2 , qn

2), E =
∂2H2

∂p∂q
(pn

2 , qn
2), F =

∂2H2

∂q2 (pn
2 , qn

2).
(2.17)

Then the following statement holds.

Theorem 2.1. By use of the explicit Euler method with a step size equal to the splitting step size to
solve the sub-systems (2.15) and (2.16), the combined numerical method is symplectic if the following
conditions

ACDF + ACE2 − B2DF + B2E2 − 2BCDE = 0

2ACE + 2CDE = 0

AC− B2 + DF− E2 = 0

(2.18)

are satisfied.

Proof. Applying the explicit Euler method to the sub-problem (2.15) we get
pn+1

1 = pn
1 − τ

∂H1

∂q
(pn

1 , qn
1)

qn+1
1 = qn

1 + τ
∂H1

∂p
(pn

1 , qn
1).

(2.19)
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Similarly, the application of the explicit Euler method to the sub-problem (2.16) results in the
relation 

pn+1
2 = pn

2 − τ
∂H2

∂q
(pn

2 , qn
2) = pn+1

1 − τ
∂H2

∂q
(pn+1

1 , qn+1
1 )

qn+1
2 = qn

2 + τ
∂H2

∂p
(pn

2 , qn
2) = qn+1

1 + τ
∂H2

∂p
(pn+1

1 , qn+1
1 ).

(2.20)

For simplicity, we use the notation pn and qn for the approximation of the split solution at the
mesh-point t = tn. Then, the schemes (2.19) and (2.20) together yield the following one-step
method 

pn+1 = pn − τ
∂H2(pn+1

1 , qn+1
1 )

∂q

qn+1 = qn + τ
∂H2(pn+1

1 , qn+1
1 )

∂p
,

(2.21)

where pn+1
1 and qn+1

1 are defined from (2.19) as follows
pn+1

1 = pn − τ
∂H1

∂q
(pn, qn)

qn+1
1 = qn + τ

∂H1

∂p
(pn, qn).

(2.22)

We differentiate these expressions with respect to p and q. Then, according to the chain rule
and the notations (2.17), we have

∂pn+1

∂pn =
∂pn+1

1
∂pn − τ

∂H2

∂p∂q
∂pn+1

1
∂pn − τ

∂H2

∂2q
∂qn+1

1
∂pn = 1− τB− τE(1− τB)− τ2FA

∂pn+1

∂qn =
∂pn+1

1
∂pn − τ

∂2H2

∂q2
∂qn+1

1
∂pn − τ

∂2H2

∂p∂q
∂pn+1

1
∂pn = −τC− τ2CE− τF(1 + τB)

∂qn+1

∂pn =
∂qn+1

1
∂pn + τ

∂2H2

∂p2
∂pn+1

1
∂pn + τ

∂2H2

∂p∂q
∂qn+1

1
∂pn = τA + τD(1− τB) + τ2A

∂qn+1

∂qn =
∂qn+1

1
∂qn + τ

∂2H2

∂p2
∂pn+1

1
∂qn + τ

∂2H2

∂p∂q
∂qn+1

1
∂qn = 1 + τB− τ2CD + τE(1 + τB).

(2.23)

Hence, computing the matrix product (Φ′τ(pn, qn))
T J (Φ′τ(pn, qn)) we obtain the sufficient

conditions (2.18) for the symplecticity.

This statement shows that the explicit Euler method in itself is not a symplectic integrator,
but when we use the operator splitting method with some suitable resolution of the Hamilto-
nian function, with such a distribution the method can be symplectic.

The conditions (2.18) are usually very restricitive. Therefore our aim is to relax these con-
ditions by choosing other numerical methods for solving the split sub-problems. In the fol-
lowing we investigate the combination of the symplectic Euler method and the non-symplectic
explicit Euler method. We split the Hamiltonian function into two parts and solve these two
sub-systems with the above numerical methods. Let H(p, q) = H1(p, q) + H2(p, q) and we
solve the first problem with the explicit Euler method

pn+1
1 = pn

1 − τ
∂H1(pn

1 , qn
1)

∂q

qn+1
1 = qn

1 + τ
∂H1(pn

1 , qn
1)

∂p
,

(2.24)
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then to the second problem we use the symplectic Euler method
pn+1

2 = pn
2 − τ

∂H2(pn+1
2 , qn

2)

∂q
,

qn+1
2 = qn

2 + τ
∂H2(pn+1

2 , qn
2)

∂p
.

(2.25)

Theorem 2.2. The combination of the explicit Euler and symplectic Euler method (2.24)–(2.25) results
in a symplectic numerical method if the condition

A · B− C = 0 (2.26)

is satisfied.

Proof. In the same way, as before to the split porblem (2.15)–(2.16), for this approach the
combined method of the explicit and symplectic Euler method can be written as a one-step
numerical method, as follows 

pn+1 = pn − τ
∂H2(pn+1, qn)

∂q

qn+1 = qn + τ
∂H2(pn+1, qn)

∂p
,

(2.27)

where pn+1 = pn+1
2 , qn+1 = qn+1

2 and qn = qn+1
1 . We differentiate these expressions with

respect to pn, qn

∂pn+1

∂pn = 1− τ
∂2H1(pn

1 , qn
1)

∂p1∂q1
− τ

∂2H2(pn+1, qn)

∂p∂q
· ∂pn+1

∂pn

− τ2 ∂2H2(pn+1, qn)

∂q∂q
· ∂2H1(pn

1 , qn
1)

∂p1∂p1
,

∂pn+1

∂qn = − τ
∂2H1(pn

1 , qn
1)

∂q1∂q1
− τ

∂2H2(pn+1, qn)

∂p∂q
· ∂pn+1

∂qn

− τ
∂2H2(pn+1, qn)

∂q∂q
·
(

1 + τ
∂2H1(pn

1 , qn
1)

∂p1∂q1

)
,

∂qn+1

∂pn = τ
∂2H1(pn

1 , qn
1)

∂p1∂p1
+ τ

∂2H2(pn+1, qn)

∂p∂p
· ∂pn+1

∂pn

+ τ2 ∂2H2(pn+1, qn)

∂p∂q
· ∂2H1(pn

1 , qn
1)

∂p1∂p1
,

∂qn+1

∂qn = 1 + τ
∂2H1(pn

1 , qn
1)

∂p1∂q1
+ τ

∂2H2(pn+1, qn)

∂p∂p
· ∂pn+1

∂qn

+ τ
∂2H2(pn+1, qn)

∂p∂q
·
(

1 + τ
∂2H1(pn

1 , qn
1)

∂p1∂q1

)
.

(2.28)

Hence,

(Φ′τ(pn, qn))
T J(Φ′τ(pn, qn)) =

(
0 A · B− C + 1

−A · B + C− 1 0

)
.

Then, by the definition, the numerical method is symplectic if the condition

A · B− C = 0 (2.29)

is satisfied.
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If we apply these results to the Lotka–Volterra system and choose

H1 = −aP̃1 − dÑ1 and H2 = beP̃2 + ceÑ2 , (2.30)

the condition of Theorem 2.2 is satisfied. In this case the operator splitting has the following
biological meaning: the corresponding system has been divided into two terms. The function
H1 shows the growth rate and H2 contains the interaction terms. Figure 2(a) shows the nu-
merical solution with the explicit Euler and symplectic Euler method, when the parameters
are a = 1, b = 0.6, c = 0.5, d = 1. The solution lies on a closed curve.
We fix these parameters and use the explicit Euler method to solve both systems. We can see
that in Figure 2(b). In this case the numerical solution spirals outwards.
Let us use the explicit Euler method with another symplectic Euler method and a resolution
of the Hamiltonian which does not satisfy the condition of Theorem 2.2, namely,

H1(Ñ1, P̃1) = beP̃1 + ceÑ1 , (2.31)

H2(Ñ2, P̃2) = −aP̃2 − dÑ2. (2.32)

Then the numerical method is not symplectic, see Figure 2(c) that shows these cases.

The results show that the adequate combination of numerical methods and splitting meth-
ods are useful to preserve the symplectic structure of the numerical solution. As we have
seen, the symplecticity depends on the numerical method and the resolution of the Hamilto-
nian system, too.

3 Operator splitting method for a Poisson system

We describe the numerical method of the system (1.17) by using the operator splitting method
of the form 

dN
dt

= −NP · ∂V(N, P)
∂P

, N(0) = N0

dP
dt

= NP · ∂V(N, P)
∂N

, P(0) = P0.
(3.1)

We investigate the combination of two implicit methods, namely, the implicit Euler method
and the symplectic Euler method which results in the sub-problems

dNn+1
1

dt
= Nn

1 − τNn+1
1 Pn+1

1 ·
∂V1(Nn+1

1 Pn+1
1 )

∂P1
,

dPn+1
1
dt

= Pn
1 + τNn+1

1 Pn+1
1 ·

∂V1(Nn+1
1 , Pn+1

1 )

∂N1
,

(3.2)


dNn+1

2
dt

= Nn
2 − τNn+1

2 Pn
2 ·

∂V2(Nn+1
2 , Pn

2 )

∂P2

dPn+1
2
dt

= Pn
2 + τNn+1

2 Pn
2 ·

∂V2(Nn+1
2 , Pn

2 )

∂N2
.

(3.3)

Theorem 3.1. If we use the combination of the implicit Euler and symplectic Euler method to solve the
system (1.17) and the resolution (2.4), then the numerical method is a Poisson integrator.
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(a) Numerical solution with the explicit Euler and
symplectic Euler method.

(b) Numerical solution with the explicit Euler
method.

(c) Numerical solution with the explicit Euler and
symplectic Euler method with another resolution
of the Hamiltonian system.

Figure 2.2: The numerical solution with the operator splitting method.

Proof. In this case the modified Cauchy problems are the following:

Nn+1
1 =

Nn
1

1− τa
, Nn

1 = Nn
sp,

Pn+1
1 =

Pn
1

1 + τd
, Pn

1 = Pn
sp,

(3.4)

and

Nn+1
2 =

Nn
2

1 + bτPn
2

, Nn
2 = Nn+1

1 ,

Pn+1
2 = Pn

2 + τcNn+1
2 Pn

2 , Pn
2 = Pn+1

1 .
(3.5)

Hence, 
Nn+1

2 =
(1 + τd)Nn

1
(1− τa)(1 + τd + bτPn

1 )

Pn+1
2 = (1 + τcNn+1

1 ) · Pn
1

1 + τd
.

(3.6)
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Applying operator splitting and (3.6), we obtain
Nn+1 =

(1 + τd)Nn

(1− τa)(1 + τd + bτPn)

Pn+1 = (1 + τcNn+1) · Pn

1 + τd

(3.7)

and differentiating these expressions with respect to Nn and Pn, we obtain

∂Nn+1

∂Nn =
1 + τd

(1− τa)(1 + τd + bτPn)

∂Nn+1

∂Pn =
−bτ(1 + τd)Nn

(1− τd)(1 + τd + bτPn)2

∂Pn+1

∂Nn = 0

∂Pn+1

∂Pn =
1 + τcNn+1

1 + τd
.

(3.8)

Therefore, the following condition holds:

(Φ′τ(Nn, Pn))
TB(Nn, Pn)Φ′τ(Nn, Pn) = B(Nn+1, Pn+1) (3.9)

so the method is a Poisson integrator.

If we choose V1 = −a ln P− d ln N and V2 = bP + cN, the numerical method is a Poisson
integrator. Figure 3.1 shows the numerical solution with the explicit Euler and symplectic
Euler method, when the parameters are a = 0.2, b = c = 0.5 and d = 0.3. The solution lies on
a closed curve. We fix these parameters and use the implicit Euler and explicit Euler method

Figure 3.1: Numerical solution with the implicit Euler and symplectic Euler
method.

to solve the systems. In this case Figure 3.2 shows that the numerical solution spirals outward.
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Figure 3.2: Numerical solution with the implicit Euler and explicit Euler
method.

4 Summary

It is essential to use numerical methods, that preserve geometric structures when modelling
biological or physics phenomena. These methods enable us to construct mathematical models
that are much closer to the real-life systems. In this article we have investigated Hamiltonian
systems and Poisson systems and the geometric properties of their flow.

We have analysed the Lotka–Volterra predator–prey system, which is a pair of ordinary
differential equations. The Lotka–Volterra system has a certain geometric structure: the so-
lutions lie on a closed curve. We used the operator splitting method and the combination
of the classical and simplest one-step numerical methods: explicit and implicit Euler method
and the symplectic Euler method to solve the Lotka–Volterra equation system. We have in-
vestigated the geometric properties of the flows of the numerical methods. We have seen that
it is important to carefully choose the appropriate operator splitting method and numerical
methods when solving Hamiltonian and Poisson systems.
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